
Generative Structure Learning for Markov Logic Networks
Based on Graph of Predicates

Quang-Thang Dinh*, Matthieu Exbrayat*, Christel Vrain **
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Abstract

In this paper we present a new algorithm for gener-
atively learning the structure of Markov Logic Net-
works. This algorithm relies on a graph of predi-
cates, which summarizes the links existing between
predicates and on relational information between
ground atoms in the training database. Candidate
clauses are produced by means of a heuristical vari-
abilization technique. According to our first exper-
iments, this approach appears to be promising.

1 Introduction

Statistical Relational Learning (SRL) seeks to combine the
power of both statistical learning and relational learning in
order to deal with both uncertainty and complex relational
structures, which are required by many real-world applica-
tions. A large and growing number of SRL approaches
have been proposed, including PRISM [Sato and Kameya,
1997], Probabilistic Relational Models (PRM) [Friedman
et al., 1999], Bayesian Logic Programs (BLP) [Kersting
and De Raedt, 2007], Relational Dependency Networks
(RDN) [Neville and Jensen, 2004], Relational Markov Mod-
els (RMM) [Anderson et al., 2002] and Markov Logic Net-
works (MLN) [Richardson and Domingos, 2006].

MLNs generalize both full First-Order Logic (FOL) and
Markov networks (MN). A MLN consists of a set of weighted
clauses, viewed as templates for the features of a MN. Learn-
ing a MLN can be decomposed into structure learning and
weight learning. Structure learning leads to a set of first-order
formulas while weights learning estimates the weight asso-
ciated with each formula of a given structure. Early devel-
oped strategies focused on parameter learning, the underlying
structure being provided. Such an approach is likely to lead to
non optimal results when these clauses do not capture the es-
sential dependencies in the domain. As a consequence, recent
work on MLNs has focused on global learning methods that
integrate the structure learning step. This integration how-
ever remain challenging, due to the very large search space.
Consequently, only a few practical approaches have been pro-
posed to date, among which the MSL [Kok and Domingos,
2005], BUSL [Mihalkova and Mooney, 2007], ILS [Biba et
al., 2008b], LHL [Kok and Domingos, 2009], LSM [Kok and
Domingos, 2010] and HGSM [Dinh et al., 2010b].

MLNs can be learned in generative (i.e. learning all pred-
icates in the domain) and discriminative (i.e. learning a sin-
gle target predicate) frameworks. In this paper we focus on
generative learning, our contribution consisting in a new al-
gorithm for the generative learning of the structure of a MLN.
This algorithm first constructs a graph of predicates that syn-
thesizes the paths existing in the training database. In other
words, this graph highlights the binary associations of predi-
cates that share constants. Building candidate clauses is thus
made faster, as the algorithm focuses on paths that exist in
the graph. Each path is transformed into a clause by means of
a heuristic variabilization technique. The algorithm creates
relevant clauses w.r.t. the graph, according to a progressive
length (starting with clauses of length 2). Each clause is then
evaluated for insertion in the final MLN.

The remainder of the paper is organized as follows. We
first remind some background elements in Section 2. Then
we describe our algorithm in Section 3. Experiments are pre-
sented in Section 4. Related work is briefly drawn in Section
5. Last, Section 6 concludes this paper.

2 Backgrounds

Let us recall here some basic notions of FOL, which will be
used throughout this paper. We consider a function-free first
order language composed of a set P of predicate symbols, a
set C of constants and a set of variables. An atom is an ex-
pression p(t1, . . . , tk), where p is a predicate and ti are either
variables or constants. A literal is either a positive or a neg-
ative atom; a ground literal (resp. variable literal) contains
no variable (resp. only variables). A clause is a disjunction
of literals. The length of a clause c, denoted by len(c), is the
number of literals in c. Two ground literals (resp. variable
literals) are said to be connected if they share at least one
ground argument (one variable). A clause (resp. a ground
clause) is connected when there is an ordering of its literals
L1 ∨ . . . ∨ Lp, such that for each Lj , j = 2 . . . p, there exists
a variable (a constant) occurring both in Lj and in Li, with
i < j. A world is an assignment of truth value to all possi-
ble ground atoms. A database is a partial specification of a
world; each atom in it is true, false or (implicitly) unknown.
In this paper, we use the closed world assumption: if a ground
atom is not in the database, it is assumed to be false.

A MLN is a set of weighted first-order formulas. Together
with a set of constants, it defines a MN [Pearl, 1988] with
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one node per ground atom and one feature per ground for-
mula. The weight of a feature is the weight of the correspond-
ing first-order formula. The probability distribution over a
possible world x specified by the ground MN is: P (X =
x) = 1

Z exp
∑

i∈F

∑
j∈Gi

wigj(x) where Z is a normaliza-
tion constant, F is the set of formulas, Gi and wi are respec-
tively the set of groundings and weight of the i-th formula,
and gj(x) = 1 if the j-th ground formula is true.

The Pseudo-Log-Likelihood (PLL) of x is logPw(X =
x) =

∑n
l=1 logPw(Xl = xl|MBx(Xl)) where MBx(Xl) is

the state of the Markov blanket of the ground atom Xl, xl is
the truth value of Xl in x. Generative approaches optimize the
PLL using iterative scaling or a quasi-Newton optimization
method such as the L-BFGS [Sha and Pereira, 2003].

The weighted PLL (WPLL) measure is logP ∗
w(X = x) =∑

r∈R cr
∑gr

k=1 logPw(Xr,k = xr,k|MBx(Xr,k)) where R
is the set of predicates, gr is the number of groundings of
predicate r, xr,k is the truth value of the k-th grounding of r,
and cr = 1/gr [Kok and Domingos, 2005].

3 Generative Structure Learning Based on

Graph of Predicates

In this section, we first introduce our definition of graph of
predicates (GoP) and then describe how we use this graph to
learn the structure of a MLN from a training dataset DB and
an initial MLN (which can be empty).

3.1 Graph of Predicates

Let us consider here a set P of m predicates {p1, ..., pm}.

Definition 1 A template atom of a predicate p is an expres-
sion p(type1, ... , typen), where typei, 1 ≤ i ≤ n indicates
the type of the i-th argument.

Definition 2 A link between two template atoms
pi(ai1 , ..., aiq ) and pj(aj1 , ..., ajk) is an ordered list of
pairs of positions u and v such that the types of arguments
at position u in pi and v in pj are identical. It is denoted
by link(pi(ai1 , ..., aiq ), pj(aj1 , ..., ajk)) = 〈u v|...〉, where
aiu = ajv , 1 ≤ u ≤ q, 1 ≤ v ≤ k.

The link between two predicates pi and pj , denoted by
link(pi, pj), is the set of all possible links between their tem-
plate atoms pi(ai1 , ..., aiq ) and pj(aj1 , ..., ajk).

When two template atoms do not share any type, there ex-
ists no link between them.

Definition 3 A formula satisfying a link(pi(ai1 , ..., aiq ),
pj(aj1 , ..., ajk)) = 〈si1 sj1| ...|sic sjc|〉 is a disjunction
of literals pi(Vi1 , ..., Viq ) ∨ pj(Vj1 , ..., Vjk)) where Vt, t =
i1, ..., iq, j1, ..., jk, are distinct variables except Visid

=
Vjsjd

, 1 ≤ d ≤ c.

The definitions of link and formula satisfying a
link are naturally extended to negation. For exam-
ple, link(pi(ai1 , ..., aiq ), !pj(aj1 , . . . , ajk)) is the link be-
tween pi(ai1 , ..., aiq ) and pj(aj1 , ..., ajk): link(pi, !pj) ≡
link(pi, pj).

Example 4 We consider a domain consisting of two pred-
icates AdvisedBy and Professor respectively with two

Figure 1: Example of graph of predicates

template atoms AdvisedBy(person, person) and Profes-
sor(person). The argument (type) person appears at posi-
tion 0 of Professor(person) and at positions 0 and 1 of Ad-
visedBy(person, person). Several possible links exist between
them, as for instance 〈0 0〉 and 〈0 1〉, and a possible formula
satisfying the latter one is Professor(A) ∨ AdvisedBy(B, A).

We also have link(AdvisedBy, AdvisedBy)= {〈0 0〉, 〈0 1〉,
〈1 0〉, 〈1 1〉, 〈0 0 | 1 0〉, 〈0 0 | 1 1〉, 〈0 1 | 1 0〉, 〈0 1 | 1 1〉}.

It must be noted that several links are not considered here.
For example, the link 〈0 0 | 1 1〉 leads to a formula composed
of two similar literals. The link 〈1 0 | 0 1〉 is similar to the link
〈0 1 | 1 0〉 because they are satisfied by similar formulas. The
link 〈1 1 | 0 0〉 is also similar to the link 〈0 0 | 1 1〉. The same
remark can be done for link(Professor, Professor) = 〈0
0〉, link(Professor, !Professor) = 〈0 0〉, ...

Definition 5 Let DB a database, P a set of m predicates
{p1, ..., pm} occurring in DB, and D the domain (set of con-
stants). An undirected graph of predicates (GoP) is a pair
G=(V, E) composed of a set V of nodes (or vertices) together
with a set E of edges, where:

i. A node vi ∈ V corresponds to a predicate pi or its nega-
tion, |V | = 2× |P|

ii. If there exists a link between two template atoms of pred-
icates pi (or !pi) and pj (or !pj), then there exists an
edge between the corresponding nodes vi and vj , and
this edge is labelled by the link.

Figure 1 illustrates a GoP for the domain in Example 4.

3.2 Structure of Algorithm

Given as inputs a training dataset DB, a background MLN
(possibly empty) and a positive integer maxLength, speci-
fying the maximum length of clauses, we present an algo-
rithm, called Generative Structure Learning based on a graph
of Predicates (GSLP), to learn generatively a MLN structure.
Algorithm 1 sketches main steps of GSLP.

The approaches developed in [Kok and Domingos, 2005],
[Biba et al., 2008b] and [Huynh and Mooney, 2008] explore
in an intensive way the space of clauses, generating a lot of
useless candidate clauses, while the ones developed in [Mi-
halkova and Mooney, 2007], [Kok and Domingos, 2009] and
[Dinh et al., 2010b]) search all paths of ground atoms in
the database in order to reduce computation time. However,
searching in this space is also computationally expensive. We
aim at generating a set of interesting potential clauses based
on three observations. First, associations amongst predicates
constitute a smaller model space than clauses and can thus
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Algorithm 1: GSLP(DB, MLN, maxLength)
1 Initialization: set of clauses CC = ∅, set of paths SP = ∅;
2 Add all unit clauses to the final MLN;
// Creating a graph of predicates

3 Create graph G of predicates;
4 Reduce Edges of Graph (G, CC, SP) ;
// Building a set of candidate clauses

5 for length=2 to maxLength do
6 CC ← CreateCandidateClauses(DB, G, SP, length);

// Learning the final MLN
7 Eliminate several Candidate Clauses (CC) ;
8 Add Candidate Clauses into the MLN (CC, MLN) ;
9 Prune Clauses out of the MLN ;

10 Return(MLN);

be searched more efficiently [Kersting and De Raedt, 2007].
Second, it seems useless to consider connected clauses that
do not correspond to any instance in the database. Third, we
believe that the more useful a connected clause A1 ∨ ...∨An

is, the larger number of true ground atoms in the database it
covers. In other words, relevant clauses are mostly the ones
that are frequent enough in terms of true instances. It is obvi-
ous that if a connected formula is frequent, then its connected
sub-formulas are also at least as frequent as it (similar re-
marks serve as the basis of many well known strategies for
frequent pattern mining). We thus propose to generate candi-
date clauses, starting from binary ones (i.e. consisting of two
connected atoms) then gradually extend them to get longer
and better ones. The problem now is transformed into finding
such a set of binary connected clauses Ai ∨ Aj from which
the set of candidate clauses is gradually lengthened.

Before describing the algorithm in details, it is impor-
tant to explain how a clause is evaluated. Traditional ILP
methods use the number of true instances which is not suit-
able for uncertainty in MLN, while most methods for MLN
use the WPLL, which sometimes miss clauses with good
weights. We propose to evaluate a clause c based on its
weight (c.weight) and gain (c.gain). These two values are
computed according to a temporary MLN composed of the
unit MLN plus c. The weights of this MLN are then learned
to maximize the measure (i.e. WPLL). The weight of c
is its weight in this temporary MLN. The gain of c is de-
fined as: newMea − unitMea − penalty ∗ len(c), where
newMea, unitMea are respectively the performance mea-
sure (WPLL) of the temporary MLN and of the unit MLN;
penalty is a coefficient. It essentially corresponds to the im-
provement of the measure when adding c to the unit MLN.
To estimate the interest of c, instead of using the number of
true ground instances or only the WPLL, we use the product
c.mf = |c.weight| ∗ c.gain. As a clause weight can be neg-
ative, we use absolute value (denoted by | |) to consider both
positively and negatively weighted clauses. This is reason-
able because in a MLN, c.weight implies how strong c is and
c.gain describes how the measure is increased when adding
c into the unit MLN. Nevertheless, this measure is no longer
monotonous, contrary to the classical frequency measure.

In a MLN, a weight associated to a formula reflects how
strong a constraint is: the higher the weight, the greater the

difference in log probability between a world that satisfies the
formula and one that does not, other things being equal. Con-
cerning unit clauses (clauses of a single atom), the weights of
these capture the marginal distribution of predicates, allowing
longer clauses to focus on modeling predicate dependencies.
For this reason, adding all unit clauses into the MLN is usu-
ally useful. This is also the first step of our algorithm and we
call this first MLN the unit MLN (line 2).

Our clause-generation algorithm relies on a GoP in order
to search clauses through the space of associations between
predicates. For each predicate, we create two nodes (corre-
sponding to the predicate itself and its negation), hence the
graph has only 2 × |P| nodes, where |P| is the number of
predicates in the domain. The number of edges incident to a
node depends on the number of arguments of the correspond-
ing predicate S and their type relations in the domain, but it
is usually not too large. The search space of paths in GoP
is then much smaller than the whole search space of paths
of ground atoms, especially when considering a domain with
a large number of predicates and when there exists a lot of
shared-arguments between ground atoms.

Every edge e of GoP is created corresponding to a possible
link between two nodes (line 3). We can see that e always
corresponds to a binary clause bc satisfying its link (label).
We do not consider clauses with no or a few true instances
in the database, hence if the number of true instances of bc
is less than or equal to a given threshold nti then e is dis-
carded. Otherwise, bc is evaluated to compute its measure
of frequency, bc.mf. In our method, only edges with a big
“enough” measure of frequency will be considered, therefore
if bc.mf is smaller than or equal to a given threshold mft, then
e is also eliminated. The number of edges of GoP is thus re-
markably reduced (line 4), leading to a more efficient search.

Next, the algorithm generates a set of candidate clauses
based on this reduced graph (line 5-6). The idea is to lengthen
successively every binary clause to generate longer ones such
that the extended clauses improves the measure c.mf of fre-
quency. A clause is considered as a candidate clause when it
reaches a given maxLength, or when it does not lead to any
longer and better clause (i.e. associated with an improved
WPLL). We explain this in more details in Subsection 3.3.

Having got a set CC of candidate clauses, the algorithm
next eliminates some clauses (line 7) before adding them into
the MLN in turn (line 8). Finally, it prunes some clauses of
the MLN (line 9). We present these steps in Subsection 3.4.

3.3 Building Candidate Clauses

As we have mentioned above, the algorithm extends step by
step every binary clause. Let SP a set of similar-length paths
and CC a set of candidate clauses. Initially, SP, CC respec-
tively contain all 1-length paths and binary clauses: each pair
of spi ∈ SP and cci ∈ CC corresponds to an edge ei of the
reduced GoP, where spi is the label of ei and cci is the bi-
nary clause satisfying spi. For longer paths, we extend every
k-length path pk = p1, ..., pk ∈ SP to get a longer (k+1)-
length path pk1 = p1, ..., pk, pk+1 by finding an edge pk+1

connecting to at least a node in pk. It must be noted that
by indexing the nodes of the graph we can find quickly the
set of (k+1)-length paths, since for a node p in pk we only
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have to look for every edge pk+1 connecting p to its higher
indexed nodes. In our algorithm, each path is variabilized to
form only one clause (as explained in next paragraph). As-
sume that ck, ck+1 are respectively two variabilized clauses
of pk and pk1. The clause ck+1 is evaluated to check whether
ck+1.mf greater than ck.mf . If it is true, the path pk1 is
stored into SP for the next iteration, otherwise it is no longer
considered. If there exists no clause ck+1 extended from the
path of ck such that ck+1.mf > ck.mf , the clause ck be-
comes a candidate clause stored into CC. At last iteration, all
clauses corresponding to maxLength-length paths in SP are
added into CC.

Let us consider now the process of variabilization. Most
approaches variabilize a path of ground atoms by simply re-
placing constants by variables. We emphasize that, here, we
produce clauses from paths in the reduced GoP, i.e. a list of
edges containing only information of predicates and positions
of shared arguments. There exists a lot of clauses satisfying
this path, thus building all possible clauses is not reasonable:
the more clauses generated, the more time spent to evaluate
them and to learn the final MLN. We variabilize heuristically
a path to generate only one connected clause. First, in order
to reduce the number of distinct variables in the clause, we
handle the predicates in the order of descending frequency
in the path. For each predicate, we perform variabilization
for shared variables first, and then for unshared ones. An ar-
gument of a predicate is variabilized by a new variable if its
position does not appear in the link of any edge in the path.

Example 6 For example, variabilizing the path composed
of two links !advisedBy 〈0 1〉 !advisedBy and !advisedBy
〈0 0〉 student generates the clause !advisedBy(A,B) ∨ !ad-
visedBy(C,A) ∨ student(A). Conventionally, the link between
student and advisedBy is applied to the first advisedBy.

3.4 Learning the final MLN

Weights are learned using the standard L-BFGS algorithm to
maximize PLL. For inference, as in previous studies, we use
MC-SAT [Richardson and Domingos, 2006]. However, the
PLL parameters may lead to poor results when long chains of
inference are required [Richardson and Domingos, 2006]. To
overcome this issue, we sort candidate clauses in CC in the
decreasing order of measure of frequency and then we elimi-
nate some of them (line 7) using two criteria as follows:
• Sub-clause: remove every clause CC[j] when there ex-
ists a clause CC[i], i < j such that CC[i] and CC[j] have
a sub-clause relation1. For example, in case len(CC[i]) <
len(CC[j]) and there exists a sub-clause c of CC[j] and a
variable replacement θ such that cθ ≡ CC[i], we have a sub-
clause relation between CC[i] and CC[j].
• Clauses of same predicates: keep only one (with the max-
imum measure) of clauses composed of the same set of pred-
icates. For example, we choose only one of the 2 clauses
(student(A) ∨ advisedBy(A,B), student(A) ∨ advisedBy(B,A))
consisting of the two predicates student and advisedBy.

Clauses in CC are added into the MLN in turn. A candidate
clause is put into the MLN as long as it leads to an improve-

1See online appendix for more details http://www.univ-
orleans.fr/lifo/Members/Dinh.Thang/

DATASET IMDB UW-CSE CORA ML1 ML2 MT1 MT2

TYPE 4 9 5 9 9 11 11

CONSTANTS 316 1323 3079 234 634 696 1122

PREDICATES 10 15 10 10 10 13 13

TRUE ATOMS 1540 2673 70367 3485 27134 5868 9058

Table 2: Details of datasets

ment of the performance measure (i.e. WPLL) of the MLN
learned before. As adding clauses into the MLN can influ-
ence the weight of formerly added clauses, once all candidate
clauses have been considered, we try to prune some of the
clauses from the MLN. We use a zero-mean on each weight
in order to remove a set of clauses, whose weights are less
than a given threshold mw, as long as their elimination causes
an increase of the performance measure. This step is iterated
until no clause can be removed any more.

4 Experiments

GSLP is implemented over the Alchemy1 package. We
perform experiments to estimate the performance of GSLP
following two questions:
1. How does GSLP compare to the state of the art generative
systems for MLN structure learning?
2. Can we compare GSLP to a state of the art discriminative
structure learning system for specific predicates?

4.1 Systems, Datasets and Methodology

To answer question 1, we choose three state-of-the-art gener-
ative systems:
• LSM [Kok and Domingos, 2010]: This algorithm uses
random walks to identify densely connected objects in data,
groups them with their associated relations into a motif, and
then constrains the search for clauses to occur within motifs.
• HGSM [Dinh et al., 2010b]: This algorithm heuristically
builds a set of variable literals then finds dependent relations
amongst them. Candidate clauses are created from sets of de-
pendent variable literals.
• MBN [Khosravi et al., 2010]: This algorithm first learns
a (parametrized) Bayes net from which to apply a standard
moralization technique in order to produce a MLN.
For question 2, we choose the DMSP [Dinh et al., 2010a], a
recent discriminative MLN structure learning system.

We used the three datasets IMDB, UW-CSE, CORA2 that
have been used to evaluate LSM, HGSM as well as DMSP.
For each domain, we also performed a 5-fold cross-validation
as in previous studies. Unfortunately, this approach is not fea-
sible for the current setting of MBN [Khosravi et al., 2010].
To be able to compare to MBN, we used 2 subsample datasets
(ML1, ML2) of the MovieLens database and 2 subsample
datasets (MT1, MT2) of the Mutagenesis database3. For each

2Publicly-available at http://alchemy.cs.washington.edu. IMDB
describes a movie domain, UW-CSE describes an academic depart-
ment, and CORA is a collection of citations of CS papers.

3MovieLens is available at the UC Irvine machine learning
repository and Mutagenesis is widely used in ILP research.
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GSLP LSM HGSM

DATASET CLL AUC TIME CLL AUC TIME CLL AUC TIME

IMDB -0.099±0.03 0.790± 0.06 0.43 -0.191±0.02 0.714±0.06 1.23 -0.183±0.03 0.692±0.07 3.06

UW-CSE -0.052±0.06 0.459± 0.07 3.05 -0.068±0.07 0.426±0.07 2.88 -0.103±0.04 0.311±0.02 8.68 MBN

CORA -0.054±0.05 0.887± 0.07 6.72 -0.065±0.02 0.803±0.08 6.05 -0.087±0.05 0.762±0.06 64.15 CLL AUC

MOVILENS1 -0.764 0.701 0.44 -0.933 0.683 0.46 -1.010 0.611 4.02 -0.99 0.64

MOVILENS2 -0.915 0.677 3.18 -0.985 0.658 2.97 NA NA NA -1.15 0.62

MUTAGENESIS1 -1.689 0.766 1.13 -1.855 0.713 1.25 -2.031 0.692 4.37 -2.44 0.69

MUTAGENESIS2 -1.754 0.743 8.28 NA NA NA NA NA NA -2.36 0.73

Table 3: CLL, AUC measures and runtimes (hours) (generative)

of them, we learned the MLN on 2/3 random selected atoms
and tested it on the remaining 1/3, as presented in [Khosravi
et al., 2010]. Details of these datasets are reported in Table 2.

Performance was measured in terms of CLL and AUC
(area under precision recall curve). The CLL of a ground
atom is its log-probability given the MLN and the database,
and directly measures the quality of the estimated probabili-
ties. AUC curves are computed by varying the CLL threshold
above which a ground atom is predicted true. AUC is insen-
sitive to a large number of true negatives. For these two mea-
sures, reported values are averaged over all predicates. CLL
and AUC have been used in most of recent studies of MLN
learning and as in them, we used the standard MC-SAT infer-
ence algorithm to compute a probability for every grounding
of the query predicate on the test fold. We used the package
provided in [Davis and Goadrich, 2006] to compute AUC.

Parameters for LSM, HGSM and DMSP were respectively
set as in the papers of Kok and Domingos [2010] and Dinh
et al. [2010b; 2010a]. We learned clauses composed of at
most 5 literals (maxLength = 5) for all systems and limit the
number of similar predicates per clause to 3 in order to learn
weights in a reasonable time. We set nti = 0, mft = 0, mw =
0.001, penalty = 0.001 for all domains. These parameters are
chosen just to estimate the performance of GSLP; we did not
optimize them for any dataset yet. We ran these experiments
on a Dual-core AMD 2.4 GHz CPU - 4GB RAM machine.

4.2 Results

Table 3 reports the average CLLs, AUCs and runtimes on
each dataset. Higher numbers indicate better performance
and NA indicates that the system was not able to return a
MLN, because of either crashing or timing out after 3 days
running. For MBN, we used the values published in [Khos-
ravi et al., 2010]. It must be noted that, our results do slightly
differ from the ones in [Kok and Domingos, 2010], as i)
we used the standard versions of IMDB and UW-CSE in-
stead of the ones reduced by Kok for LHL and LSM, and
ii) for CORA, we learned clauses with at most 5 predicates
instead of 4. Besides, since we aim at comparing two genera-
tive learning systems, after learning the MLN structure using
LSM, we only learned the weights once instead of relearning
them for each predicate before performing inference.

For the largest dataset CORA, GSLP increases 16.9% on
CLL, 10.5% on AUC compared to LSM and 37.9% on CLL,
16.4% on AUC compared to HGSM. It dominates MBN on
CLL in the range of 20-30%. Improvement not only occurs on
average values over test folds but also on most of average val-

ALGORITHMS → DMSP GSLP
DB PREDICATE CLL AUC CLL AUC
IMDB WORKEDUNDER -0.022 0.382 -0.023 0.394

UW-CSE ADVISEDBY -0.016 0.264 -0.016 0.356

SAMEBIB -0.136 0.540 -0.139 0.669

CORA SAMETITLE -0.085 0.624 -0.090 0.764

SAMEAUTHOR -0.132 0.619 -0.132 0.995

SAMEVENUE -0.109 0.475 -0.107 0.572

Table 4: CLL, AUC measures (discriminative)

ues over predicates in each test fold. Since CLL determines
the quality of the probability output by the algorithms, GSLP
improves the ability to predict correctly the query predicates
given evidence. As AUC is insensitive to a large number of
true negatives, GSLP enhances the ability to predict a few
positives in data. GSLP runs much faster than HGSM, espe-
cially for CORA, but performs a bit slower than LSM. We
can answer question 1 that GSLP performs better, on these
datasets, than the state-of-the art systems in terms of both
CLL and AUC. However at the predicate level, LSM, MBN
sometimes achieve better values than GSLP. We provide the
average CLLs, AUCs for every predicate and examples of
clauses learned by GSLP in the online appendix.

Comparing GSLP to DMSP, we used DMSP to learn
discriminatively MLN structure for predicates WorkedUn-
der (IMDB), Advisor (UW-CSE) and SameBib, SameTitle,
SameAuthor, SameVenue (CORA). These predicates are of-
ten used in previous studies for MLN discriminative learning
[Dinh et al., 2010a; Biba et al., 2008a]. Table 4 gives the
average CLLs, AUCs on those predicates over all test folds
for each dataset. The results show that GSLP produces much
better AUCs than DMSP did while it loses a litte CLLs. In-
deed, it is worst 5% on CLL on predicate SameTitle while the
AUC is increased 18.32%. The improvement of AUC reaches
at most 37.78% on predicate SameAuthor while the CLL is
equal. GSLP gets better results than DMSP in terms of both
CLL (1.87%) and AUC (16.96%) on the predicate SameV-
enue. GSLP is thus competitive to the discriminative system
in terms of CLL and dominates it in terms of AUC.

5 Related Works

Structure graphs have been widely used in SRL, includ-
ing both directed graph models [Neville and Jensen, 2004;
Friedman et al., 1999; Kersting and De Raedt, 2007] and
undirected graph models [Anderson et al., 2002; Kok and
Domingos, 2009]. Our graph of predicates (GoP) although
different can be related to PRM [Friedman et al., 1999],
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which relies on a class dependency directed graph, where
each node corresponds to an attribute of some class (or table
in a relational database).

Concerning MLN structure learning, the idea to encode
database information into a graph has been applied in LHL
and LSM by Kok and Domingos [2009; 2010], where rela-
tional path-finding [Richards and Mooney, 1992] is used to
find paths of ground atoms, then lift them into an undirected
“lifted-graph”. This latter, however, is very different from
GoP; a node corresponds to a set of constants instead of a
predicate (or its negation) and an edge corresponds to a pred-
icate instead of a link between predicates. Based on this GoP,
our method shows some advantages compared to LHL:
• Building GoP is only based on the types of predicate argu-
ments, which is much faster than tracing all paths of ground
atoms. The size (number of nodes and edges) of GoP is
hence “fixed” while the one of lifted-graphs varies and de-
pends mostly on the database.
• Negative and positive literals are handled in the same way
and only good links are used to extend good candidates seek-
ing for better ones. A path in GoP, holding information on
predicates and positions of shared-arguments, is a general de-
scription of paths of ground atoms. LHL has to search for all
paths of ground atoms, each one being variabilized to create
all possible clauses by flipping sign of its literals. This, more
or less, still leads to a whole graph-search. The search space
in our method is thus greatly reduced compared to LHL.

6 Conclusion

We propose a new algorithm for generative MLN structure
learning. Our first experiments show that it outperforms the
state-of-the art approaches on some classical benchmarks.
Nevertheless, beside these satisfying results, we have iden-
tified some points, which must be investigated further:
• Our algorithm works in a generate-and-test manner, run-
time is thus mostly spent for evaluating clauses. A strategy to
generate less clauses would improve performance.
• If we keep clauses built with the same predicates (Subsec-
tion 3.3), then we get better performance (in terms of WPLL).
The balance between performance, tractability and runtime
will be an interesting point to study.
• Based on the graph of predicates, GSLP should be able
to handle more complex domains with more predicates and
many associations between them. More experiments need to
be conducted to verify this remark.
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