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ABSTRACT 
One of the major unsolved problems in designing an autonomous 

agent |robot] that must function in a complex, moving environment 
is obtaining reliable, real-time depth information, preferably without 
the limitations of active scanners. Stereo remains computationally in
tensive and prone to severe errors, the use of motion information is 
still quite experimental, and autofocus schemes can measure depth at 
only one point at a time. We examine a novel source of depth informa-
tion: focal gradients resulting from the limited depth of field inherent 
in most optical sy.stems. We prove that this source of information can 
be used to make reliable depth maps of useful accuracy with relatively 
minimal computation. Experiments with realistic imagery show that 
measurement of these optical gradients can potentially provide depth 
information roughly comparable to stereo disparity or motion paral
lax, while avoiding image-to-image matching problems. A potentially 
real-time version of this algorithm is described. 

I. INTRODUCTION 
Our subjective impression is that we view our surroundings in 

sharp, clear focus. This impression is reinforced by the virtually univer
sal photographic tradition** to make images that are everywhere in 
focus, i.e., that have infinite depth of field Unfortunately, both this 
photographic tradition and our feeling of a sharply focused world seems 
to have lead vision researchers in both human and machine vision 

to largely ignore the fact that in biological systems the images that 
fall on the retina are typically quite badly focused everywhere except 
within the central fovea (1,2). There is a gradient of focus, ranging 
from nearly perfect focus at the point of regard to almost complete 
blur at points on distant objects. 

It is puzzling that biological visual systems first employ an optical 
system that produces a degraded image, and then go to great lengths 
to undo this blurring and present us with a subjective impression of 
sharp focus This is especially peculiar because it is just as easy to start 
out with everything in perfect focus. Why, then, does Nature prefer to 
employ a lens system in which most of the image is blurred? 
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A practice established in large part by Ansel Adams and others in 
the famous ''f/64 Club" 

In this paper we report the finding that this gradient of focus in
herent in biological and most other optical systems is a useful source 
of depth information, prove that these focal gradients may be used to 
recover a depth map (i.e., distances between viewer and points in the 
scene) by means of a few, simple transformations of the image, and that 
with additional computation the reliability of this depth information 
may be internally checked. This source of depth information (which 
differs markedly from that used in automatic focusing methods) has 
not previously been described in the human vision literature, and we 
have been unable to find any investigation of it in the somewhat more 
scattered machine vision literature. The performance of a practical 
technique has been demonstrated on realistic imagery, and an inexpen
sive, real-time version of the algorithm is described. Finally, we report 
experiments showing that people make significant use of this depth in
formation. 

This novel method of obtaining a depth map is important be
cause there is currently no passive sensing method for obtaining depth 
information that is simultaneously fast enough, reliable enough, and 
produces a sufficiently dense depth map to support the requirements 
of a robot moving in a complex environment. Stercopsis, despite huge 
investment, remains computationally intensive and prone to severe er
rors, the use of motion information is still in an experimental stage, 
and autofocus schemes can measure depth at only one point at a time. 
We believe that this research, therefore, will prove a significant ad
vance in solving the problem of real-time acquisition of reliable depth 
maps without the limitations inherent in active scanners (e.g., laser 
rangefinders). 

II . THE FOCAL GRADIENT 

Most biological lens systems are exactly focused* at only one dis
tance along each radius from the lens into the scene. The locus of 
exactly focused points forms a doubly curved, approximately spherical 
surface in three-dimensional space Only when objects in the scene in
tersect this surface is their image exactly in focus; objects distant from 
this surface of exact focus are blurred, an effect familiar to photog
raphers as depth of field. 

The amount of defocus or blurring depends solely on the distance 
to the surface of exact focus and the characteristics of the lens system; 
as the distance between the imaged point and the surface of exact focus 
increases, the imaged objects become progressively more defocused. 
If we could measure the amount of blurring at a given point in the 
image, therefore, it seems possible that we could use our knowledge 
of the parameters of the lens system to compute the distance to the 
corresponding point in the scene. 

"Exact foe us" is taken here to mean "has the minimum variance point 
spread function," the phrase "measurement of focus" is taken to mean 
"characterize the point spread function." 
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where v0 is the distance between the lens and t=-the image plane (e.g., 
the film location in a camera), / the f-number of the lens system, 
F the focal length of the lens system, and a the spatial constant of 
the point spread function (i.e., the radius of the imaged point's "blur 
circle") which describes how an image point is blurred by the imaging 
optics. The point spread function may be usefully approximated by a 
two-dimensional Gaussian G(r, a) with a spatial constant a and radial 
distance r. The validity of using a Gaussian to describe the point spread 
function is discussed in the appendix. 

In most situations, the only unknown on the right-hand side of 
Equation (1) is a, the point spread function's spatial parameter. Thus, 
we can use Equation (1) to solve for absolute distance given only that 
we can measure , i.e., the amount of blur at a particular image point. 

Measurement of a presents a problem, however, for the image data 
is the result of both the characteristics of the scene and those of the 
lens system. To disentangle these factors, we can either look for places 
in the image with known characteristics (e.g., sharp edges), or we can 
observe what happens when we change some aspect of the lens system. 
In the following discussion both of these two general strategies for 
measurement of a are described: the use of sharp edges, and comparison 
across different aperture settings. Both approaches require only one 
view of the scene. 

A. Using Sharp Discontinuities 
Image data are determined both by scene characteristics and the 

properties of the lens system, e.g., how fast image intensity changes 
depends upon both how scene radiance changes and the diameter of 
the blur circle. If we are to measure blur circle, therefore, we must 
already know the scenes' contribution to the image. At edges — sharp 
discontinuities in the image formation process — the rate of change 
we observe in the image is due primarily to the point spread function; 
because we can often recognize sharp discontinuities with some degree 
of confidence [3,4] we can use image data surrounding them to deter
mine the focus These observations lead to the following scheme for 
recovering the viewer-to-scene* distance at points of discontinuity. 

Mathematical Details. To calculate the spatial constant of the 
point spread function we require a measure of the rate at which image 
intensity is changing; the wide-spread use of zero-crossings of the 
Laplacian to find edges [5] suggests using slope of the Laplacian across 
the zero-crossing as a measure of rate of change. 

Consider a vertical step edge in the image of magnitude 6 at posi-
tion x0. In this case the values C{x,y) resulting from the convolution 
of image intensities I{x,y) with the Laplacian of a Gaussian V2G{r,) 
(as in |5|) have the form 
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and thus obtain a. The solution of this linear regression is 

(6) 

where I is the mean of the and is the mean of the From A in 
Equation (6) we can obtain the following estimate of the value of the 
spatial constant 

Having estimated we can now use Equation (1) to find the distance to 
the imaged point; note that there are two solutions, one corresponding 
to a point in front of the locus of exact focus, the other corresponding to 
a point behind it This ambiguity is generally unimportant because we 
can usually arrange things so that the surface of exact focus is nearer 
to the sensor than any of the objects in the field of view. 

B. Comparison Across Differing Apertures 
The limiting factor in the previous method is the requirement that 

we must know the scene characteristics before we can measure the 
focus; this restricts the applicability of the method to special points 
such as step discontinuities. If, however, we had two images of exactly 
the same scene, but with different depth of field, we could factor out 
the contribution of the scene to the two images (as the contribution is 
the same), and measure the focus directly. 

Figure 1 shows one method of taking a single view of the scene and 
producing two images that are identical except for aperture size and 
therefore depth of field. This len6 system uses a half-silvered mirror (or 
comparable contrivance) to split the original image into two identical 
images, which are then directed through lens systems with different 
aperture size. Because change in aperture does not affect the position 
of image features, the result is two images that are identical except* 
for their focal gradient (amount of depth of field), and so there is no 
difficulty in matching points in one image to points in the other. Figures 
1 (b) and (c) show a pair of such images. Alternatively, one could rig 
a video or COD camera so that alternate frames employ a different 
aperture; as long as no significant motion occurs between frames the 
result will again be two images identical except for depth of field. 

Because differing aperture size causes differing focal gradients, the 
same point will be focused differently in the two images; for our pur
poses the critical fact is that the magnitude of this difference is a simple 
function of the distance between the viewer and the imaged point. 
To obtain an estimate of depth, therefore, we need only compare cor
responding points in the two images and measure this change in focus. 
Because the two images are identical except for aperture size they may 
be compared directly; i.e., there is no matching problem as there is with 
stereo or motion algorithms. Thus we can then recover the absolute 
distance D by simple point-by-point comparison of the two images, as 
described below. 

Mathematical Details. We start by taking a patch 
centered at within the first image 

and calculate its two-dimensional Fourier transform The same 
is done for a patch at the corresponding point in the second 
image, giving us . Again, note that there is no matching problem, 
as the images are identical except for depth of field. 

Now consider the relation of . Both cover the same region 
in the image, so that if there were no blurring both would be equal to 
the same intensity function . However, because there is blurring 

Their overall brightness might also differ. 
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We may solve either of the two equations in (11) for D, the distance 
to the imaged surface patch. Thus the solution is overconstrained; both 
solutions must produce the same estimate of distance —otherwise the 
estimates of ax and a-z must be in error. This can occur, for instance, 
when there is insufficient high-frequency information in the image patch 
to enable the change in focus to be calculated. The important point is 
that this overconstraint allows us to check our answer, if the equations 
disagree, then we know not to trust our answer. If, on the other hand, 
both equations agree then we can know (to within measurement error) 
that our answer must be correct. 

E. Human Perception 

We have recently reported evidence demonstrating that people 
make use of the depth information contained in focal gradients |9|; 
interestingly, the ecological salience of this optical gradient does not 
appear to have been previously reported in the scientific literature. The 
hypothesis that the human visual system makes significant use of this 
cue to depth has been investigated in two experiments. 

In the first experiment, pictures of naturalistic scenes were 
presented with various magnitude of focal gradient information. It 
was found that increasing the magnitude of the focal gradient results 
in increasing subjective depth. In the second experiment, subjects 
were shown a rightward rotating wireframe (Nekker) cube displayed 
in perspective on a CUT. Such a display may be perceived as either as 
a rigid object rotating to the right, or (surprisingly) as wobbling, non-
rigid object rotating to the left. Normally subjects see the rigid inter
pretations most of the time, but when we introduced a focal gradient 
that favored the non-rigid interpretations, the non-rigid interpretations 
was seen almost as often as the rigid one. 

An experiment demonstrating the importance of depth of field in 
human perception can be easily performed by the reader. First make 
a pinhole camera by poking a small, clean hole through a piece of stiff 
paper or metal. Imposition of a pinhole in the line of sight causes the 
depth of field to be very large, thus effectively removing this depth 
cue from the image. Close one eye and view the world through the 
pinhole, holding it as close as possible to the surface of your eye, and 
note your impression of depth (for those of you with glasses, things 
will look sharper if you are doing it correctly). Now quickly remove 
the pinhole and view the world normally (still using only one eye). The 
change in the sense of depth is remarkable, many observers report that 
the change is nearly comparable to the difference between monocular 
and binocular viewing, or the change which occurs when a stationary 
object begins to move 

III. IMPLEMENTATION AND EVALUATION 

D. Accuracy 

Possibly the major question concerning the usefulness of focal 
gradient information is whether such information can be sufficiently 
accurate There are two major issues to be addressed first, can we 
estimate the variance a of the point spread function with sufficient 
accuracy, and second, does this translate into a reasonable degree of 
accuracy in the estimation of depth. 

Recent research aimed at estimating the point spread function 
has shown that it may be accurately recovered from unfamiliar images 
despite the presence of normal image noise [6,7]. Further, it appears 
that humans can estimate the width of the point spread function to 
within a few percent |8,9|. These findings, together with the results of 
estimating reported in the next section, show that accurate estimation 
of c is practical given sufficient image resolution. 

The second issue is whether the available accuracy at estimating 
σ translates into a reasonable accuracy in estimating depth. Figure 2 
(a) show the theoretical error curve for the human eye, assuming the 
accuracy at estimating σ reported in [4|. It can be seen that reasonable 
accuracy is available out to several meters. This curve should be 
compared to the accuracy curve for stereopsis, shown in Figure 2 (b), 
again assuming human parameters. It can be seen that the accuracies 
are comparable. 

A. Using sharp edges 

The first method of deriving depth from the focal gradient, by 
measuring apparent blur near sharp discontinuities, was implemented 
in a straightforward manner (convolution values near zero-crossings 
were employed in Equations (4) - ((6)) and evaluated on the image shown 
in Figure 3. In this image the optical system had a smaller depth of 
field than is currently typical in vision research; this was done because 
the algorithm requires that the digitization adequately resolve the point 
spread function. 

Figure 3 also shows the depth estimates which were obtained when 
the algorithm was applied to this image. Part (a) of this Figure 3 shows 
all the sharp discontinuities identified [2] It was found that there was 
considerable variability in the depth estimates obtained along these 
contours, perhaps resulting from the substantial noise (3 of 8 bits) 
which was present in the digitized image values To minimize this 
variability the zero-crossing contours were segmented at points of high 
curvature, and the depth values were averaged within the zero-crossing 
segments Figures 3 (b), (c), and (d) show the zero-crossing segments 
that have large, medium, and small depth values, respectively. It can be 
seen that the image is properly segmented with respect to depth, with 
the exception of one small segment near the top of (c). This example 
demonstrates that this depth estimation technique — which requires 
little computation beyond the calculation of zero-crossings — can be 
employed to order sharp edges by their depth values. 
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Figure 3. An Indoor Image of a Sand Castle, Refrigerator, and Door, 
Together with Depth Estimates for its Zero-Crossing Segments. Part (a) of 
this figure shows all the sharp discontinuities found. Parts (b), (c), and (d) 
show the zero crossing segments that have large, medium, and small depth 
values, respectively. It can be seen that the image is properly segmented 
with respect to depth, with the exception of one small segment near the top 
of (c). 

B. Comparison of different apertures 

The second technique, comparing two images identical except for 
aperture, can be implemented in many different ways. We will report a 
very simple version of the algorithm that is amenable to an inexpensive 
real-time implementation. 

In this algorithm two images are acquired as shown in Figure 1 (a); 
they are identical except for their depth of field and thus the amount of 
focal gradient present, as shown in Figures 1 (b) and (c). These images 
are then convolved with a small Laplacian filter, providing an estimate 
of their local high-frequency content. The output of the Laplacian 
filters are then summed over a small area and normalized by dividing 
them by the mean local image brightness, obtained by convolving the 
original images with a Gaussian filter. It appears that a region as small 
as 4 x 4 pixels is sufficient to obtain stable estimates of high-frequency 
content, figures 4 (a) and (b) show the normalized high-frequency 
content of Figures 1 (b) and (c) 

Finally, the estimated high-frequency content of the blurry, large-
aperture image is divided by that of the sharp, small-aperture image, 
i.e., each point of Figure 4 (a) is divided by the corresponding point 
in Figure 1(b). This produces a "focal disparity" map, analogous to a 
stereo disparity map, that measures the change in focus between the 
two images and whose values are monotonically related to depth by 
Equation (I). Figure 4 (c) shows the disparity map produced from 
Figures 2 (b) and 2 (c); intensity in this figure is proportional to depth. 

Figure 4. (a) and (h) show the normalized high-frequency content of Figures 
2 (b) and (c), respectively, (c) shows the focal disparity map (analogous to 
a stereo disparity map) obtained by comparing (a) and (b); brightness is 
proportional to depth. 

Areas of 4 (c) that are black have insufficient high-frequency energy in 
the sharp-focus image to make an estimate of depth. 

It can be seen that this disparity map is fairly accurate. Note 
that points reflected in the bottle are estimated as further than points 
along the edge of the bottle; this is not a mistake, for these points 
the distance traveled by the light is further than for those along the 
edge of the bottle. This algorithm, in common with stereo and motion 
algorithms, does not "know" about mirrored surfaces. 

C. Design for a real-time Implementation 
A minimum of one convolution per image is required for this tech

nique, together with a left shift and four subtractions for the Laplacian, 
and three divides for the normalization and comparison. If special con
volution hardware is available, one can use two convolutions one 
Laplacian and one Gaussian per image, leaving only three divides* 
for the normalization and comparison. Frame buffers that can convolve 
image data in parallel with image acquisition are now available at a 
reasonable price, leaving as few as 3 operations per pixel to calculate 
the disparity map. For a 25f> x 250 image, this can be accomplished in 
as little as 0.36 seconds with currently available microcomputers. 

IV. DISCUSSION 

The most striking aspect of this source of depth information is that 
absolute range can be estimated from a single view with no image-to-
irnage matching problem, perhaps the major source of error in stereo 
and motion algorithms. Furthermore, no special scene characteristics 
need be assumed, so that the techniques utilizing this cue to depth can 
be generally applicable The second most striking fact is the simplicity 
of these algorithms: it appears that a real-time implementation can be 
accomplished relatively cheaply. 

Measurement of the focal gradients associated with limited depth 
of field appears to be capable of producing depth estimates that are at 
least roughly comparable to edge- or feature-based stereo and motion 

which can be done by table lookup. 
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algorithms. The mathematics of the aperture-comparison technique 
shows it to be potentially more reliable than stereo or motion i.e., 
there is no correspondence problem, and one can obtain an internal 
check on the answer although (as discussed above) it has somewhat 
less accuracy. 

The sharp-edge algorithm appears to have potential for useful 
depth-plane segmentation, although it is probably not accurate enough 
to produce a depth map. I believe that this algorithm will be of some 
interest because most of the work finding and measuring the slope of 
zero-crossings — is often already being done for other purposes. Thus 
this type of depth-plane segmentation can be done almost as a side 
effect of edge finding or other operations. 

The aperture-comparison algorithm provides considerably stronger 
information about the scene because it overconstrains scene depth, 
allowing an internal check on the algorithm's answer Thus it provides 
depth information with a reliability comparable to the best that is 
theoretically available from three-or-more image stereo and motion 
algorithms, although it has Son's what less depth resolution. The major 
limitation in measuring focal gradient depth information in this manner 
appears to be insuring sufficient high-frequency information to measure 
the change between images; this requires having both adequate image 
resolution and high-frequency scene content. 

Summary. In summary, we have described a new source of depth 
informal ion — the focal gradient that can provide depth informa
tion at least roughly comparable to stereo disparity or motion paral
lax, while avoiding the image-to-image matching problems that have 
made stereo and motion algorithms unreliable We have shown that 
the limited depth of field inherent in most optical systems can be used 
to make depth maps of useful accuracy with relatively minimal com
putation, and have successfully demonstrated a potentially real-time 
technique for recovering depth maps from realistic imagery. It is our 
hope, therefore, that this research will prove to be a substantial ad
vance towards building a robot that can function in complex, moving 
natural environments 
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Figure 5. Geometry of Imaging. v0 is the distance between the image plane 
and the lens, uo is the distance between the lens and the locus of perfect 
focus, and r is the radius of the lens. When a point at distance u > u() is 
projected through the lens, it focuses at a distance t' < v0, so that a blur 
circle is formed. 

0 

where u is the distance between a point in the scene and the lens, v 
the distance between the lens and the plane on which the image is in 
perfect focus, and F the focal length of the lens Thus, 

(13) 

For a particular lens, F is a constant If we then fix the distance i 
between the lens and the image plane to the value v — vo we have also 
determined a locus of points at distance u — u0 that will be in perfect 
focus, i.e., 

(14) 

We may now explore what happens when a point at a distance u > 
u0 is imaged. Figure 5 shows the situation in which a lens of radius 
r is used to project a point at distance u onto an image plane at 
distance u0 behind the lens. Given this configuration, the point would 
be focused at distance v behind the lens but in front of the image 
plane. Thus, a blur circle is formed on the image plane. Note that 
a point at distance u < u0 also forms a blur circle; throughout this 
paper we assume that the lens system is focused on the nearest point 
so that u is always greater than u0. This restriction is not necessary in 
the second algorithm, as overconstraint on the distance solution allows 
determination of whether D = u > u0 or D — u < u0. 

From the geometry of Figure 5 we see that 
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wavelength produce wave cancellation and reinforcement resulting in 
intensity patterns qualitatively similar to the sine function, sinr/r but 
with different amplitudes and periods for the "rings" around the central 
peak [2]. 

The "rings" produced by this function vary in amplitude, 
width and position with different states of focus and with different 
wavelengths. As wavelength varies these rings change position by as 
much as 90 degrees, so that the blue light troughs become positioned 
over the red light peaks, etc. Further, change in wavelength results in 
substantial changes in the amplitude of the various rings. Although 
this point spread function is quite complex, and the sum over different 
wavelengths even more so, our analysis shows that for white light the 
sum of the various functions obtained at different wavelengths has the 
general shape of a two-dimensional Gaussian. 

Sampling effects caused by digitization are typically next in im
portance after the diffraction effects. The effect of sampling may be 
accounted for in the point spread function by convolving the above 
diffraction-produced point spread function with functions of the form 
sinr/r. Other factors such as chromatic abberation, movement, and 
diffusion of photographic emulsion may also be accounted for in the 
final point spread function by additional convolutions. 

The net effect, in light of the central limit theorem and our analysis 
of the sum of single-wavelength focus patterns, is almost certainly best 
described by a two-dimensional Gaussian G(r,σ) with spatial constant 
σ. The spatial constant σ of the point spread function will be propor
tional to the radius of the blur circle; however, the constant of propor
tionality will depend on the particulars of the optics, sampling, etc. 
In this paper the radius of the blur circle and the spatial constant of 
the point spread function have been treated as identical; in practical 
application where recovery of absolute distance is desired the constant 
of proportionality k must be determined for the system and included 
in Equation (1) as follows: 


