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Abstract

We construct an homogeneous (and ω-categorical)
representation of the relation algebra RCC8, which
is one of the fundamental formalisms for spatial
reasoning. As a consequence we obtain that the
network consistency problem for RCC8 can be
solved in polynomial time for networks of bounded
treewidth.

Qualitative spatial reasoning (QSR) is concerned with rep-
resentation formalisms that are considered close to concep-
tual schemata used by humans for reasoning about their phys-
ical environment—in particular, about processes or events
and about the spatial environment in which they are situated.
The approach in qualitative reasoning is to develop relational
schemas that abstract from concrete metrical data of entities
(for example, time points, coordinate positions, distances) by
subsuming similar (geo-) metric or topological configurations
of entities into one qualitative representation.

RCC8 [Randell et al., 1992b; Cohn and Hazarika, 2001]
is a prominent relation algebra studied in QSR that deals
with extended regions. The relation algebra is derived from
a multi-sorted first-order theory called region connection cal-
culus. Its network consistency problem is one of the most fun-
damental tasks in qualitative spatial reasoning [Renz, 2002;
Renz and Nebel, 2007; Bennett, 1998]. There have been
numerous papers on the network consistency problem for
RCC8, in particular about its mathematical foundations [Renz
and Ligozat, 2005; Li and Ying, 2003], its computational
complexity [Renz, 2002; Renz and Nebel, 2007; Bennett,
1998], and its cognitive adequacy as a model for human spa-
tial reasoning [Renz et al., 2000; Ragni et al., 2007].

We show that the network consistency problem for RCC8
can be formulated as a constraint satisfaction problem (CSP)
with a countably infinite ω-categorical template R. Us-
ing recent results from [Bodirsky and Dalmau, 2008], this
shows that the network consistency problem for RCC8 can
be solved in polynomial time on networks of bounded
treewidth [Bodirsky and Dalmau, 2008].

The graph-theoretic notions of tree decomposition and
treewidth have proven valuable concepts in order to in-
vestigate algorithmic properties of problems that can be
parametrized by structural properties of graphs (see, e.g.,
[Bodlaender, 1993]). In the context of constraint satisfaction,

these concepts come into play as constraint network can be
cast as labeled graphs in a natural way. A tree decomposition
of a constraint network is a tree decomposition of its con-
straint graph: roughly speaking, a decomposition defines a
set of subnetworks that can be glued together in a tree-like
manner. The width of such a decomposition, then, is the size
of the largest subnetwork in the decomposition (in terms of
the variables in the network). The treewidth of a constraint
network is the minimal width for any potential tree decompo-
sition of the network.

It is well-known that a finite domain CSP is tractable when
the input is restricted to networks of bounded treewidth; for a
recent survey on related results, see e.g. [Samer and Szeider,
2010]. One algorithm to solve arbitrary finite domain CSPs
for input instances of treewidth k is the k-consistency algo-
rithm. In fact, it has been shown that finite domain CSPs, re-
stricted to a class of networks C, can be solved in polynomial
time by k-consistency if and only if the cores of the structures
in C have bounded treewidth [Atserias et al., 2007].

The situation when the domain of the CSP is infinite, and
this is the case for the spatial reasoning problems that we
study in this paper, is less well-studied. The key concept
in the proof of our RCC8 tractability result is the so-called
amalgamation property, which allows us to use a general re-
sult for infinite-domain CSPs of bounded treewidth shown
in [Bodirsky and Dalmau, 2008]. We show that the class of
all finite RCC8 structures has that property that if A,B1,B2
are structures in that class such that B1 and B2 are ex-
tensions of A by finitely many distinct new elements, then
there exists a structure in that class that is an extension of
both B1 and B2. As in model theory [Hodges, 1997], the
amalgamation property is defined here in term of models,
i.e., in terms of solutions of constraint networks. Concepts
of amalgamation tailored to the amalgamation of constraint
networks themselves have been studied in [Li et al., 2008;
2009]. In [Li et al., 2008] a notion of network amalgama-
tion property is introduced: a relation algebra A is said to
have the amalgamation property if for each triple of path-
consistent constraint networks N0, N1 and N2 (with constraint
relations from A) such that N0 is a subnetwork of N1 and N2,
there exists a path-consistent constraint network over A that
has N1 and N2 as subnetworks. More similar to the model-
theoretic concept of amalgamation is the notion of atomic
network amalgamation introduced in [Li et al., 2009].
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1 RCC8

RCC8 is a spatial representation formalism derived from the
region connection calculus [Randell et al., 1992b; Cohn and
Hazarika, 2001], a multi-sorted first order theory based on
a primitive binary relation, C, expressing connectedness of
spatially extended entities (referred to as regions). Since dif-
ferent versions of the RCC theory can be found in the litera-
ture, we introduce RCC models in terms of specific Boolean
contact algebras [Bennett and Düntsch, 2007]. For the pur-
poses of this paper, an RCC model is a model of the theory
of non-trivial Boolean algebras (0 �= 1) and the following ax-
ioms (where x ≤ y is defined as x · y = x): (a) ∀xy(C(x,y)⇒
x,y �= 0), (b) ∀x(x �= 0⇒C(x,x)), (c) ∀xy(C(x,y)⇒C(y,x)),
(d) ∀xy(x≤ y⇔∀z(C(x,z)⇒C(y,z))), (e) ∀xyz(C(x,y+z)⇒
C(x,y)∨C(x,z)), and (f) ∀x(x �= 0,1⇒C(x,−x)).

Examples of RCC models can be generated from regular,
connected topological spaces when regular closed subsets are
conceived of as regions and the contact relation holds be-
tween such sets if and only if they interesect. It should be
mentioned that RCC models can even be characterized in a
topological sense [Bennett and Düntsch, 2007]: each RCC
model is isomorphic to a substructure of the RCC model in-
duced (via the standard interpretation) by some weakly reg-
ular and connected T1 space (here weakly regular refers to a
pointless variant of the regularity separation axiom).

In terms of RCC models the RCC8 relations DC (discon-
nected), EC (externally connected), PO (partial overlap), EQ
(equals), TPP (tangential proper part), and NTPP (nontan-
gential proper part) (as well as the converse relations of TPP
and NTPP) may be introduced as follows:

EQ(x,y) iff P(x,y)∧P(y,x)
DC(x,y) iff x,y �= 0∧¬C(x,y)
EC(x,y) iff C(x,y)∧¬∃z(P(z,x)∧P(z,y))
PO(x,y) iff ¬P(x,y)∧¬P(y,x)∧∃z(P(z,x)∧P(z,y))

TPP(x,y) iff PP(x,y)∧∃z(EC(z,x)∧EC(z,y))
NTPP(x,y) iff PP(x,y)∧¬TPP(x,y)
TPPi(x,y) iff TPP(y,x)

NTPPi(x,y) iff NTPP(y,x)
where P(x,y) is defined as x �= 0 ∧ x ≤ y and PP(x,y) as
P(x,y)∧ y �≤ x. Note that in RCC models as defined above
the relation EQ entails the identity relation (they are strict
models in the sense of [Stell, 2000]). From the definitions it
follows that for each RCC model, the set of RCC8 relations
induces a relational partition scheme on the set of its non-null
regions.
Definition 1 (cp. [Ligozat and Renz, 2004]). A relational
partition scheme on D is a finite set, B, of (possibly empty)
binary relations on D that forms a partition of D×D, con-
tains the diagonal (or identity) relation {(x,x) : x ∈D}, and is
closed under converses (i.e., B−1 := {(y,x) : (x,y) ∈ B} ∈ B
for B ∈ B). The elements of B are referred to as base rela-
tions, and unions of base relations are referred to as general
relations of the partition scheme.

In general, the set of general relations is not closed under
composition, i.e., for general relations R and S, the composi-
tion R◦S := {(x,z)∈D2 : ∃y((x,y)∈ R∧(y,z)∈ S)} need not

be a general relation of the partition scheme. This is specif-
ically the case for RCC8 partition schemes induced by RCC
models (see, e.g., [Bennett and Düntsch, 2007]).

To enable reasoning on the symbolic level (see section 2)
when satisfiability of formulae needs to be checked with re-
spect to a class of models, one identifies a composition func-
tion (usually recorded as a table) that provides the strongest
upper approximation for the composition of concrete rela-
tions in all models of that class. The RCC8 composition
function ◦RCC8 is defined in Table 1 (see e.g. [Randell et
al., 1992a]). The entry in row R and column S shows the base
relations T1, . . . ,Tk such that {T1, . . . ,Tk} = R ◦RCC8 S. It can
be shown that each RCC model satisfies the RCC8 composi-
tion table in the sense that it satisfies all formulae

∀xyz(R(x,y)∧S(y,z)⇒ T1(x,z)∨·· ·∨Tk(x,z)) (∗)
where R and S are symbols in the relational signature of
RCC8 base relations, τ , and R ◦RCC8 S = {T1, . . . ,Tk}. If we
write general relations R representing a union of base rela-
tions B1 ∪ ·· · ∪ Bm as sets {B1, . . . ,Bm}, then converse and
composition of general relations can be defined as follows:
R−1 := {B−1 : B∈R} and R◦RCC8 R′ :=

⋃
B∈R,B′∈R′ B◦RCC8 B′.

By these settings the set of general relations becomes a set al-
gebra that is closed under this approximative composition.
Definition 2. Let τ be the relational signature of RCC8 re-
lations. An RCC8 model is a τ-structure, A, with non-empty
domain A such that (a) {EQA,DCA, . . . ,NTPPiA} defines a
relational partition scheme on A, (b) EQA is the identity re-
lation, (c) DCA, ECA and POA are symmetric, (d) TPPiA is
the converse of TPPA and NTPPiA the converse of NTPPA,
and (e) when R◦RCC8 S = {T1, . . . ,Tk}, then A satisfies (∗).

An RCC8 model A is called extensional if composition in
A coincides with the RCC8 composition table. Examples of
RCC8 models include the closed disks model (regions are
closed disks in the Euclidean plane) and the model by Egen-
hofer [1991] (regions are Jordan curve bounded regions of the
Euclidean plane, i.e., regions that are homeomorphic to the
unit disk). Both models are known to be extensional [Bennett
and Düntsch, 2007; Li and Ying, 2003].

2 Constraint-based Reasoning with RCC8

Given the relational signature of RCC8 relations, τ , we now
introduce basic concepts of constraint-based reasoning with
RCC8. An RCC8 constraint network is defined by a finite
set of variables V and a finite set of constraints between
pairs of variables. Each constraint specifies a general rela-
tion that needs to hold between these variables. Since the set
of RCC8 relations is closed under intersections, we may cast
a constraint network as a directed and simple labeled graph
〈V,E, l〉. Its arcs E are simply the scopes of the constraints
in the network, and to each such arc, the labeling function l
assigns the constraint relation R (i.e., some subset of the sig-
nature τ). A solution of a constraint network 〈V,E, l〉 with
respect to an RCC8 model A with domain A is a function
∗I : V → A such that for each arc (v1,v2) in E, (vI

1,v
I
2) ∈ RA

for some R∈ l(x,y). A constraint network is said to be satisfi-
able in A if it has a solution in A and it is said to be satisfiable
if it has a solution in some RCC8 model.
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Table 1: The composition table of RCC8. “1” indicates the set of all base relations of RCC8; compositions with EQ are omitted.

◦RCC8 DC EC PO TPP NTPP TPPi NTPPi

DC 1
DC, EC, PO,
TPP, NTPP

DC, EC, PO,
TPP, NTPP

DC, EC, PO,
TPP, NTPP

DC, EC, PO,
TPP, NTPP DC DC

EC
DC, EC, PO,
TPPi, NTPPi

DC, EC, PO,
TPP, TPPi,

EQ

DC, EC, PO,
TPP, NTPP

EC, PO, TPP,
NTPP

PO, TPP,
NTPP

DC, EC DC

PO
DC, EC, PO,
TPPi, NTPPi

DC, EC, PO,
TPPi, NTPPi 1 PO, TPP,

NTPP
PO, TPP,

NTPP
DC, EC, PO,
TPPi, NTPPi

DC, EC, PO,
TPPi, NTPPi

TPP DC DC, EC DC, EC, PO,
TPP, NTPP TPP, NTPP NTPP

DC, EC, PO,
TPP, TPPi,

EQ

DC, EC, PO,
TPPi, NTPPi

NTPP DC DC
DC, EC, PO,
TPP, NTPP NTPP NTPP

DC, EC, PO,
TPP, NTPP 1

TPPi
DC, EC, PO,
TPPi, NTPPi

EC, PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPP,
TPPi, EQ

PO, TPP,
NTPP

TPPi, NTPPi NTPPi

NTPPi
DC, EC, PO,
TPPi, NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPPi,
NTPPi

PO, TPP,
TPPi, NTPP,
NTPPi, EQ

NTPPi NTPPi

The network consistency problem for RCC8 is the follow-
ing computational problem: given as input an RCC8 con-
straint network, decide whether the network is satisfiable in
some RCC8 model. This problem is NP-complete in gen-
eral (see, e.g., [Renz and Nebel, 2007]). The network con-
sistency problem is the central problem for reasoning with
RCC8, since many other reasoning tasks, such as entailment
checking, can be reduced to it.

A constraint network 〈V,E, l〉 is called atomic if for each
(x,y) ∈ E, l(x,y) is a singleton set, complete if E = V ×V ,
and normalized if it is complete and it holds l(x,x) = {EQ}
as well as l(x,y) = l(y,x)−1. A constraint network 〈V ′,E ′, l′〉
is called a refinement of 〈V,E, l〉 if V = V ′, E ⊆ E ′, and
l′(x,y) ⊆ l(x,y) for each arc (x,y) ∈ E, and called a subnet-
work if V ′ ⊆ V , E ′ ⊆ E, and l(x,y) ⊆ l′(x,y) for each arc
(x,y) ∈ E ′. A normalized RCC8 constraint network 〈V,E, l〉
is said to be path-consistent if l(x,y)⊆ l(x,z)◦RCC8 l(z,y) for
each triple of variables x,y,z in V . Note that each RCC8 con-
straint network can be transformed into an equivalent nor-
malized network. Moreover, each constraint network can be
refined into an equivalent path-consistent constraint network.
This can be achieved if each of the labels l(x,y) is refined by
applying the operation

l(x,y)← l(x,y)∩ (l(x,z)◦RCC8 l(z,y)),
where z is any third variable occurring in the network, until a
fixpoint is reached. For implementation details of this path-
consistency procedure see, for example, [Mackworth, 1977;
Renz and Nebel, 2007]). If the resulting constraint network
has empty labels, the original network is unsatisfiable.

3 Homomorphisms, Embeddings,

Amalgamation

In the proof of our tractability result we use a result
from [Bodirsky and Dalmau, 2008], which is formulated in a

slightly different formalism, namely the homomorphism for-
mulation of constraint satisfaction problems. Let A be a rela-
tional structure with a finite relational signature τ . Then the
constraint satisfaction problem of B, CSP(B), is the compu-
tational problem to decide for a finite τ-structure A whether
A homomorphically maps to B. A homomorphism from A
to B is a map f : A → B such that for all a,b ∈ A and each
binary R ∈ τ with a RA b, it holds f (a)RB f (b); for higher-
ary relations, the definition is analogous, but not needed here.
We will see later that the network consistency problem for
RCC8 can be viewed as a constraint satisfaction problem for
a certain infinite structure S; more importantly, we show that
S has certain pleasant model-theoretic properties that allow
us to derive our tractability result. We make the convention
that the domains of structures A,B,C, . . . will be denoted by
A,B,C, . . . , respectively. For a subset S of the domain A of
A, we write A[S] for the substructure of A induced by S. In
this paper, substructure always means induced substructure,
as in [Hodges, 1997]. An embedding of a τ-structure A in a
τ-structure B is a mapping f : A→ B that is an isomorphism
between A and B[ f (A)]. The age of a relational structure A is
the set of finite structures that embed into A. A class of finite
structures C with relational signature τ is an amalgamation
class if C is nonempty, closed under isomorphisms and tak-
ing substructures, and has the amalgamation property, which
says that for all A,B1,B2 ∈ C and embeddings e1 : A→ B1
and e2 : A→ B2 there exists C ∈ C and embeddings f1 : B1 →
C and f2 : B2 →C such that f1e1 = f2e2. We call C the amal-
gam of B1 and B2 over A. When we can always amalga-
mate such that f1(B1)∩ f2(B2) = f1(e1(A)), we say that C
is a strong amalgamation class. A structure A is called ho-
mogeneous (sometimes ultra-homogeneous [Hodges, 1997])
if every isomorphism between finite substructures of A can
be extended to an automorphism of A. The most famous ex-
ample of a homogeneous structure is given by the rationals
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(as an ordered set). In fact, each order isomorphism between
finite subsets can be extended to an automorphism on the ra-
tionals. Moreover, the set of all finite linear orders forms an
amalgamation class.
Theorem 1 (Fraı̈ssé 1954; see also [Hodges, 1997]). A
countable class C of finite relational structures with count-
able signature is the age of a countable homogeneous struc-
ture B if and only if C is an amalgamation class. In this case
B is up to isomorphism unique and called the Fraı̈ssé limit of
C.

A relational structure B (i.e., a structure for a purely rela-
tional signature) is called ω-categorical if all countable mod-
els of the first-order theory1 of B are isomorphic to each
other. Homogeneous structures provide a rich source of ω-
categorical structures.
Proposition 1 (see [Hodges, 1997]). A countable homoge-
neous B over a finite relational signature is ω-categorical.

4 A Homogeneous Representation for RCC8

In this section we construct a homogeneous representation for
RCC8. In this context, a representation for RCC8 is an RCC8
model that is extensional, i.e., it has the RCC8 composition
table as its composition table. The relevance of homogeneous
representations in the context of relation algebras and con-
straint satisfaction has first been recognized in [Hirsch, 1997],
where such representations are described for several funda-
mental relation algebras such as Allen’s interval algebra and
the containment algebra.

We will use PP(x,y) as a shortcut for the relation defined
by NTPP(x,y)∨ TPP(x,y), P(x,y) as a shortcut for the re-
lation defined by PP(x,y)∨EQ(x,y) (which is equivalent to
our previous settings), and Pi and PPi to denote the converses
of these relations. In this section, τ denotes the signature of
RCC8 base relations. The structure R will be defined as the
Fraı̈ssé limit of an appropriate class of finite τ-structures R.
Definition 3. The class R is the class of all finite τ-structures
A that satisfy conditions (a) – (d) of Definition 2 as well as
the following universally quantified axioms:

DC(x,y)∧Pi(y,z)⇒ DC(x,z) (1)
EC(x,y)∧P(y,z)⇒ EC(x,z)∨PO(x,z)∨PP(x,z) (2)

EC(x,y)∧Pi(y,z)⇒ DC(x,z)∨EC(x,z) (3)
EC(x,y)∧NTPPi(y,z)⇒ DC(x,z) (4)

PO(x,y)∧P(y,z)⇒ PO(x,z)∨PP(x,z) (5)
NTPP(x,y)∧P(y,z)⇒ NTPP(x,z) (6)
P(x,y)∧NTPP(y,z)⇒ NTPP(x,z) (7)

PP(x,y)∧PP(y,z)⇒ PP(x,z) (8)
Pi(x,y)∧P(y,z)⇒¬DC(x,z) (9)

Lemma 1. The τ-structures in R with non-empty domain are
exactly the finite RCC8 models.

Proof. We have to show that each (finite) RCC8 model
implies (1) – (9). But this can easily from be seen from

1The first-order theory of a τ-structure B is the set of all τ-
sentences that are true in B.

the RCC8 composition table (see Table 1). For exam-
ple, DC(x,y)∧ Pi(y,z)→ DC(x,z) is implied by the entries
(1,6) and (1,7) in the composition table, EC(x,y)∧P(y,z)→
EC(x,z)∨ PO(x,z)∨ PP(x,z) is implied by the entries (2,4)
and (2,5), etc.

For the other direction, we show that any τ-structure that
satisfies (1) – (9) is an RCC8 model, i.e., a model of the RCC8
composition table. There are 82 table entries. Three table en-
tries contain all 8 base relations, in which case there is noth-
ing to show. Since the relation EQ is the same as the equality
relation, this leaves only 72− 3 = 46 table entries to verify.
We identify those entries by pairs (row, column).

(1) covers the table entries (1,6), (1,7), (4,1), (5,1), and
by contraposition and symmetry of DC, it also covers (1,2),
(1,3), (1,4), (1,5), (2,1), (3,1), (6,1), and (7,1). (2) covers
the table entries (2,4), (6,2). (3) covers the table entries (2,6),
(4,2). (4) covers the table entries (2,7), (5,2), and by contrapo-
sition and double application, it also covers (2,2). (5) covers
the table entries (3,4), (3,5), (6,3), (7,3), and by contraposi-
tion and symmetry of PO, also (2,3), (3,2), (3,6), (3,7), (4,3),
and (5,3). (6) covers the table entries (5,4), (5,5), (6,7), and
(7,7). And, by contraposition, also (4,7) and (5,6). (7) covers
the table entries (4,5) and (7,6). (5) covers the table entries
(4,4) and (6,6). Moreover, rules (9) and (3) jointly cover the
table entry (7,5) and rules (2) and (4) jointly cover (2,5), (7,2).
The fields (7,4), (6,5) are covered by (9) in combination with
a contraposition of (6). The field (6,4) is covered by (9) in
combination with a contraposition of (7). The field (4,6) is
covered by a contraposition of (7).

Proposition 2. The class R has the amalgamation property.

Proof. Let A,B1,B2 be structures from R such that B1 =
A∪{e1, . . . ,ek} and B2 = A∪{ f1, . . . , fl}, where {e1, . . . ,ek}
and { f1, . . . , fl} are disjoint, and A is the substructure that
is induced by A both in B1 and in B2. It suffices to show
that there exists a τ-structure C in R with domain C = A∪
{e1, . . . ,ek, f1, . . . , fl} such that both B1 and B2 are induced
substructures of C (this will in fact show that R has strong
amalgamation).

Let G be the directed graph with vertex set A ∪
{e1, . . . ,ek, f1, . . . , fl} and edge set

NTPPB1 ∪TPPB1 ∪NTPPB2 ∪TPPB2 .

Observe that, if there is a directed path in G from x to y
that lies fully within Bi, for i ∈ {1,2}, then (x,y) ∈ EQBi ∪
NTPPBi ∪TPPBi ; this is straightforward to verify since Bi
satisfies (1) – (9).

Moreover, by a straightforward induction one can show
that if there is any directed path from x to y in G, for x,y ∈ Bi,
then (x,y) ∈ EQBi ∪NTPPBi ∪TPPBi .

We now describe our amalgamation procedure. For each
(x,z) ∈C2,

• we add (x,z) to RC if (x,z)∈ RB1 ∪RB2 for some R∈ τ;

• otherwise, we add (x,z) to NTPPC if there exists a di-
rected path from x to z in G;

• otherwise, we add (x,z) to NTPPiC if there exists a di-
rected path from z to x in G;
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• otherwise, we add (x,z) to POC if there exists a y and
directed paths in G from y to x and from y to z, but not
from x to z or from z to x;

• otherwise, we add (x,z) to POC if there exists (x,y) ∈
POB1 ∪POB2 ∪ECB1 ∪ECB2 and a directed path from
y to z in G;

• otherwise, add (x,z) to DCC.

It is clear that each pair (x,z) ∈ C2 is by termination of this
procedure contained in exactly one of the relations of C. We
claim that C satisfies (1) – (9), and verify item by item. In
each of the following cases, we can assume without loss of
generality that x ∈ {e1, . . . ,ek}, y ∈ A, and z ∈ { f1, . . . , fl}.

(1) Assume that (x,y) ∈ DCB1 , (y,z) ∈ PiB2 ; we have
to show that (x,z) ∈ DCC. But this follows from: (a) The
pair (x,z) cannot be added to NTPPC: any path p1, . . . , ps
from x to z must pass through A, say in pi. Then we must
have (pi,z) ∈ NTPPB2 ∪ TPPB2 and hence also (pi,y) ∈
NTPPB2 ∪ TPPB2 . Consequently, (pi,y) ∈ NTPPB1 ∪
TPPB1 , which leads to a contradiction to the assumption
that B1 satisfies (1). (b) The pair (x,z) cannot be added to
NTPPiC: any path p1, . . . , ps from z to x must pass through
A, say in pi. Then (z, pi) ∈ NTPPB2 ∪ TPPB2 and hence
(pi,y) /∈ DCB2 by (9). Considering now the three vertices
{pi,y,x} of B1, we reach a contradiction to the assumption
that B1 satisfies (1). (c) The pair (x,z) cannot be added to
POC: if there is a vertex y′ with directed paths from y′ to x and
from y′ to z, then we must have (y′,y) ∈ NTPPB1 ∪TPPB1 ;
so we obtain a contradiction to the assumption that B1 satis-
fies (9). If there is (x,y′) ∈ POB1 and a path from y′ to z, then
we also have (y′,y) ∈ NTPPB1 ∪TPPB1 , in contradiction to
the assumption that B1 satisfies (5).

(2) Arguing similarly as above, the pair (x,z) cannot be
added to NTPPC since B1 satisfies (9), and not to NTPPiC
since B1 satisfies (8). The pair (x,z) will then be added to
POC and therefore (2) is satisfied by x,y,z.

(3) The pair (x,z) cannot be added to NTPPC since B1
satisfies (1), not to NTPPiC since B1 satsfies (8), and not to
POC since B1 satsfies (8). The pair (x,z) will then be added
to DCC and therefore (3) is satisfied by x,y,z.

(4) The argument here is the same as the argument in the
previous item.

(5) If the pair (x,z) has been added to NTPPC then x,y,z
satisfy (5). It cannot be added to NTPPiC since B1 satisfies
(8). So, if (x,y) has not been added to NTPPC, then it must
have been added to POC and (5) is again satisfied by x,y,z.

(6) (x,z) has been added to NTPPC, hence (6) is satisfied.
(7) (x,z) has been added to NTPPC, hence (7) is satisfied.
(8) (x,z) has been added to NTPPC, hence (8) is satisfied.
(9) If (x,z) is added to NTPPC or NTPPiC, then (9) is sat-

isfied. Otherwise, it will be added to POC and again (9) is
satisfied by x,y,z in C.

In terms of constraint networks, the amalgamation property
can be restated as follows: A scenario of a constraint network

C is complete, atomic, and satisfiable refinement of C. If C
has a scenario, then it is obviously satisfiable. Note that for
many classes of RCC8 models, satisfiability for atomic net-
works can be decided by the path consistency procedure. It
is clear that each finite RCC8 model of a network C defines a
scenario of C, and conversely, that each scenario of C defines
an RCC8 model of C. Let S1 and S2 be scenarios of constraint
networks C1 = 〈V1,A1, l1〉 and C2 = 〈V2,A2, l2〉, respectively,
that coincide on V1∩V2. The RCC8 model induced by S1 on
the variable set V1 ∩V2, then, can be embedded into both the
RCC8 models induced by S1 and S2. Hence the amalgam of
these models is an RCC8 structure that satisfies all constraints
in S1 and S2, and hence it induces a scenario of the constraint
network C1∪C2.
Theorem 2. RCC8 has a representation by a countably infi-
nite homogeneous structure R. All finite (in fact, all count-
able) RCC8 models embed into R.

Proof. Let R be the Fraı̈ssé-limit of R (see e.g. [Hodges,
1997]). The Fraı̈ssé-limit is always homogeneous; since R
has a finite relational signature, it is also ω-categorical (see
e.g. [Hodges, 1997]). Since all structures A in R have pair-
wise disjoint relations that cover all of A2, the same is true for
R. Similarly, it is clear that R satisfies (1)− (9). Note that
all the formulas to be verified for R are universal: a structure
satisfies a universal formula if and only if the formula is sat-
isfied in all finite substructures. Lemma 1 implies that R is
an RCC8 model. It is also well-known that the Fraı̈ssé-limit
of a class embeds all countable structures that have the same
age as the Fraı̈ssé-limit (Lemma 6.1.3 and 6.1.4 in [Hodges,
1997]). Homogeneity of R implies that R is extensional.

5 Networks of Bounded Treewidth

Let G = 〈V,E〉 be a graph. A tree decomposition of G is a
pair 〈X ,T 〉, where X = {X1, . . . ,Xn} is a family of subsets of
V (called bags), and T is a tree with node set X such that
(a) for each edge (v,w) in G, {v,w} ⊆ Xi for some bag Xi,
and (b) for each path Xi T . . . T Xj T . . . T Xk in X , it holds
Xi∩Xk ⊆ Xj. The width of a tree decomposition is defined as
maxi(|Xi|)− 1. The treewidth of a graph G is the minimum
width possible for arbitrary tree decompositions of G. Note
that trees have treewidth one. The treewidth of a constraint
network N is simply the treewidth of the underlying graph
of N, i.e., the graph on the nodes of the network where two
nodes are joined if and only if there is a constraint on those
two nodes.

Let B be a structure with a finite relational signature τ , and
let A be an instance of the CSP for B. Then the constraint
graph of A is the graph with vertices A where two vertices are
joined if there exists a tuple in a relation in A that contains
both vertices.
Theorem 3 ([Bodirsky and Dalmau, 2008], Cor. 1). Let B
be an ω-categorical structure. Then for any k, the CSP of
B is polynomial-time tractable when restricted to instances
whose constraint graphs have treewidth at most k.

We want to remark that for k = 2 and when B has only
binary relation symbols, the algorithm applied in [Bodirsky
and Dalmau, 2008] equals the path consistency procedure.
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Theorem 4. For any k, the network consistency problem for
RCC8 restricted to networks of treewidth at most k can be
solved in polynomial time.

Proof Sketch. Consider the expansion S of R by a relation
for each union of the relations from R. It is well-known
that first-order expansions preserve ω-categoricity [Hodges,
1997], and so S is ω-categorical. An RCC8 constraint net-
work N can be translated into an instance A of CSP(S) in the
obvious way. If N has a solution, then it clearly also has a
solution over a finite RCC8 model, and A homomorphically
maps to S by Theorem 2. Conversely, if A homomorphically
maps to S, then N is satisfiable. The result follows from The-
orem 3.

Remark. In order to apply the algorithm used in Theorem 4,
it is not necessary to determine the treewidth of the input net-
work, which is in general an NP-hard problem; rather, it is
sufficient to know that its treewidth is bounded.
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