Multi-agent Coordination using Local Search

Boi Faltings and Quang-Huy Nguyen
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory (LIA)
CH-1015 Lausanne, Switzerland
{boi.faltings, gquanghuy.nguyen}@epfl.ch

Abstract

We consider the problem of coordinating the be-
havior of multiple self-interested agents. It in-
volves constraint optimization problems that often
can only be solved by local search algorithms.
Using local search poses problems of incentive-
compatibility and individual rationality. We
thus define a weaker notion of bounded-rational
incentive-compatibility where manipulation is
made impossible with high probability through
computational complexity. We observe that in real
life, manipulation of complex situations is often
impossible because the effect of the manipulation
cannot be predicted with sufficient accuracy. We
show how randomization schemes in local search
can make predicting its outcome hard and thus
form a bounded-rational incentive-compatible
coordination algorithm.

1 Introduction

There are many practical settings where multiple self-
interested agents have to coordinate their actions. This co-
ordination often involves joint decisions about resource al-
location, scheduling and planning that can be formulated as
constraint optimization problems. We thus extend the stan-
dard definition of constraint optimization to the multi-agent
setting as follows:

Definition 1.1 A discrete multi-agent constraint optimization
problem (MCOP) is a tuple < A, X, D,C, R > where:
o A={Ay,.., A} is aset of agents.
o X ={xy,..,x,} is a set of variables.
e D = {dy,..,d,} is a set of domains of the variables,
each given as a finite set of possible values.
o C = {c1,..,¢cp} is a set of constraints, where a con-
straint c; is a function djy X .. x dy; — {0, 1} that returns
1 if the value combination is allowed and 0 if it is not.
o R = {ry,..,1,} is a set of relations, where a relation
r; Is a function d;; X .. X d;j; — R giving the utility of
choosing each combination of values.

o R, is the subset of R that gives the relations associated
with agent A;.

The solution of an MCOP is an assignment of values to all
variables that satisfies all constraints and maximizes the sum
of agent utilities as expressed by their relations. Note that
variables, domains and constraints are common and agreed
upon knowledge among the agents. On the other hand, rela-
tions are specified by the individual agents, and they do not
necessarily have to report them correctly.

An example of an MCOP problem is allocating capacity
in a public network, for example a train or pipeline network.
The network is a graph of connections, and only one agent
can use any one connection at a given time. This can be
represented by having one variable per link and time inter-
val whose domain ranges over the set of agents. Constraints
would enforce for example that successive links and times are
assigned to the same agent.

Agents serve customers’ transportation demands with dif-
ferent efficiency by using different combinations of links.
Thus, each agent has utilities for being able to use certain
combinations of links, and reports these as relations. Agents
want to find a combined assignment that maximizes the sum
of their utilities. Such combinatorial optimization is NP-
complete and thus can be solved exactly only for small prob-
lems. For large instances, in many cases only local search
methods can be implemented. They can provide no optimal-
ity guarantees, but with high probability will find a solution
that is very close to optimal.

Two additional considerations need to be addressed due to
the multi-agent setting: individual rationality and incentive-
compatibility. We say that a mechanism is individually ra-
tional if and only if it is in the best interest of each agent to
participate in the mechanism, i.e if the expected utility that
each agent gets when it participates in the mechanism is at
least as high as if it did not. This is important because other-
wise, agents may choose not to participate in the mechanism.

We say that an optimization mechanism is incentive-
compatible if and only if each agent maximizes its expected
utility when the protocol finds the truly optimal solution. De-
pending on the protocol, incentive-compatibility often means
that each agent is reporting its relations truthfully, thus one
also speaks of fruthful mechanisms. Clearly, incentive-
compatibility is important to obtain a meaningful solution
to the MCOP. It is often achieved through tax or auction
mechanisms such as the VCG mechanism ([Vickrey, 1961;
Clarke, 1971; Groves, 1973]).

The seminal work of Ephrati and Rosenschein [1991] was
the first to propose applying VCG mechanisms to agent coor-
dination. For constraint optimization, game theory has shown
that the only practical mechanism for incentive-compatibility
in MCOP is of the form of a VCG mechanism ([Green
and Laffont, 1979]). However, it has also been shown that
VCG mechanisms require finding the provably optimal so-
lution ([Nisan and Ronen, 2000]). Many practical settings
of optimization problems are too large for complete opti-
mization algorithms. We thus introduce a weaker concept
of bounded-rational incentive-compatibility where manipu-
lation is hard through computational complexity. The uncer-
tainty created by randomized local search makes it computa-
tionally intractable to evaluate the outcome of an untruthful
behavior, thus rendering it uninteresting to agents.

This paper is structured as follows: we first present the lo-
cal search framework for solving MCOP and define bounded-
rational incentive-compatibility. We show how incentive-
compatibility can be achieved in each local search step, and
then address the key issue of avoiding speculation through
the succession of local search steps. We report on experimen-
tal results on randomly generated network resource allocation
problems that show their performance.

2 Assumptions and Definitions
2.1 Local search framework

Since finding the optimal solution for MCOP is computa-
tionally infeasible (NP-complete), in this paper we use local
search algorithms (also called neighborhood search) to find
good, but not necessarily optimal solutions at a reasonable
computational cost. Local search is widely used for solv-
ing large optimization problems. It has been particularly well
studied for satisfiability problems, based on the GSAT proce-
dure ([Selman et al., 1992]). The local search framework we
assume in this paper is given in Algorithm 1.

Algorithm 1 Local search algorithm for MCOP
procedure LocalSearch(A,X,D,C)
v «— SelectInitial Solution(X, D, C)
fori — 1:mdo
R; — AskRelations(a;,v)
end for

repeat
,Uold

— v

N « ChooseNeighbours(v?d, X, D, C)

(v, pay) <« LocalChoice(N, R)

agents make/receive payments according to pay
until termination condition met o
return v

end procedure

The algorithm manipulates a complete assignment of val-
ues to all variables, represented as a vector v. It is initially set
by function SelectlnitialSolution to an assignment that satis-
fies all constraints and could be random. The algorithm then
asks each agent to state its set of relations R;, where the utili-
ties should be relative to the initial assignment v such that the

utility of all relations for the assignment v is zero. This fixes
the otherwise open utility of the initial assignment which has
no influence on the optimization result.

Search then proceeds iteratively by local improvements.
Function ChooseNeighbours provides a set of candidate as-
signments that are close to the current one and could possibly
improve it. In our implementation, they are generated by ran-
domly selecting a variable z; € X and generating all assign-
ments that are equal to 2l but assign to x; different values
in the domain of x; that are consistent with the rest of v,;4
and the constraints in C'.

In the second step of the iteration, the assignment v is up-
dated using the function LocalChoice. It chooses a new as-
signment to optimize the combined utility according to the
relations in R. It also computes a vector of payments pay
that agents must make or receive in the third step of the it-
eration. The payments sum up to zero and the way they are
derived is described in detail in Section 3.

The iteration continues until a termination condition is met,
for example when there is no further improvement in the util-
ity of all agents for some number of steps. To avoid getting
stuck in local optima, the performance of a local search proce-
dure is significantly improved by randomization ([Kirkpatrick
et al., 1983; Selman et al., 1994]). This means that occa-
sionally LocalChoice chooses a value that may even decrease
agent utility.

2.2 Bounded-rational incentive-compatibility

The local search procedure can only work correctly if agents
accurately report their utilities R. Using side payments, we
can create an incentive-compatible mechanism where agents
are motivated to truthfully report these valuations. Well-
known results in game theory ([Green and Laffont, 1979])
have shown that all mechanisms for MCOP that are incentive-
compatible, individually rational and select the optimal so-
lution must be a kind of VCG mechanism. Furthermore,
Nisan and Ronen [2000] have shown that a VCG mecha-
nism requires a provably optimal solution. Thus, there is
no mechanism that makes local search incentive-compatible
while maintaining individual rationality.

We thus replace incentive-compatibility with a weaker
notion, called bounded-rational incentive-compatibility that
uses computational complexity to rule out manipulation:

Definition 2.1 (Bounded-rational agent): an agent is called
bounded rational if it can examine at most C states of the
local search before declaring its utilities R;.

Definition 2.2 Let p; be a bound on the probability that a
bounded rational agent can predict whether it has an ex-
pected utility gain from an untruthful utility declaration. A
mechanism is bounded rational incentive compatible if by
varying a parameter, p; can be made arbitrarily close to 0.

Earlier work, such as ([Conitzer and Sandholm, 2003]), has
proposed using NP-hardness as a protection against manipu-
lation. However, our definition goes further as it requires in
almost all cases, manipulation requires an amount of compu-
tation that is beyond the means of a bounded-rational agent.
Any real computational agent is bounded rational for a suffi-
ciently high C.

3 Local choice step

We now consider incentive-compatibility and randomization
of a single step in the local search, carried out by the func-
tion LocalChoice. We consider that local changes are made
to an individual variable x only, but it is straightforward to
generalize the mechanism to other neighbourhoods.

We assume that the number of possible alternatives is suffi-
ciently small so that LocalChoice can apply a systematic and
complete optimization procedure. We call v, the current as-
signment to x, and let vg be the value that would be optimal
for the set of agents .S, i.e. would most improve the sum of
their utilities.

3.1 Incentive-compatibility

As the local choice depends on the relations declared by the
individual agents, agents would normally have an incentive
to report excessive utility gains for their preferred changes so
that they impose them over those preferred by others. Thus,
the optimal solution according to the declarations of a set of
agents A, which we call 74, could be different from v?. We
counter this tendency by imposing side payments depending
on the utility declarations and the change chosen by the mech-
anism.

As already mentioned earlier, the only side payments that
achieve incentive-compatibility, individual rationality and
choose the optimal solution are VCG payments. For an agent
a;, the VCG payment is the “damage” it does the others, i.e.
the decrease in utility gain its presence causes to the remain-
ing agents:

VCGtax(a;)

= Y [r@xa) = r(ve) — (r(@R) = r(ve))]
reR\r;

= Y [raae) —r@a)]
reR\r;

Note that since VA\a; is optimized for A\a;, the sum of its
utilities for these agents will always be at least as large as
that for 74 and thus the VC'Gtaz is never negative. Thus,
the payments of all agents together leave a positive budget
surplus.

3.2 Randomization

Randomization has first been proposed as simulated anneal-
ing ([Kirkpatrick et al., 1983]), a technique inspired from the
cooling of spin glasses. More recently, it has been studied
more systematically, particularly in the context of satisfiabil-
ity problems. For example, the GSAT algorithm ([Selman et
al., 1992]) has been turned into the GWSAT algorithm ([Sel-
man et al., 1994]) by adding a random walk strategy: with
some probability, the strategy forces an improvement in a
clause by ignoring the other clauses that would also be af-
fected. It has been shown that this randomization has the ef-
fect that the algorithm eventually finds the optimal solution
with high probability.

The random walk steps in GWSAT leave certain randomly
chosen constraints out of the local choice steps. We adopt a
similar scheme where we randomly select a set of relations to

be left out of the optimization at a local choice step. It turns
out that a good way to select these relations is to take all the
relations belonging to a randomly selected agent a.. As we
show below, this way of randomizing allows us to simultane-
ously guarantee budget-balance of the VCG tax mechanism.

3.3 Payment budget balance and individual
rationality

One problem with the VCG mechanism is that agents gener-
ate a surplus of taxes that cannot be returned to them with-
out violating the incentive-compatibility properties. This not
only reduces their net utility gain, but also creates incentives
for whatever third party receives this gain.

The randomization allows us to make the VCG tax scheme
budget balanced by simply paying the payment surplus to the
agent a, that was excluded from the optimization step. Each
agent a; other than a. pays to a. the following tax:

VCOGtax_.(a;) = Z

reR\(r;Ure)

[(UA\(@,0a0) — T(Tava,)]

and the mechanism chooses U4\, to implement. This can
be seen as compensating the agent for the loss of utility it is
likely to incur as a consequence of having been left out of the
optimization, and does not affect the incentive-compatibility
properties:

e for agents other than a., it is still best to report their
utilities truthfully since they follow a VCG mechanism
in a world where a. does not exist.

e for a., its declarations have no effect on the outcome or
payments so any declaration is equally good. However,
it does not know in advance that it will be excluded, so
it still has an interest to make a truthful declaration.

This mechanism is similar to the proposal in [Ephrati and
Rosenschein, 1991], who proposed giving the surplus to
agents that have no interest in the variable being considered.
We call such agents uninterested agents. The mechanism pro-
posed here applies even when no uninterested agent exists.
When there are uninterested agents, optimization can be im-
proved by selecting these to be chosen as excluded agents.
More details on the mechanism can be found in [Faltings,
2004].

In certain cases the sum of the taxes could be less than
the utility loss of the excluded agent, and thus it would not
be individually rational for the agent to participate. In fact,
no matter what payment scheme is used, whenever the local
search step leads to a reduction in total agent utility, there
must be at least one agent for which individual rationality
is violated. Any randomized local search algorithm will oc-
casionally make such moves, for otherwise it would be sus-
ceptible to getting stuck in local optima. Thus, no scheme
can guarantee individual rationality at every randomized lo-
cal choice step.

As the algorithm on the whole improves utility for the com-
munity of agents, this does not mean that the local search
process as a whole is not individually rational. No agent is
systematically disadvantaged by the randomization, and so in
expectation the scheme is individually rational for all agents.

This is confirmed in our simulations, where individual ratio-
nality was always satisfied for all agents in all runs.

4 Sequences of local choices

A local search algorithm is in general incomplete and not
guaranteed to find a particular optimal solution. Thus, as
pointed out by [Nisan and Ronen, 2000], non-truthful dec-
larations can drive the local search algorithm to a solution
that gives a manipulating agent (MA) a better utility than the
truthful declaration. However, effectively using such manip-
ulation requires that the MA is capable of correctly predicting
the effect of a non-truthful utility declaration on the outcome,
and compare it against the utility loss it incurs by carrying
out the manipulation in one or several local choice steps. We
now show that in a randomized local search algorithm and a
sufficiently large problem, with high probability (arbitrarily
close to 1), such prediction would require an amount of com-
putation that is beyond the capabilities of a bounded-rational
agent.

To obtain a worst-case result, we assume that a manipulat-
ing agent (MA) has complete and accurate knowledge of the
relations declared by all other agents. Furthermore, we as-
sume that is has access to an oracle that provides it with the
most promising manipulation.

The remaining task of the MA is then to show that the ma-
nipulation actually produces a better utility than truthful be-
havior. As the local search algorithm is randomized, the MA
can only predict an expected utility, obtained by considering
the probability of certain states and the utilities that the agent
would obtain in each of them. The key idea of our argument
is that with high probability, the number of states that need
to be considered in this calculation will grow exponentially
with the size of the problem. Thus, for a certain problem size
it will exceed the computational capacity of a bounded ratio-
nal agent.

To show this result, we first argue that the MA has to exam-
ine a significant fraction of the probability mass of the states
to ensure success of the manipulation. This fraction depends
on two factors:

e the utility distribution of the problem: if only few states
give a significant utility, or if there are strong symme-
tries so that the state space can be factored, it could be
sufficient to sample only a small subset of the states, and

o the desired confidence of the prediction: since a manip-
ulation will mean a certain utility loss to the agent in the
search step where it is applied, the manipulation needs
to succeed with a certain minimal probability in order to
give an increase in expected utility. Depending on the
utility distribution, this translates to a certain fraction of
the state probability mass that will need to be examined.

Note that both parameters are independent of the size of the
search space. Thus, we can assume that the MA will have to
examine a minimal number of states that corresponds to some
fraction « of the probability mass of the entire search space.

Next, we show that with high probability, this probability
mass is distributed over a number of states that grows expo-
nentially with problem size.

80000 -

—o—n=1
—\—n=2

n=3

n=4
—¥—n=5
—e—n=6
—4—n=7

70000 A
60000
50000 -

40000

#states

30000 A
20000 4 —=—n=8
10000 - n=9
—e—n=10

——n=11

#rounds

Figure 1: New states discovered in successive cycles of a sim-
ulation of local search, for several problem sizes.

The local search algorithm contains several possibilities for
randomization that can make its outcome hard to predict:

e random choice of neighbourhood,
e random choice of excluded agent a.,
e random choice of equivalent local choices.

To make the effect of randomization easy to analyze, we con-
sider only randomizations whose outcomes can be regarded
as independent. This is not the case of the random choice of
neighbourhood, as it will often be the case that choosing n;
and then ny will lead to the same states as choosing ns and
then n4, thus cancelling the randomization effect. Also, local
search has to ensure that all neighbourhoods are considered,
placing limits on the amount of randomization that can be
allowed. Furthermore, a manipulating agent could make dec-
larations to create symmetries that makes the randomization
ineffective.

Fortunately, for the choice of excluded agent as well as
the choice among equivalent solutions, it does appear reason-
able to assume independence of subsequent random choices.
Furthermore, since the manipulating agent’s relations may be
excluded, it cannot render the randomization invalid through
its own declarations.

To find the global optimum, a local search algorithm has
to be able to reach the entire search space. However, even-
tually it will come close to the global optimum and then re-
main within a much smaller subspace of nearly optimal states.
While it is possible to give a theoretical analysis that shows
that with arbitrarily high probability, the probability of reach-
ing any given state is bounded by an exponentially decreasing
value, such an analysis requires many independence assump-
tions that may not hold in practice. Here, we present the fol-
lowing experimental measurements, obtained on the experi-
mental scenario given in the next section.

Figure 1 shows the number of new states discovered in
successive cycles of a simulated randomized local search. It
initially grows exponentially, but eventually search stabilizes
on certain optimal outcomes and thus fails to discover new
states. Importantly, however, the total number of states dis-
covered, shown in Figure 2, still grows exponentially with
problem size: in this example, it muliplies with a factor of
about 3 whenever the size increases by 1. Thus, the total

200000 -
180000 A
160000 -
140000 A
120000 A
100000 A
80000 A

#states

60000
40000 4
20000 A

0 * »> > * * ¢ T T T 1
1 2 3 4 5 6 7 8 9 10 11
#variables

Figure 2: Growth of the total number of states involved in a
local search simulation as a function of the problem size.

number of states has exponential growth with problem size,
even though it does not reach the total state space because of
the convergence of the algorithm.

Another aspect that needs to be shown is that the MA can-
not limit its consideration to only certain states in this space,
i.e. that the probability mass is distributed over a large subset
of the states. We show this by considering the probabilities of
the resulting states at each randomized step. Let p,, denote
the probability that at a random branch, each of the branches
is taken with probability at most 1/m. We have measured p,,,
experimentally (see later section) and have obtained for ex-
ample for py ~ 0.908, showing that the search process has
a significant branching factor. Thus, with high probability
the probability mass is distributed among a large number of
states.

A theoretical analysis with independence assumptions on
this basis gives for example that in a local search with 1000
variables, a stopping probability of 0.0001 (expected number
of cycles = 10°000) and o = 0.1, the probability that an agent
would have to examine less than 1054 states is bounded by
pe < 107°. This is certainly well beyond the capability of
any computational agent today.

While we have so far only analyzed relatively simple mod-
els, it seems clear that in general the probability mass is very
likely to be spread among a large set of states as the size of
the problem increases, and thus the method will be bounded-
rational incentive-compatible with the parameter being the
problem size.

5 Experimental results

We have implemented the mechanism we described for a net-
work resource allocation problem. It consists of allocating
tracks in the train network shown in Figure 3 to different op-
erators. To avoid collisions, each arc in the graph can only
be allocated to one operator who can then run trains on it.
At the same time, there are certain demands for transport-
ing goods. For each demand, 3 feasible routes are com-
puted and it can take any of these routes. This is modelled
as an MCOP having a variable for each task whose domain
is the agent and route assigned to it. For example, if task 3
(London, Manchester) is assigned to agent a; on the path

-
Southampton
Figure 3: The transportation network used in the experiments

1200 -

1000 -

800 -

600 -

utilities

400 +

200

0

T T T T T T T : : 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
rounds

Figure 4: Average utility gain of different local search algo-
rithms as a function of the number of steps.

(London — Birmingham — Manchester), the corre-
sponding variable x5 is assigned the value (a;, London —
Birmingham — Manchester).

The network capacity is modelled by binary constraints be-
tween any pair of tasks whose routes share at least one arc that
rule out assigning it to such overlapping routes but different
agents. Each operator has a different and randomly generated
profit margin for being assigned a demand/route combination,
and declares these through its relations. We randomly gener-
ated tasks and routes and simulated the problem starting from
a situation where no task is assigned to any agent.

We used the experiments to observe three properties: ef-
ficiency, branching probabilities and individual rationality.
First, we want to show the efficiency of the randomized pro-
tocol with respect to straight hill-climbing to show that it in-
deed escapes from local minima. Figure 4 compares the per-
formance of local search with randomization (LOO, shown
by the thick line) with stochastic search (SS, thin line) and
strict hill-climbing (LS, dashed line) on 100 randomly gener-
ated problem instances. We see that local search gets stuck in
a local optimum and only reaches about half the total utility
that the randomized search gets. Thus, the scheme seems to
be effective at avoiding local minima.

Second, we are interested in the average probability p,,

m 1] 23] 4] 56 7 =8
r(m) | 2 | 21 | 69 | 101 | 194 | 120 | 160 | 333

Table 1: Computational results for p,,

600

—Uul
— U2
—u3

U4
—Us
— U6
—Uu7
—Uu8

U9

—Vu10
e —
1 |— U total

500

400

300

utilities

200

100

0 F=— T T T T T T T T
0 100 200 300 400 500 600 700 800 900

rounds
Figure 5: Agents’ utilities during search

that a Localchoice generates no branch with probability mass
larger than 1/m. We thus took a histogram over 1000 itera-
tions of the number r(m) that this condition is satisfied for
m. Table 1 shows the result for m < 10. From the table, we
can estimate for example py ~ 0.908.

Third, we are interested in the actual utilities for each
agent, and in particular whether we can guarantee individ-
uval rationality. Figure 5 shows the utilities of agents during
the local search process. In this experiment, we run the local
search on random problems with 10 agents and 100 tasks for
1000 rounds. It can be seen that the agents’ net utilities are
positive and stable when the number of rounds increases.

6 Conclusions

Finding an optimal coordination between multiple self-
interested agents is a problem that occurs frequently in prac-
tice. Incentive-compatibility is an essential property to en-
sure meaningful results of such an optimization. Previous
work ([Ephrati and Rosenschein, 1991]) has shown the ap-
plicability of VCG mechanisms to such problems. However,
it requires provably optimal solutions to the NP-hard opti-
mization problem and thus cannot be applied to large prob-
lems.

Our work is based on the observation that in real life, the
potential for manipulation is limited by uncertainty and risk.
This uncertainty makes it difficult for a manipulator to pre-
dict the consequences of his manipulation and thus makes at-
tempts at manipulating it uninteresting. Similar uncertainty
exists in local search algorithms where randomization is nec-
essary to escape local optima. We have analyzed a scheme
for randomization and shown that in sufficiently large prob-
lems, it creates a large amount of uncertainty so that simu-
lating a sufficient part of the possible outcomes quickly sur-
passes the computational capacity of any real computational
agent. Problems that are too small for this result to apply
can likely be addressed by VCG mechanisms with complete
optimization.

Note that the techniques in this paper all rely on local
choices and payments and are thus very suitable for asyn-
chronous, distributed implementation.

An important limitation of the MCOP formulation is that
agents cannot claim private constraints. Thus, it is impos-
sible to model trading scenarios where an agent has control
over certain variables, for example the ownership of a good.

This limitation is important because it ensures that the VCG
payments never leave a deficit that would have to be covered
by the excluded agent.

While no randomized local search algorithm can guaran-
tee individual rationality, we found that it seems to be satis-
fied with high probability. It would be interesting to analyze
the individual rationality properties of local search schemes
to obtain probabilistic guarantees similar to those for non-
manipulability.

The most important weakness of the current scheme is that
the parameter that needs to be varied to guaranteed bounded-
rational incentive-compatibility is the size of the problem. It
would be much better if we had a mechanism that could guar-
antee high manipulation complexity even for small problems
through suitable randomization of this choice, similarly to
certain cryptographic hash functions.

Acknowledgements

This work has been funded by the Swiss National Science
Foundation under contract No. 200020-103421/1.

References

[Clarke, 1971] E.H. Clarke. Multipart pricing of public
goods. Public Choice, 11:17-33, 1971.

[Conitzer and Sandholm, 2003] V. Conitzer and T. Sand-
holm. Universal voting protocol tweaks to make manipu-
lation hard. Proceedings of IJCAI-03, pp. 781-788, 2003.

[Ephrati and Rosenschein, 1991] E. Ephrati and J. S. Rosen-
schein. The clarke tax as a consensus mechanism among
automated agents. In Proceedings of AAAI-91, pp. 173—
178, San Jose, California, July 1991.

[Faltings, 2004] Boi Faltings. A Budget-balanced, Incentive-
compatible Scheme for Social Choice, Agent-Mediated
Electronic Commerce VI, Springer LNAI 3435, 2004.

[Green and Laffont, 1979] J. Green and J.J. Laffont. Incen-
tives in public decision making. Studies in Public Eco-
nomics, 1, 1979.

[Groves, 1973] T. Groves. Incentives in teams. Economet-
rica, 41(4):617-31, 1973.

[Kirkpatrick ef al., 1983] S. Kirkpatrick, C.D. Gelatt, Jr., and
M.P. Vecchi. Optimization by simulated annealing. Sci-
ence, 220(4598):671-680, 1983.

[Nisan and Ronen, 2000] Noam Nisan and Amir Ronen.
Computationally feasible VCG mechanisms. In Proceed-
ings of AMEC-2000, pp. 242-252, 2000.

[Selman et al., 1992] B. Selman, H. Levesque, and
D. Mitchell. A new method for solving hard satis-
fiability problems. In Proceedings of AAAI-92, pp.
440446, 1992.

[Selman et al., 1994] B. Selman, H. Kautz, and B. Cohen.
Noise strategies for improving local search. In Proceed-
ings of AAAI-94, pp. 337-343, 1994.

[Vickrey, 1961] W. Vickrey. Counterspeculation, auctions

and competitive sealed tenders. Journal of Finance,
16(2):8-37, 1961.

