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Abstract

Activity recognition aims to identify and predict
human activities based on a series of sensor read-
ings. In recent years, machine learning methods
have become popular in solving activity recogni-
tion problems. A special difficulty for adopting ma-
chine learning methods is the workload to annotate
a large number of sensor readings as training data.
Labeling sensor readings for their corresponding
activities is a time-consuming task. In practice, we
often have a set of labeled training instances ready
for an activity recognition task. If we can trans-
fer such knowledge to a new activity recognition
scenario that is different from, but related to, the
source domain, it will ease our effort to perform
manual labeling of training data for the new sce-
nario. In this paper, we propose a transfer learning
framework based on automatically learning a cor-
respondence between different sets of sensors to
solve this transfer-learning in activity recognition
problem. We validate our framework on two dif-
ferent datasets and compare it against previous ap-
proaches of activity recognition, and demonstrate
its effectiveness.

1 Introduction

Activity recognition is the problem of inferring and predict-
ing human intentions and activities based on a series of sen-
sor readings. Due to its multidisciplinary nature, it has accu-
mulated lots of research interest from many areas including
artificial intelligence, ubiquitous computing and sensor net-
works and also ranging to many areas including travel rec-
ommendation [Zheng and Xie, 2011], routine discovery [Far-
rahi and Gatica-Perez, 2011], conversation recognition [Hsu
et al., 2011], etc. Since the relationship between different
sensor readings and activities is complex, machine learning
algorithms have become popular in solving activity recogni-
tion tasks.

A common problem with supervised machine learning is
the potentially expensive manual effort needed to label the
training data. This problem is very pronounced in the field
of activity recognition. One assumption required by most su-
pervised learning methods is that the training and test data

should be in the same feature space and have the same under-
lying distribution and the same label space. However, when
the distributions and features are different between training
and future data, the model performance often drops.

In the context of activity recognition, the above assumption
manifests itself as: 1) The same feature space requirement
means that training and testing data should use the same set
of sensors; 2) The same underlying distribution requirement
means that the preferences or the habit of the subjects should
be similar in both training and testing data and 3) The same
label space requirement means the activity set recognized in
the training and testing data are the same.

To relax the assumption of same feature and label space as
well as underlying distributions, many transfer learning algo-
rithms have been developed to reduce labeling effort while
still maintaining a reasonable accuracy . In transfer learning,
useful knowledge from the source domain are being trans-
ferred to the target domain where labeled data is usually in-
sufficient to build a reliable classifier on its own [Pan and
Yang, 2010; Taylor and Stone, 2009]. Recently, researchers
have tried to bring the idea of transfer learning into activity
recognition, but but most of their approaches have certain as-
sociated limitations, which we will discuss in Section 2.

In this paper, we propose a transfer learning framework un-
der which one can transfer the knowledge between different
activity recognition tasks, relaxing the assumption of same
feature space, same label space as well as same underlying
distribution by automatically learning a mapping between dif-
ferent sensors. To build a mapping between the two domains,
we use Web knowledge as a bridge to help link the different
label spaces.

The rest of this paper is organized as follows. We will
first introduce some related works on activity recognition and
transfer learning. In Section 3, we will explain our proposed
algorithm in detail. Next, we will evaluate our algorithm on
a number of real-world activity recognition datasets to better
demonstrate its effectiveness. Finally, we conclude this paper
and point out several directions for our future research.

2 Related Work

Activity recognition aims to infer user behaviors from obser-
vations such as low-level sensor readings. However, most of
the proposed activity recognition algorithms focused on sen-
sor readings from only one domain, and usually require lots
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of annotated data to train the activity recognition model.
Transfer learning is motivated by the fact that humans

can intelligently apply knowledge learned previously to solve
new problems faster. Transfer learning has already been
demonstrated successful in many scenarios [Pan and Yang,
2010] . More specifically, there have been several works that
tries to link transfer learning with activity recognition [van
Kasteren et al., 2010; Zheng et al., 2009]. In [Zheng et al.,
2009], the authors relax the same label space assumption by
using Web knowledge as a bridge to transfer knowledge be-
tween different label spaces. The limitation in this paper is
that the requirement of same feature space still applies, i.e.,
the sensors in the source domain and the target domain should
be the same. Such a limitation forbids many possible transfer-
ring scenarios in activity recognition. In [van Kasteren et al.,
2010], the authors studied activity recognition across differ-
ent sensors. However, their algorithm is based on the usage
of a meta-feature space, which are features that describe the
properties of the actual features, e.g., both sensors installed
on microwaves and stoves have a meta feature as “kitchen
heating”. Each sensor is described by one or more meta
features. The limitations of the approach described in [van
Kasteren et al., 2010] is that the meta-feature space needs to
be manually constructed. Besides, different room layouts or
different kinds of sensors would lead to huge difference in
the meta features of the two rooms and hence the applicabil-
ity of the algorithm is limited. Rashidi and Cook [Rashidi and
Cook, 2011] studied transferring activity recognition knowl-
edge from multiple source domains. However, their work
does not allow the feature space of different domains to be
different.

In our activity recognition problem setting, we need to
transfer knowledge between different feature spaces, underly-
ing distribution as well as different label spaces. In the trans-
fer learning literature, transferring between different feature
spaces has been studied extensively, e.g., [Dai et al., 2008;
Yang et al., 2009]. However, few research works have dealt
with the knowledge transfer problem that involve changes in
all of feature, distribution and label spaces.

3 Proposed Approach

We first define our transfer learning for activity recognition
problem setting. We study two domains that have different
sets of sensors and different activity labels. Specifically, we
have a source domain where the labeled sensor readings are
in the form of {(xs,ys)}, and a target domain where we as-
sume that we have only the unlabeled data the form of {(xt}.
The source domain label space is defined as Ls and the target
domain label space is defined as Lt. We make the assump-
tion that Ls and Lt are different, but are related through a
probability function p(ys, yt) where ys and yt are source and
target-domain activity labels, respectively. This probability
function between the label spaces can be learned by labeling
some of the target domain instances, or through the Web (as
we do in this paper).

Our final goal is to estimate p(yt|xt). We know that:

p(yt|xt) =
∑

c(i)∈Ls

p(c|xt) · p(yt|c)

Since the activity-label spaces Ls,Lt may be large, for sim-
plicity, in this paper, we approximate the value of p(yt|xt)
by the mode (the most frequent label) of p(c|xt), where c is
an activity label, and denote the mode as ĉ. ĉ is labeled using
labels from the source domain Ls. In other words,

p(yt|xt) ≈ p(ĉ|xt) · p(yt|ĉ) (ĉ = arg max
c∈Ls

p(c|xt))

In this paper, since we assume the two label spaces to be
different but related, the joint distribution p(ys,yt) should
have high mutual information in general. Therefore, p(yt|ĉ)
should also be high.

From the above equation, our transfer learning framework
takes two steps. In the first step, we will estimate p(ĉ|xt)
where ĉ is labeled using the source domain label space Ls.
Briefly speaking, we aim to use the source domain label space
to explain the target domain sequences xt first. Since the
two domains have different feature spaces, in our first step
we need to transfer across different feature spaces.

Next, we estimate p(yt|ĉ) where yt is defined on the target
domain label space Lt and ĉ is defined on the source domain
label space Ls; i.e., in our second step, we need to transfer
across different label spaces.

3.1 Transfer Across Feature Spaces

Based on the above discussions, in this section we first need
to transfer knowledge between different feature spaces and
estimate p(ĉ|xt). For each sensor reading xs in the source
domain S, xs is represented by features fS . Similarly, for
each sensor reading xt in the target domain T , denote the
features composing xt as fT . For example, fS can be an on-
body 3D accelerometer attached to the wrist and fT can be
a the Wifi signals from a mobile phone. In this section, we
build a bridge between fS and fT .

We use a framework similar to translated learning [Dai et
al., 2008]. When transferring the knowledge across differ-
ent feature spaces, an important step is to find a translator
φ(ft, fs) ∝ p(ft|fs) (Here fs and ft are features of the data
in S and T , respectively.) between the source and target do-
mains. Since ft and fs are conditionally independent given
xs, we have:

p(ft, fs) =

∫
Xs

p(ft|xs)p(fs|xs)p(xs)dxs

=

∫
Xs

p(ft, xs)p(fs|xs)dxs

In order to measure the joint distribution p(ft, fs), we need to
measure p(ft, xs), or more precisely, the joint distribution be-
tween each feature in T with the source domain sensor read-
ings xs. In order to measure this joint distribution, depend-
ing on whether we compute based on the difference on dis-
tributions or difference on signal data, we can use two basic
tools to approximate p(ft, xs): Jeffrey’s J-divergence [Jef-
freys, 1946] (the symmetric version of the KL-divergence)
and Dynamic Time Warping [Keogh and Pazzani, 2000].

We can extract two kinds of information from sensor read-
ings. The first is that, given a sequence of sensor reading,
we can try to estimate the generative distribution from which
such a sensor reading is generated. Since we only care about
the relative distance between two distributions of sensor read-
ings instead of describing these distributions in high accuracy,
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we simply plot the frequency of each sensor value (discretize
the sensor value if it is continuous), and then smooth the dis-
cretized probability distribution. Since we have quite differ-
ent feature spaces, we first normalize all our sensor readings
into the range of [0,1].

In particular, suppose that we have a training set in the
source domain {xi, yi}, where xi are sensor readings and yi
are target labels. For each activity yi, we can select all se-
quences of sensor readings x that have yi as its label. Next,
we would count the occurrences of sensor values xij , and
then estimate the probability distribution for each of the sen-
sor in the sensor reading sequence xi. An intuitive explana-
tion of the above-mentioned method is that we try to link each
generative distribution of different sensors to a target activity.
We could imagine that we are trying to compose a dictionary
where words in this dictionary are in fact distributions of sen-
sor readings, and we attempt to tell the readers that “if you
encounter such a distribution in your sensor readings, then
it is possible that the sensor readings correspond to such an
activity”.

Following a similar approach, we can also estimate the
probability distribution for each sensor reading sequence in
the target domain. Now that for each sensor reading se-
quence, we have an estimated distribution Q and we wish to
find a close distribution P in the source domain. Since KL di-
vergence is asymmetric, i.e. DKL(P ‖ Q) �= DKL(Q ‖ P ).
Therefore, instead of calculating DKL(P ‖ Q), we use
DKL(P ‖ Q) +DKL(Q ‖ P ), which is undoubtedly a sym-
metric measurement, to measure the distance between two
distributions generating sensor readings.

Two issues need addressed for the selection of candidate la-
bels based on relative entropy measurements alone. The first
is that, although DKL(P ‖ Q)+DKL(Q ‖ P ) equals to zero
if and only if the two distributions P and Q are identical, the
fact that sensors have a very large value does not necessarily
mean the two distributions are highly uncorrelated. Consider
two accelerometers where the directions of accelerations are
different. In this case, whenever the first accelerometer senses
a high value, the second accelerometer will sense a low value.
Therefore, we need to consider distribution pairs at both high
divergence and low divergence values.

The second issue we consider is the different sampling
rates of different sensors when plotting their signal values
versus time. Different kinds of sensors have very different
sampling rates and the accuracy of distributions estimated can
vary a lot. When calculating the correlation between different
sensors, another important step is to use a distance metric that
can take different sampling rates into account. Now given two
series of sensor readings of only one dimension: Q and C of
length n and m, we wish to align two sequences use dynamic
time warping (DTW) [Keogh and Pazzani, 2000]. The idea of
DTW is simple. We could construct an n-by-m matrix where
the element at (i, j) contains the distance d(qi, cj) between
the two points qi and cj , which is measured as the absolute
value of difference of qi and cj : |qi − cj |. Since each ele-
ment (i, j) corresponds to the alignment between qi and cj .
Our objective is to find a warping path W which is a con-
tiguous set of matrix elements that defines mapping between
Q and C. Thus, the element at position K of the warping

Algorithm 1 Projecting the labels in the source domain to the
unlabeled sensor readings in the target domain
Input: Source domain activities §s, source domain data
Ds = {(xs,ys)} = {(xi, yi)|yi ∈ Ls}, target domain data
Dt = {(xt)}
Output: Pseudo-labeled target domain data: D′

t =
{(xs,y

′
s}

begin

1: Normalize each sensor reading sequence both in S and
T .

2: For each pair of sensor reading and activity in (xs,ys) ∈
S, estimate its probability distribution p(fs|ys).

3: For each unlabeled sequence in the target domain xt, es-
timate the distribution of its feature values: P (ft).

4: Calculate the relative entropy between distributions in T
and all the distributions in S. Take the top-K similar and
the bottom-K similar distributions out and record their
labels as candidates.

5: Calculate the DTW score between this sensor reading se-
quence xt and all the labeled sensor reading sequences
(xs,ys) in the source domain. Take the top-K highest
and the bottom-K lowest similar sensor readings out and
record their labels as candidates.

6: Label this unlabeled sequence xt with the label that ap-
peared maximum times in the candidate label set.

end

path W is defined as wk = (i, j)k. This warping path can
be found using dynamic programming under a quadratic time
complexity.

Algorithm 1 shows the step for projecting the labels in the
source domain to the unlabeled sensor readings in the target
domain. Notice that in this algorithm, we had introduced a
parameter K, which is used to control the number of can-
didate label sequences in the source domain. In our exper-
iments, we would test how variations of this parameter K
would affect the overall algorithm performance.

3.2 Transfer Across Label Spaces

In our previous subsection, we had already estimated the
value for argmaxc p(ĉ|xt). In this subsection, we aim to
estimate p(yt|ĉ), we have:

p(yt|c) = p(yt, c)/p(c)

If we assume that there is no distinction between the prior
distribution p(c), then we have p(yt|c) ∝ p(yt, c).

Based on the Markov assumption, we have:

p(yt, c) = p(y0t )
∏
i

p(yi
t|yi−1

t )
∏
i

p(ci|yi
t)

∝
∏
i

p(yi
t|yi−1

t )
∏
i

p(ci|yi
t)

log p(yt, c) ∝
∑
i

log p(yit|yi−1
t ) +

∑
i

log p(ci|yi
t)

From the above formulation, we can see that such a problem
can be reduced to estimating p(ls|lt), where ls ∈ Ls, lt ∈ Lt

and p(l1t |l2t ), where l1t , l
2
t ∈ Lt. Since the number of labeled
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training data in the target domain is not sufficient, we need
extra knowledge sources to estimate such probabilities.

For example, in [Shen et al., 2006], the authors used Web
pages from Open Directory Project (ODP) as a bridge to es-
timate the probabilities. In [Zheng et al., 2009], the authors
tried to calculate the cosine similarity of two word vectors,
which are composed by the words of the Web search results
when two activity names are used as queries and issued as in-
put. In practice, such algorithms based on words from Web
pages could be extremely slow. Instead of measuring the con-
ditional probabilities directly, we choose to optimize a similar
measurement that intrinsically can be optimized similarly as
p(yt, c, stated below.

We define R(i, j) as the expected loss of assigning j ∈
Lt to yit. Q(l1, l2) as the “information distance” between l1
and l2, which are activity labels from the source and target
domains, respectively. Then R(i, j) is defined recursively as:

R(i, j) = min
k∈Lt

{R(i− 1, k) +Q((ĉ)i, j) +Q(k, j)}

We briefly explain the nature of this recurrence relation. In
order to minimize the loss up to time slice i, we need to first
consider the minimum loss up to time slice i− 1. We need to
enumerate all possible R(i− 1, k), where k ∈ Lt is the label
we assigned to time slice i − 1. Next, we need to minimize
the distance between the original “pseudo-label” ĉi and this
new label j ∈ Lt. Furthermore, Q(k, j) is also considered in
the loss function to minimize the distance between successive
slices yt

i and yt
i−1. It can be seen that the above recurrence

relation could be solved using dynamic programming. In this
paper, we use the Google Similarity Distance [Cilibrasi and
Vitányi, 2007] as Q to approximate the information distance
between two entities.

The definition of Google similarity difference is as follows:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logN −min{log f(x), log f(y)}
where f(x) denotes the number of pages containing x, and
f(x, y) denotes the number of pages containing both x and y,
as reported by Google. N is just a normalized factor that does
not affect whether x is closer to y or z. Therefore, what we
need to know is just a count of the search results. A detailed
explanation of the Google distance is beyond the scope of
this paper and we encourage readers to read [Cilibrasi and
Vitányi, 2007] for technical details.

By using the normalized Google distance, our loss function
becomes:
R(i, j) = min

k∈Lt

{R(i− 1, k) +NGD((ĉ)i, j) +NGD(k, j)}

Algorithm 2 shows our transferring procedure. After these
two steps, we now have the labels yit ∈ Lt for each unla-
beled sensor reading in the target domain, and we can apply
any machine learning algorithms used for activity recogni-
tion such as hidden Markov models (HMM) [Patterson et al.,
2005] or conditional random fields (CRF) [Vail et al., 2007],
to train activity recognition classifiers in the target domain.

4 Experimental Results

In this section, we investigate how our algorithm performs in
several real-world activity recognition domains. Specifically,

Algorithm 2 Projecting target domain sequences with source
domain labels to target domain sequences with target domain
labels
Input: Pseudo-labeled target domain data D′

t = {(xt, ĉ)}
Output: Labeled target domain data: D∗

t = {(xt,yt)}
begin

1: For each pseudo-labeled target domain instance d′t, cal-
culate its minimum loss value R(i, j) based on the re-
currence relation R(i, j) = mink∈Lt

{R(i − 1, k) +
NGD((ĉ)i, j) + NGD(k, j)}, where NGD is the
Google similarity distance metric.

2: Relabel this d′t using the labels in the target domain label
space, thereby creating a new sequence d∗t .

end

we test the recognition accuracy of our algorithm when trans-
ferring across different feature and label spaces.

4.1 Datasets and Evaluation Criteria

In this paper, we use three real-world activity recognition
datasets to validate our algorithm. Our first dataset (UvA in
short) 1 is from [van Kasteren et al., 2008] where a dataset is
recorded in the house of a 26-year-old man, living alone in a
three-room apartment where 14 state-change sensors are in-
stalled. The second dataset we use is the MIT PLIA1 dataset
2 [Intille et al., 2006], which was recorded on March 4, 2005
from 9AM to 1PM in the MIT PlaceLab. The third dataset
is from [Patterson et al., 2005] (Intel in short), which aims to
recognize 12 routine morning activities based on RFID sen-
sors.

4.2 Baseline

To allow a better comparison of our algorithm performance
against state-of-the-art research in activity recognition, we
compared against an unsupervised activity recognition algo-
rithm described in [Wyatt et al., 2005]. Briefly, in [Wyatt et
al., 2005] describes an unsupervised activity recognition al-
gorithm that can infer the activities being performed based on
object names involved in the activities. Notice that, since al-
gorithms described in [Zheng et al., 2009] and [van Kasteren
et al., 2010] have different problem settings compared to our
paper, (the former assumes different label space but same
feature space and the latter assumes the meta-feature space
is constructed manually), we cannot use their algorithms as
baselines for comparison.

4.3 Different Features and Same Labels

In our first experiment, we aim to validate the effectiveness of
our algorithm when transferring knowledge between different
feature spaces. More precisely, in all of the three datasets
we used, we divide the feature space into two. Half of the
sensor readings are used as data in the source domain and the
remaining half are used as data in the target domain. Since
this split of source and target domains are done manually, the
label space is still the same.

1http://staff.science.uva.nl/∼tlmkaste/research/software.php
2http://architecture.mit.edu/house n/data/PlaceLab/PLIA1.htm
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K UvA Acc(Var) Intel Acc(Var)
K = 5 55.8% (5.1%) 52.1% (4.7%)

K = 10 58.2% (4.3%) 53.4% (4.5%)
K = 15 67.3% (4.1%) 55.3% (3.8%)
K = 20 68.2% (4.0%) 57.2% (4.2%)

Unsupervised 47.3%(4.1%) 42.8% (3.8%)

Table 1: Algorithm Performance on UvA and Intel Dataset

Table 1 shows our algorithm performance on the UvA
dataset and Intel dataset. We have repeated the splitting pro-
cess for ten times and both the average accuracy and the vari-
ance are reported. We also report our algorithm performance
by varying the parameter K. Recall that K is the parameter
we use to control our candidate “label set size”. More pre-
cisely, we select both the top-K similar sensor reading distri-
butions and bottom-K dissimilar sensor reading distributions,
as well as the top-K minimum DTW score sensor reading se-
quences, a total of 3K sensor readings in the source domain
and their corresponding labels in the source domain, and put
these labels in the candidate set.

Our result in Table 1 shows that our algorithm could con-
sistently outperform the unsupervised activity recognition ap-
proach. We also observe that that with the increase of K, the
accuracy also increases whereas the variance is also consis-
tently decreasing. This is due to the fact more candidate la-
bels are taken into account and therefore we could expect to
consider more “probable” labels and our assignment of labels
could be more precise. However, when K is larger than 20,
performance starts to converge and also drops slightly. There-
fore, we end by reporting our best result, which is achieved at
K = 20.

89 activities are included in the MIT PLIA1 dataset and a
taxonomy could be built to describe these activities [Intille et
al., 2006]. In MIT PLIA1 dataset, we analyze how the per-
formance will be when we use the activities under the same
category as both the sensor readings in the source domain and
in the target domain. The same splitting process that was ap-
plied to the UvA and the Intel datasets is also applied to the
sensor readings under each category to split the source do-
main and the target domain. The MIT PLIA1 dataset can be
categorized into 9 subcategories, including cleaning indoor,
yardwork, laundry, dishwashing, meal preparation, hygiene,
grooming, personal and leisure. We report the accuracy and
variance our algorithm had achieved in each subcategory in
Table 2.

From Table 2, we can also see that our transfer learning
activity recognition algorithm outperforms the unsupervised
baseline in most cases and achieves comparable performance
with the unsupervised baseline in other subcategories. For
the choice of parameter K, we could see it exhibits a very
different behavior as in Table 1. Generally speaking, the best
performance is usually achieved when K is small. One pos-
sible explanation for this phenomenon is that in MIT PLIA1
dataset, since the dataset size is relatively large, the probabil-
ity distribution estimated is relatively more accurate than the
UvA or the Intel dataset, and therefore it is possible to achieve
a much better performance with a smaller K. However, when

K is larger, more noisy sensor readings are induced.

4.4 Different Features and Labels

In this experiment, we use the full MIT PLIA1 dataset as the
source domain and then try to transfer to both the UvA dataset
and the Intel dataset. We use such a way to validate our algo-
rithm since we believe the direction of “transfer” is especially
important since the size of UvA or Intel dataset will not con-
tain enough knowledge from which we could transfer to the
MIT dataset. Since the dimension of the feature space (num-
ber of sensors) and the dimension of the label space (num-
ber of activities) in MIT PLIA1 dataset are both significantly
larger than those of UvA and Intel datasets, we choose to
transfer from PLIA1 to UvA and Intel.

K MIT → UvA Acc(Var)
K = 5 59.8% (4.2%)

K = 10 57.5% (4.1%)
K = 15 51.0% (4.8%)
K = 20 41.0% (4.1%)

Unsupervised 47.3%(4.1%)

Table 3: Algorithm performance of transferring knowledge
from MIT PLIA1 to UvA dataset

K MIT → Intel Acc(Var)
K = 5 60.5% (4.2%)
K = 10 61.2% (3.8%)

K = 15 53.2% (4.1%)
K = 20 42.0% (2.5%)

Unsupervised 42.8%(3.8%)

Table 4: Algorithm performance of transferring knowledge
from MIT PLIA1 to Intel dataset

The results in Table 3 and 4 have validated that our ap-
proach of transferring knowledge across feature space and la-
bel space is effective.

5 Conclusion and Future Work

In this paper, we have proposed an approach to solve the
activity recognition problem under the transfer learning set-
ting. By comparing our method with many previous solutions
which also attempt to solve the activity recognition problem
under a transfer learning setting, we can see that our method
does not have many of the limitations which have been en-
countered in previous papers. The fundamental assumption
of our paper by transferring the knowledge across different
feature spaces is that although the kinds of sensors we may
encounter are highly different, the distributions may be simi-
lar and we can exploit such knowledge for building a bridge
across domains. Furthermore, when handling the case of dif-
ferent label space across two domains, we can alleviate this
problem to estimating the conditional distribution of two la-
bel spaces and then use Web knowledge as a tool to help esti-
mate such a value. We have validated our approach in several
real-world sensor-based activity recognition tasks and have
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Category K = 5 Acc (Var) K = 10 Acc (Var) K = 15 Acc (Var) K = 20 Acc (Var) Unsupervised Acc (Var)
Cleaning Indoor 68.5%(2.4%) 62.5%(2.9%) 61.8%(2.8%) 64.4%(3.0%) 50.7%(2.6%)

Yardwork 52.3%(2.9%) 69.1%(3.9%) 55.8%(2.8%) 52.7%(2.6%) 51.8%(2.1%)
Laundry 69.3%(3.3%) 60.6%(2.3%) 50.5%(2.9%) 63.6%(2.8%) 56.8%(3.2%)

Dishwashing 51.9%(2.6%) 69.7%(3.6%) 57.8%(3.5%) 66.4%(3.7%) 68.2%(2.9%)
Meal Preparation 53.3%(3.1%) 63.7%(3.0%) 64.4%(2.9%) 60.4%(2.1%) 68.6%(2.9%)

Hygiene 56.3%(2.5%) 62.4%(3.7%) 52.6%(2.9%) 57.9%(2.5%) 54.2%(3.6%)
Grooming 59.6%(3.9%) 65.1%(3.0%) 57.2%(2.7%) 62.0%(2.0%) 69.9%(2.7%)

Personal 68.6%(3.2%) 59.2%(3.4%) 57.8%(2.3%) 53.3%(3.4%) 68.2%(3.1%)
Leisure 59.3%(3.9%) 57.2%(3.2%) 65.3%(2.6%) 61.5%(2.3%) 65.9%(3.2%)

Table 2: Algorithm Performance on MIT PLIA1 Dataset

demonstrated the effectiveness of our algorithm compared to
unsupervised activity recognition methods.

We plan to extend our work in the following directions.
Firstly, we wish to study the detailed constraints under which
our algorithm would work. Stating the correlation between
source domain and target domain as “different but related” is
difficult to judge in reality. Setting an accurate distance met-
ric or constraint would be nicer for end users to judge whether
the two domains can be used for transfer. Secondly, when we
perform the transfer step, we have used ĉ as an approximation
of all possible labeling sequences from the source domain la-
bel space. Different from other machine learning methods
which use modes to approximate integrals or summations, the
approximation ratio of such a method is not satisfactory. In
our future study, we plan to choose a candidate pseudolabel-
ing set, instead of a ĉ alone, to study the effect of transfer.
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