
Minimization for Generalized Boolean Formulas ∗

Edith Hemaspaandra

Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623, USA

Henning Schnoor

Institute for Computer Science
Christian-Albrechts-Universität zu Kiel

Kiel, Germany

Abstract

The minimization problem for propositional for-
mulas is an important optimization problem in the
second level of the polynomial hierarchy. In gen-
eral, the problem is Σp

2-complete under Turing re-
ductions, but restricted versions are tractable. We
study the complexity of minimization for formulas
in two established frameworks for restricted propo-
sitional logic: The Post framework allowing arbi-
trarily nested formulas over a set of Boolean con-
nectors, and the constraint setting, allowing gener-
alizations of CNF formulas. In the Post case, we
obtain a dichotomy result: Minimization is solv-
able in polynomial time or coNP-hard. This result
also applies to Boolean circuits. For CNF formulas,
we obtain new minimization algorithms for a large
class of formulas, and give strong evidence that we
have covered all polynomial-time cases.

1 Introduction

The minimization problem for propositional formulas is one
of the most natural optimization problems in the polynomial
hierarchy. In fact, a variant of this problem was a major mo-
tivation for the definition of the polynomial hierarchy [Meyer
and Stockmeyer, 1972]. The goal of minimization is to find a
minimum equivalent formula to a given input formula. In this
paper, we study the minimum equivalent expression (MEE)
problem, where the input is a formula ϕ and a number k, and
the question is to determine whether there exists a formula
which is equivalent to ϕ and of size at most k (we study dif-
ferent notions of “size”).

The problem is trivially in Σp
2, but a better lower bound

than coNP-hardness had been open for many years. In
[Hemaspaandra and Wechsung, 2002], the MEE problem was
shown to be (many-one) hard for parallel access to NP. Re-
cently, it was shown to be Σp

2-complete under Turing reduc-
tions in [Buchfuhrer and Umans, 2011].

Minimization in restricted fragments of propositional logic
has been studied for the case of Horn formulas in order to

∗Supported in part by NSF grants CCR-0311021 and IIS-
0713061, the DAAD postdoc program, and by a Friedrich Wilhelm
Bessel Research Award. Work done in part while Henning Schnoor
was at the Rochester Institute of Technology.

find small representations of knowledge bases [Hammer and
Kogan, 1995]. Prime implicates, a central tool for minimiz-
ing Boolean formulas [Quine, 1952], have been used in sev-
eral areas of artificial intelligence research. We mention [Ad-
jiman et al., 2006], where prime implicates were used in
peer-to-peer data management systems for the semantic web,
and [Bittencourt, 2008], which applies them in the context of
belief change operators. Two-level logic minimization is an
important problem in logic synthesis [Umans et al., 2006].
Different variants of minimization have been studied: The
problem is Σp

2-complete for CNF formulas [Umans, 2001],
NP-complete for Horn formulas [Boros and Čepek, 1994],
and solvable in P for 2CNF formulas [Chang, 2004].

In this paper we study the complexity of minimization
for syntactically restricted formulas. Two frameworks for
restricting the expressive power of propositional logic have
been used for complexity classifications in recent years:

• The Post framework [Post, 1941] considers formulas that
instead of the usual operators ∧, ∨, and ¬, use an arbi-
trary set B of Boolean functions as connectors. Depend-
ing on B, the resulting formulas may express only a sub-
set of all Boolean functions, or may be able to express all
functions more succinctly than the usual set {∧,∨,¬}.

• The constraint framework [Schaefer, 1978] studies for-
mulas in CNF, where the types of allowed clauses (e.g.,
Horn, 3CNF, or XOR clauses) are defined in a constraint
language Γ containing “templates” of generalized CNF-
clauses that are allowed in so-called Γ-formulas.

In both frameworks, a wide range of complexity classifi-
cations has been obtained. For the Post framework, we men-
tion the complexity of satisfiability [Lewis, 1979], equiva-
lence [Reith, 2001], modal satisfiability [Hemaspaandra et
al., 2010], and non-monotonic logics [Thomas and Vollmer,
2010]. In the constraint setting, besides the satisfiability
problem [Schaefer, 1978; Allender et al., 2009], also enu-
meration of solutions [Creignou and Hébrard, 1997], equiv-
alence and isomorphism [Böhler et al., 2002], circumscrip-
tion [Nordh and Jonsson, 2004], and many other problems
have been studied, see [Creignou and Vollmer, 2008] for a
survey. The complexity of satisfiability for non-Boolean do-
mains is also a very active field, see e.g., [Bulatov, 2006;
Bulatov and Valeriote, 2008].

For many considered problems, “dichotomy results” were

566

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



achieved, proving that every choice of B or Γ leads to one of
the same two complexity degrees, usually polynomial-time
solvable and NP-complete. This is surprising since there are
infinitely many sets B and Γ, and we know that there are, for
example, infinitely many degrees of complexity between P
and NP cases unless P = NP [Ladner, 1975].

A “Galois Connection” between constraint languages and
closure properties in the Post setting determines the complex-
ity of many computational problems [Jeavons et al., 1997;
Schnoor and Schnoor, 2008]. In contrast, we show that these
tools do not apply to minimization.

In the Post setting, we obtain a complete classification of
the tractable cases of the minimization problem: For a set B
of Boolean functions, the problem to minimize B-formulas
is solvable in polynomial time or coNP-hard, hence avoiding
the degrees between P and coNP-completeness. Our results
in this framework apply to both the formula and the circuit
case, and to different notions of size of formulas and circuits.

In the constraint case, we define irreducible constraint lan-
guages, among which we identify a large class whose for-
mulas can be minimized in polynomial time, and prove NP-
or coNP-hardness results for most of the remaining cases.
More precisely, we prove the following: For an irreducible
language for which equivalence can be tested efficiently, min-
imization is NP-complete if the language can express (dual)
positive Horn, and can be solved in polynomial time other-
wise. Our analysis thus implies that the NP-completeness
result for positive Horn shown in [Boros and Čepek, 1994]
is “optimal:” As soon as a CNF fragment of propositional
logic is strictly less expressive than positive Horn, formulas
can be minimized efficiently. Since irreducibility is a natural
condition for constraint languages that are used in knowledge
representation, a consequence of our result is that knowledge
bases that do not need the full expressive power of positive
Horn admit efficient “compression algorithms.”

Our contribution is threefold:

1. We give new and non-trivial minimization algorithms for
large classes of formulas.

2. In the Post setting, we prove that all remaining cases
are coNP-hard. In the constraint setting, we give strong
evidence that larger classes do not have efficient mini-
mization algorithms.

3. We show that minimization behaves very differently
than many other problems in the context of proposi-
tional formulas: The usually-applied algebraic tools for
the constraint setting cannot be applied to minimization.
Also, complexities in the Post- and constraint framework
differ strongly: In particular, the constraint framework
contains NP-complete cases; such cases do not exist in
the Post framework (unless NP = coNP).

Due to space restrictions, most proofs can only be found in
the technical report [Hemaspaandra and Schnoor, 2011].

2 Minimization in the Post Framework

We fix a finite set B of finitary Boolean functions. We define
B-formulas inductively: A variable x is a B-formula, and if
ϕ1, . . . , ϕn are B-formulas, and f is an n-ary function from

B, then f(ϕ1, . . . , ϕn) is a B-formula. We often identify the
function f and the symbol representing it. VAR(ϕ) denotes
the set of variables in a formula ϕ. We write ϕ(x1, . . . , xn)
to indicate that VAR(ϕ) = {x1, . . . , xn}. For an assignment
α : VAR(ϕ) → {0, 1}, the value of ϕ for α, ϕ(α), is defined
in the straightforward way. We write α |= ϕ if ϕ(α) = 1, and
say that α satisfies ϕ. Formulas ϕ1 and ϕ2 are equivalent if
ϕ1(α) = ϕ2(α) for all α, we then write ϕ1 ≡ ϕ2. The satis-
fiability problem for B-formulas is denoted with SAT(B).

Formulas can be succinctly represented as circuits, which
are essentially DAGs where formulas are trees. Although ev-
ery circuit can be rewritten into a formula, the size of the
resulting formula can be exponential in the size of the circuit.

In the Post framework, we study two variations of the min-
imization problem that differ in the notion of the size of a
formula ϕ. An obvious way to measure size is the number of
occurrences of literals, which we denote with sizel(ϕ). The
second measurement is motivated by the study of Boolean
circuits, where the size of a circuit is usually the number of
non-input gates. For a formula, this is the number of appear-
ing function symbols. We denote this number with sizes(ϕ).
Our results also hold for obvious variations of these measures
(e.g., counting variables instead of occurrences, also counting
input gates, etc). For a set B as above, we define:

Problem: MEE
F/C
l/s (B)

Input: A B-formula/circuit φ and a number k
Question: Is there a B-formula/circuit ψ with

sizel/s(ψ) ≤ k and φ ≡ ψ?

An n-ary Boolean function f is an OR-function if it is con-
stant or if f(x1, . . . , xn) is equivalent to xr1 ∨xr2 ∨· · ·∨xrm
for a subset {xr1 , xr2 , . . . , xrm} ⊆ {x1, . . . , xn}. AND- and
XOR-functions are defined analogously. We show that for-
mulas using only these functions can be minimized easily:

Theorem 2.1 MEE
F/C
l/s (B) can be solved in polynomial time

if B contains only OR-functions, only AND-functions, or only
XOR-functions.

We mention that the theorem, as all of our results in this
section, applies to all four combinations of F/C and s/l. We
also stress that all algorithms in this paper do not only deter-
mine whether a formula with the given size restriction exists,
but also compute a minimum equivalent formula.

The satisfiability problem for the above cases can easily be
solved in polynomial time. We now show that this is indeed a
prerequisite for a tractable minimization problem—formally,
we prove that the complement of the satisfiability problem
(i.e., the set of all binary strings that are not positive instances
of SAT(B)) reduces to the minimization problem.

Theorem 2.2 For every finite set B of Boolean functions,
SAT(B) ≤log

m MEE
F/C
l/s (B).

Using results on the complexity of SAT(B) [Lewis, 1979],
we obtain hardness results for a large class of sets B:

Corollary 2.3 Let B be a finite set of Boolean functions such
that there is a B-formula that is equivalent to x ∧ y. Then
MEE

F/C
l/s (B) is coNP-hard.

567



The remaining cases are those where satisfiability is
tractable, but which are not of the forms covered by Theo-
rem 2.1. We show that in these cases, minimization is coNP-
hard using a reduction from the equivalence problem for for-
mulas, which asks to determine whether two given formulas
are equivalent. The proof of the theorem below relies on the
following idea: Given two formulas as input for the equiva-
lence problem, we combine them into a single formula which
is “trivial” if the formulas are equivalent, but “complicated”
otherwise. The “gap” between the cases is large enough to
yield a reduction to the minimization problem.

Theorem 2.4 MEE
F/C
l/s (B) is coNP-hard if one of the fol-

lowing is true:
• There is a B-formula equivalent to x∧y, and a B∪{1}-

formula equivalent to x ∨ y,

• there is a B-formula equivalent to (x ∧ y) ∨ (x ∧ z) ∨
(y ∧ z).

Proof Sketch. We only handle the first case. Testing whether
two B-formulas H1 and H2 are equivalent is coNP-hard
([Reith, 2001]). We reduce this problem to MEEF/C

s (B).
By assumption, there are B-formulas f∨(x, y, t) and f∧(x, y)
with f∧(x, y) ≡ x∧ y, and f∨(x, y, 1) ≡ x∨ y. Let m be the
maximal arity of a function in B. For a new variable t, define

• l = sizes(f∧(H1, t)), we assume l > 1.

• Z is equivalent to
∧m·l

i=1 zi for new variables zi.
• G = f∧(f∨(f∧(H1, H2), f∧(f∨(H1, H2, t), Z), t), t).

G can be computed in polynomial time using a
logarithmic-depth tree construction. One can show that H1 ≡
H2 if and only if 〈G, l〉 ∈ MEEF/C

s (B). The proof for
MEE

F/C
l (B) uses a similar construction. �

Using algebraic techniques, the above implies that if B
contains functions f , g, and h such that f that is not an OR-
function, g is not an AND-function, and h is not an XOR-
function, then minimization is coNP-hard. This applies to all
cases except those covered by our polynomial-time results.
We therefore obtain the following full classification:

Corollary 2.5 Let B be a finite set of Boolean functions.
• If B contains only OR-functions, only AND-functions, or

only XOR-functions, then MEE
F/C
l/s (B) can be solved in

polynomial time.

• Otherwise, MEE
F/C
l/s (B) is coNP-hard.

3 Minimization in the CNF framework

Constraint formulas are CNF-formulas, where the set of al-
lowed types of clauses is defined in a constraint language
Γ, which is a finite set of non-empty finitary Boolean rela-
tions. A Γ-clause is of the form R(x1, . . . , xn), where R
is an n-ary relation from Γ, and x1, . . . , xn are variables.
A Γ-formula is a conjunction of Γ-clauses, it is satisfied
by α, if for every clause R(x1, . . . , xn) in ϕ, we have that
(α(x1), . . . , α(xn)) ∈ R. A relation R is expressed by a for-
mula if the tuples in the relation are exactly the solutions of

the formula (with some canonical order on the variables). We
denote the satisfiability problem for Γ-formulas with SAT(Γ).

A natural way to measure the size of a CNF formula is the
number of clauses—for a fixed language Γ, this is linearly re-
lated to the number of variable occurrences. We thus consider
the following problem:

Problem: MEE (Γ)
Input: A Γ-formula ϕ, an integer k
Question: Is there a Γ-formula ψ with at most k

clauses and ψ ≡ ϕ?

To state our classification, we recall relevant properties
of Boolean relations (for more background on these prop-
erties and how they relate to complexity classifications of
constraint-related problems, see e.g., [Creignou et al., 2001]).

1. A relation is affine if it can be expressed by a {x, x, x1⊕
· · · ⊕ xn,¬(x1 ⊕ · · · ⊕ xn) | n ∈ N}-formula.

2. A relation is bijunctive if it can be expressed by a Γ2-
formula, where Γ2 is the set of binary Boolean relations.

3. A relation is Horn if it can be expressed by a {x, x, (x1∧
· · · ∧ xn → y), (x1 ∧ · · · ∧ xn) | n ∈ N}-formula.

4. A relation is positive Horn if it can be expressed by a
{x1 ∧ · · · ∧ xn → y | n ∈ N}-formula.

5. A relation is IHSB+ if it can be expressed by a
{x, x, x → y, (x1 ∨ · · · ∨ xn) | n ∈ N}-formula.

A constraint language Γ is affine, bijunctive, etc., if every re-
lation in Γ is. Γ is dual (positive) Horn if Γ is (positive) Horn,
and IHSB− if Γ is IHSB+. Here Γ is the dual of Γ, obtained
from Γ by swapping 0 and 1 in all relations in Γ. Addition-
ally, Γ is Schaefer if it is affine, bijunctive, Horn, or dual
Horn. This property implies tractability of many problems for
Boolean constraint languages, including satisfiability [Schae-
fer, 1978], equivalence [Böhler et al., 2002] and enumeration
[Creignou and Hébrard, 1997].

3.1 Irreducible Relations

In many cases, if constraint languages Γ1 and Γ2 “have the
same expressive power,” then problems for Γ1 and Γ2 have
the same complexity. We show that this is not true for min-
imization, even for a very strict version of “having the same
expressive power” (see [Schnoor and Schnoor, 2008] for de-
tails on notions of expressive power).

Example 3.1 Let Γ1 := {x ∨ y} and Γ2 := {(x ∨ y), (x ∨
(y ∧ z)), (x ∨ (y ∧ z ∧ w))}.

• Γ1 and Γ2 have the same expressive power, since y ∨
(x1 ∧ · · · ∧ xn) ≡ (y ∨ x1) ∧ · · · ∧ (y ∨ xn).

• MEE (Γ1) can be solved in polynomial time.

• MEE (Γ2) is NP-hard by a reduction from Vertex Cover
for cubic graphs: A cubic graph G = (V,E) has a vertex
cover of size k if and only if the formula

∧
{i,j}∈E(xi ∨

xj) has an equivalent Γ2-formula with k clauses.

Hence unlike most problems in the constraint context, the
complexity of minimization is not determined by the expres-
sive power of a constraint language. This is the reason why

568



our analysis cannot simply follow the well-established line
of reasoning used to obtain complexity classifications in the
literature. Considering the above example, the problems in
minimizing Γ2-formulas are combinatorial and do not stem
from the difficulty of determining a “minimum representa-
tion” of a given formula. Therefore the NP-hardness is not
in finding a minimum representation of the formula, but from
the difficulty to use the available “building blocks” efficiently.

In the example above, the problems arise because Γ2 con-
tains “combined” relations which can be rewritten into sim-
pler clauses: (x ∨ (y ∧ z)) is equivalent to (x ∨ y) ∧ (x ∨ z).
An important feature of constraint formulas is that they build
formulas from “local conditions” expressed in the individual
clauses. The clause (x ∨ (y ∧ z)) is in a way not “as local as
it can be,” since it can be rewritten as the conjunction of two
“easier” conditions. We define irreducible relations as those
that cannot be rewritten in this way:

Definition An n-ary relation R is irreducible, if for every
formula R1(x

1
1 . . . , x

1
k1
) ∧ · · · ∧ Rm(xm

1 , . . . , xm
km

) (where
each Ri is a ki-ary Boolean relation) which is equivalent to
R(x1, . . . , xn), one of the Ri-clauses has arity at least n. A
constraint language Γ is irreducible if every relation in Γ is.

Irreducibility is a rather natural condition—in fact, most re-
lations usually considered in the constraint context meet this
definition. Irreducible languages only allow “atomic” clauses
that cannot be split up further. In practice, for example in the
design of knowledge bases, irreducible languages are more
likely to be used: They provide users with atomic constructs
as a basis from which more complex expressions can be built.

3.2 Polynomial-Time Cases

We prove polynomial-time results for every case in which
such a result is conceivable: The MEE problem for posi-
tive Horn formulas is NP-complete [Boros and Čepek, 1994].
We show that for every irreducible constraint language that is
Schaefer, and does not have all the expressive power of pos-
itive Horn (or dual positive Horn), the minimization problem
can be solved efficiently. For non-Schaefer languages, even
testing equivalence is coNP-hard, and hence an efficient min-
imization procedure cannot be expected. Following known
structural results about Boolean constraint languages, there
are three cases to consider: The case where Γ is affine, bi-
junctive, or IHSB+. We provide polynomial-time algorithms
for all of these cases.

IHSB+ and IHSB− formulas

We start our polynomial-time results with the most involved
of these constructions, proving that irreducible constraint lan-
guages that are IHSB+ lead to an easy minimization prob-
lem (the IHSB− case is analogous). Requiring irreducibility
is necessary: The language Γ2 discussed in Example 3.1 is
IHSB+ (even considerably less expressive than IHSB+), but,
as argued before, has an NP-hard minimization problem.

The main idea of the algorithm is the following: We rewrite
formulas using multi-ary OR, implication, equality, and liter-
als into conjunctions of, to a large degree, independent for-
mulas, each containing only OR, implications, equalities, or

literals. Each of these formulas then can be minimized locally
with relatively easy algorithms. The main task that our algo-
rithm performs is “separating” the components of the input
formula in such a way that minimizing the mentioned sub-
formulas locally is equivalent to minimizing the entire for-
mula.

Theorem 3.2 Let Γ = {→,=, x, x} ∪ {ORm | m ≤ k} for
some k ∈ N. Then MEE (Γ) ∈ P.

Proof. For variables u and v, we write u �ϕ v (u leads to v
in ϕ) if there is a directed {→,=}-path in ϕ from u to v, we
often simply write u � v. Similarly, if there are OR-clauses
C1 = (x1 ∨ · · · ∨ xn) and C2 = (y1 ∨ · · · ∨ ym), we write
C1 � C2 if every of the xi leads to one of the yj . Since
satisfiability for Γ-formulas can be tested in polynomial time,
we assume that all occurring formulas are satisfiable. For any
Γ-formula ϕ, let ϕOR denote the formula obtained from ϕ by
removing every clause that is not an OR-clause with at least
2 variables, and let ϕ→ be the conjunction of all implication-
clauses in ϕ, ϕlit the literals in ϕ, and ϕ= the equality clauses.

We now describe the minimization procedure. We use
some canonical way of ordering variables and clauses and re-
peat the following steps until no changes occur anymore:

1: Input: Γ-formula ϕ
2: while changes still occur do
3: For a set of variables connected with =, only keep the

minimal variable in non-equality clauses (by variable
identification)

4: if there exist OR-clauses C1 �= C2 with C1 � C2,
then

5: If C2 � C1, then remove the minimal of the two
6: Otherwise, remove C2

7: end if
8: if there is clause (x1∨· · ·∨xn), variable v with xi � v

for all i, then
9: introduce clause v

10: remove →-clauses leading to v
11: end if
12: if literal x occurs, x � y then
13: replace final clause in path with y
14: end if
15: if literal y occurs, x � y then
16: replace first clause in path with x
17: end if
18: Remove variables occurring as negative literals from

OR-clauses
19: if (x1 ∨ · · · ∨ xn) is clause, xi � xj for i �= j then
20: remove xi from the clause
21: end if
22: if there are variables such that x1 � x2, . . . , xn−1 �

xn, xn � x1 then
23: exchange implications between them with equali-

ties.
24: end if
25: if u (u) appears as a literal then
26: remove clauses of the form (v → u) ((u → v)).
27: end if
28: Locally minimize ϕ= and ϕ→.
29: end while

569



Note that ϕ= and ϕlit can be minimized trivially, and ϕ→
can be minimized due to a result from [Aho et al., 1972],
since finding a transitive reduction of a directed graph is ex-
actly the problem of minimizing a formula in which only im-
plications of positive literals appear. It can be shown that the
algorithm produces a formula that is equivalent to the input
and minimal with respect to the number of clauses. �

A careful analysis of the proof yields that it also holds true
if Γ does not contain all the relations defining IHSB+, even
though in these cases, only a restricted vocabulary is available
for the minimum formula, and also applies in the cases where
the relations are not the ones mentioned in the theorem, but
are still IHSB+ (the IHSB− case is analogous):
Corollary 3.3 Let Γ be an irreducible constraint language
which is IHSB+ or IHSB−. Then MEE (Γ) ∈ P.

We mention that the above cases remain polynomial-time
if the input formula may use clauses of unbounded arity.

Bijunctive Formulas

In a similar way, we show that irreducible bijunctive con-
straint languages give a tractable minimization problem:
Theorem 3.4 Let Γ be a constraint language which is irre-
ducible and bijunctive. Then MEE (Γ) ∈ P.

Affine Formulas

We conclude our polynomial-time results with the affine case.
Affine formulas represent linear equations over GF (2). We
therefore can apply standard linear algebra techniques to ob-
tain an efficient minimization algorithm.
Theorem 3.5 Let Γ be an irreducible and affine constraint
language. Then MEE (Γ) ∈ P.

3.3 Lower Bounds

As mentioned before, our polynomial-time results cover all
cases where polynomial-time algorithms can be expected. We
now prove hardness results for most of the remaining cases.

Minimization and Satisfiability

If a constraint language Γ is not Schaefer (i.e., neither Horn,
dual Horn, bijunctive, nor affine), then the satisfiability prob-
lem for Γ+ = Γ ∪ {x, x} (Γ extended with literals) is NP-
complete. Since the natural analog of Theorem 2.2 can also
be shown in the CNF setting, we obtain the following:
Corollary 3.6 Let Γ be a constraint language that is not
Schaefer. Then MEE (Γ+) is coNP-hard.

NP-completeness Results

We use results on the hardness of minimizing Horn formulas
to obtain an NP-completeness result for a large class of con-
straint languages: An irreducible constraint language that is
not covered by our polynomial-time results, but that is Schae-
fer, leads to an NP-complete minimization problem. The NP
upper bound is clear, since the equivalence problem can be
solved in polynomial time in these cases. The proof of the
hardness result is more involved, and first establishes a char-
acterization of the relations contained in the covered con-
straint languages, which shows that in all cases, we have a
relation that is expressive enough to encode minimization for
positive Horn formulas. We thus obtain the following result:

Theorem 3.7 Let Γ be an irreducible constraint language
that is Schaefer, not affine, not bijunctive, not IHSB+, and
not IHSB−. Then MEE (Γ) is NP-complete.

3.4 Classification Theorem

The analysis in the previous sections yields the following
classification:

Theorem 3.8 Let Γ be an irreducible constraint language.

1. If Γ is affine, bijunctive, IHSB+, or IHSB−, then
MEE (Γ) ∈ P.

2. Otherwise, if Γ is Horn or dual Horn, then MEE (Γ) is
NP-complete,

3. Otherwise, Γ is not Schaefer, and MEE (Γ+) is coNP-
hard.

While the theorem does not completely classify the com-
plexity of the MEE problem for all irreducible constraint
languages, we consider it unlikely that there exist more
polynomial-time cases than the ones we discovered: To the
best of our knowledge, no decision problem for non-Schaefer
languages has been proven to be in polynomial time except
for trivial cases (e.g., satisfiability is trivial if all relevant re-
lations contain the all-0 tuple). Also, for non-Schaefer lan-
guages Γ, already testing equivalence of formulas is coNP-
hard. This implies that, unless P = NP, there cannot be
a polynomial-time algorithm that, given a Γ-formula, com-
putes its “canonical” (i.e., up to differences checkable by a
polynomial-time algorithm) minimum equivalent expression.
We are therefore confident that our classification covers all
polynomial-time cases for irreducible constraint languages.

It is worth noting that the prerequisite that Γ is irreducible
is certainly required for the polynomial-time cases, as the ear-
lier example highlighted. For the hardness results, this is less
clear—the coNP-hardness does not rely on this prerequisite
at all, and for the NP-complete Horn cases, we consider it
unlikely that there is a constraint language with the same ex-
pressive power that does not directly encode positive Horn.

4 Conclusion and Open Questions

We studied the complexity of minimization for restricted
classes of propositional formulas in two settings, obtained
a complete characterization of all tractable cases in the Post
case, and a large class of tractable cases in the constraint case.

Open questions include the exact classification of the
coNP-hard cases. It is likely that most of them are NP-hard
as well. It would be very interesting to determine whether
some of these are actually Σp

2-complete (this does not follow
directly from the Σp

2-completeness of the minimization prob-
lem for CNF formulas [Umans, 2001], since our constraint
languages Γ and bases B are finite). Finally, non-irreducible
constraint languages are an interesting open issue.

Acknowledgment

We thank the anonymous reviewers for many helpful com-
ments, in particular for pointing out an issue with the defini-
tion of irreducibility.

570



References
[Adjiman et al., 2006] P. Adjiman, P. Chatalic, F. Goasdoué,

M.-C. Rousset, and L. Simon. Distributed reasoning in
a peer-to-peer setting: Application to the semantic web.
JAIR, 25:269–314, 2006.

[Aho et al., 1972] A. Aho, M. Garey, and J. Ullman. The
transitive reduction of a directed graph. SIAM Journal on
Computing, 2(1):131–137, 1972.

[Allender et al., 2009] E. Allender, M. Bauland, N. Immer-
man, H. Schnoor, and H. Vollmer. The complexity of satis-
fiability problems: Refining Schaefer’s Theorem. Journal
of Computer and System Sciences, 75(4):245–254, 2009.

[Bittencourt, 2008] G. Bittencourt. Combining syntax and
semantics through prime form representation. J. Log.
Comput., 18(1):13–33, 2008.

[Böhler et al., 2002] E. Böhler, E. Hemaspaandra, S. Reith,
and H. Vollmer. Equivalence and isomorphism for
Boolean constraint satisfaction. In Proc. CSL, volume
2471 of LNCS, pages 412–426. Springer Verlag, 2002.

[Boros and Čepek, 1994] E. Boros and O. Čepek. On the
complexity of Horn minimization. Technical Report 1-94,
RUTCOR Research Report RRR, Rutgers University, New
Brunswick, NJ, January 1994.

[Buchfuhrer and Umans, 2011] D. Buchfuhrer and
C. Umans. The complexity of boolean formula min-
imization. Journal of Computer and Systems Sciences,
77(1):142–153, 2011.

[Bulatov and Valeriote, 2008] A. Bulatov and M. Valeriote.
Recent results on the algebraic approach to the csp. In
N. Creignou, P. Kolaitis, and H. Vollmer, editors, Com-
plexity of Constraints, volume 5250 of LNCS, pages 68–
92. Springer, 2008.

[Bulatov, 2006] A. Bulatov. A dichotomy theorem for con-
straint satisfaction problems on a 3-element set. J. ACM,
53(1):66–120, 2006.

[Chang, 2004] T. Chang. Horn formula minimization. Mas-
ter’s thesis, Rochester Institute of Technology, 2004.

[Creignou and Hébrard, 1997] N. Creignou and J.-J.
Hébrard. On generating all solutions of generalized
satisfiability problems. Informatique Théorique et
Applications/Theoretical Informatics and Applications,
31(6):499–511, 1997.

[Creignou and Vollmer, 2008] N. Creignou and H. Vollmer.
Boolean constraint satisfaction problems: When does
Post’s lattice help? In N. Creignou, P. Kolaitis, and
H. Vollmer, editors, Complexity of Constraints, pages 3–
37. Springer Verlag, Berlin Heidelberg, 2008.

[Creignou et al., 2001] N. Creignou, S. Khanna, and M. Su-
dan. Complexity Classifications of Boolean Constraint
Satisfaction Problems. Monographs on Discrete Applied
Mathematics. SIAM, 2001.

[Hammer and Kogan, 1995] P. Hammer and A. Kogan.
Quasi-acyclic propositional Horn knowledge bases: Op-
timal compression. IEEE Trans. Knowl. Data Eng.,
7(5):751–762, 1995.

[Hemaspaandra and Schnoor, 2011] E. Hemaspaandra and
H. Schnoor. Minimization for generalized Boolean formu-
las. Technical Report arXiv:1104.2312, Computing Re-
search Repository, 2011.

[Hemaspaandra and Wechsung, 2002] E. Hemaspaandra and
G. Wechsung. The minimization problem for Boolean for-
mulas. SIAM J. Comput., 31(6):1948–1958, 2002.

[Hemaspaandra et al., 2010] E. Hemaspaandra, H. Schnoor,
and I. Schnoor. Generalized modal satisfiability. Journal
of Computer and System Sciences, 76(7):561—578, 2010.

[Jeavons et al., 1997] P. Jeavons, D. Cohen, and M. Gyssens.
Closure properties of constraints. Journal of the ACM,
44(4):527–548, 1997.

[Ladner, 1975] R. Ladner. On the structure of polynomial-
time reducibility. Journal of the ACM, 22:155–171, 1975.

[Lewis, 1979] H. Lewis. Satisfiability problems for proposi-
tional calculi. Math. Systems Theory, 13:45–53, 1979.

[Meyer and Stockmeyer, 1972] A. Meyer and L. Stock-
meyer. The equivalence problem for regular expressions
with squaring requires exponential time. In Proceed-
ings 13th Symposium on Switching and Automata Theory,
pages 125–129. IEEE Computer Society Press, 1972.

[Nordh and Jonsson, 2004] G. Nordh and P. Jonsson. An al-
gebraic approach to the complexity of propositional cir-
cumscription. In Proc. LICS, pages 367–376, 2004.

[Post, 1941] E. Post. The two-valued iterative systems of
mathematical logic. Annals of Mathematical Studies, 5:1–
122, 1941.

[Quine, 1952] W. V. Quine. The problem of simplifying
truth functions. The American Mathematical Monthly,
59(8):521–531, 1952.

[Reith, 2001] S. Reith. Generalized Satisfiability Problems.
PhD thesis, Fachbereich Mathematik und Informatik, Uni-
versität Würzburg, 2001.

[Schaefer, 1978] T. Schaefer. The complexity of satisfiability
problems. In Proceedings 10th Symposium on Theory of
Computing, pages 216–226. ACM Press, 1978.

[Schnoor and Schnoor, 2008] H. Schnoor and I. Schnoor.
Partial polymorphisms and constraint satisfaction prob-
lems. In N. Creignou, P. Kolaitis, and H. Vollmer, editors,
Complexity of Constraints, volume 5250 of LNCS, pages
229–254. Springer, 2008.

[Thomas and Vollmer, 2010] M. Thomas and H. Vollmer.
Complexity of non-monotonic logics. Technical Report
arXiv:1009.1990, Computing Research Repository, 2010.

[Umans et al., 2006] C. Umans, T. Villa, and
A. Sangiovanni-Vincentelli. Complexity of two-level
logic minimization. IEEE Trans. Computer-Aided Design
of Int. Circuits and Systems, 25(1):1230–1246, 2006.

[Umans, 2001] C. Umans. The minimum equivalent DNF
problem and shortest implicants. Journal of Computer and
Systems Sciences, 63(4):597–611, 2001.

571




