Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Scaling Up Optimal Heuristic Search
in Dec-POMDPs via Incremental Expansion

Matthijs T. J. Spaan Frans A. Oliehoek Christopher Amato
Inst. for Systems and Robotics CSAIL Aptima, Inc.
Instituto Superior Técnico Massachusetts Inst. of Technology =~ Woburn, MA 01801, USA

Lisbon, Portugal
mtjspaan @isr.ist.utl.pt

Abstract

Planning under uncertainty for multiagent systems
can be formalized as a decentralized partially ob-
servable Markov decision process. We advance the
state of the art for optimal solution of this model,
building on the Multiagent A* heuristic search
method. A key insight is that we can avoid the full
expansion of a search node that generates a number
of children that is doubly exponential in the node’s
depth. Instead, we incrementally expand the chil-
dren only when a next child might have the highest
heuristic value. We target a subsequent bottleneck
by introducing a more memory-efficient represen-
tation for our heuristic functions. Proof is given
that the resulting algorithm is correct and experi-
ments demonstrate a significant speedup over the
state of the art, allowing for optimal solutions over
longer horizons for many benchmark problems.

1 Introduction

Planning under uncertainty for multiagent systems is an im-
portant problem in artificial intelligence, as agents may of-
ten possess uncertain information while sharing their envi-
ronment with other agents. Due to stochastic actions and
noisy sensors, agents must reason about many possible out-
comes and the uncertainty surrounding them. In cooperative
systems, finding optimal joint plans is especially challenging
when each agent must choose actions based solely on local
knowledge due to nonexistent or noisy communication. Pos-
sible application domains include multi-robot teams, com-
munication networks, load balancing, and other problems in
which agents need to coordinate under uncertain conditions.
The decentralized partially observable Markov decision
process (Dec-POMDP) is a formal model for such plan-
ning problems. In this paper we consider the optimal so-
lution of Dec-POMDPs over a finite horizon. Unfortu-
nately, optimal solution methods and even bounded approxi-
mations (e-optimal solutions) [Rabinovich et al., 2003] suffer
from doubly-exponential complexity (NEXP-Complete); the
search space for horizon h + 1 is exponentially larger than
the one for horizon h. Even though the high worst-case com-
plexity results preclude optimal methods from being applica-
ble for some larger problems, there are several reasons to be

Cambridge, MA 02139, USA
fao@csail.mit.edu

2027

camato@aptima.com

interested in optimal solutions: 1) As approximate algorithms
come with no guarantees, optimal methods are necessary as a
tool to analyze the performance of approximate algorithms.
2) Most successful approximate algorithms (e.g., [Emery-
Montemerlo er al., 2004; Seuken and Zilberstein, 2007;
Wu et al., 2011]) are based on optimal solution methods, so
algorithmic improvements to the latter are likely to transfer
to the former. 3) Optimal techniques can give insight in the
nature of problems and their solutions. For instance, previous
work on optimal methods generated the insight that certain
properties of the BroadcastChannel problem make it easier to
solve [Oliehoek et al., 2009]. 4) They are of interest for solv-
ing small problems that arise naturally or as part of a decom-
position. Moreover, many problem instances are much easier
to solve than the worst-case complexity suggests [Allen and
Zilberstein, 20071, allowing optimal solutions to be practical.

We provide significant advances to the state of the art in
optimal Dec-POMDP solution methods by extending Multi-
agent A* (MAA¥*) [Szer et al., 2005] —which performs an
A* search through the tree of possible partial joint policies—
and derived methods with a new technique for incremental
expansion of search tree nodes. Expanding a node in this con-
text entails generating all possible children, which is a major
source of intractability since the number of such children is
doubly exponential in the depth of the node. In practice, how-
ever, only a small number of the generated nodes may actu-
ally be queried during the search. Our key insight is that if a
method is able to incrementally generate children in order of
their heuristic value, not all nodes need to expanded at once.

As with any A* method, our approach’s performance de-
pends on the tightness of the heuristic. In many problems
the upper bound provided by the value function of the under-
lying MDP (Qupp) is not tight enough for heuristic search
to be effective [Oliehoek et al., 2008]. Other heuristics are
tighter, such as those based on the underlying POMDP solu-
tion (Qpompp) OF the value function resulting from assuming
1-step-delayed communication (Qgg). However, they require
storing values for all joint action-observation histories or rep-
resenting them as a potentially exponential number of vec-
tors. A crucial insight is that the number of values stored in a
tree-based representation grows exponentially when moving
forward in time, while the size of a vector-based representa-
tion grows in the opposite direction. We exploit this insight
by introducing a hybrid representation that is more compact.

In this work, we integrate the incremental expansion idea
in GMAA* with incremental clustering (GMAA*-IC), an
MAA* extension that uses lossless history clustering for im-
proved scalability [Oliehoek er al., 2009]. The resulting algo-
rithm is called GMAA*-ICE as it provides incremental clus-
tering and expansion. We prove that GMAA*-ICE is correct
and expands search nodes in the same order as the original
method. We show the efficacy of our methods on a suite
of benchmark problems, demonstrating a significant speedup
over the state of the art. In many cases GMAA*-ICE pro-
vides the optimal solution over longer horizons than those
previously solved. In particular, incremental expansion pro-
vides leverage in those problem domains in which history
clustering is less effective.

The remainder of the paper is organized as follows. We
begin in Sec. 2 with background on Dec-POMDPs. Sec. 3
introduces GMAA*-ICE, and in Sec. 4 we prove its correct-
ness. The hybrid representation is introduced in Sec. 5 and
Sec. 6 presents experimental results. Lastly, Sec. 7 presents
conclusions and future work.

2 Background

A decentralized partially observable Markov decision pro-
cess (Dec-POMDP) consists of a set of n agents, a finite set
of states S, aset A = x;.A4; of joint actions a = (aq, ... ,an),
a transition function specifying Pr(s’|s,a), a reward func-
tion R(s,a), a set O = x;0; of joint observations o =
(01,...,0n), an observation function specifying Pr(o|a,s’),
a planning horizon h, and an initial state distribution b°.

The goal of a Dec-POMDP is to find a decentralized de-
terministic joint policy # = (my,...,m,). Each individ-

ual policy m; maps from local observation-histories (OH)
>t 1 t ~t

ot = (o},...,0%) to actions: m;(6) = al. An individual pol-
icy 7; is a sequence of decision rules 7; = (69,6},...,6" 1),
where 6! maps from length-t OHs to actions. We will

also consider action-observation histories (AOHs) 9?
(a9,0},al,....al"0t) . The optimal joint policy 7* max-
imizes the expected cumulative reward. For a more de-
tailed introduction to Dec-POMDPs see, e.g., [Olichoek et
al., 2008; Seuken and Zilberstein, 2008].

We build upon GMAA*-Cluster [Oliehoek er al., 20091,
which in turn is based on MAA* [Szer et al., 2005]. These
methods search over partial, or past, joint policies (! that
specify the joint policy up to stage t: ot = (8°,8",...,6"71),
where §° is the joint decision rule for the i-th stage. For
such a ¢?, we can compute a heuristic value V by comput-
ing VO (t=1)(?), the actual expected reward over the first ¢
stages, and adding a heuristic value H (") for the remain-
ing stages. When the heuristic is admissible (i.e., a guaran-
teed overestimation), it is possible to perform standard A*
search: select the node ¢’ with the highest V(") and ex-
pand it by generating all child nodes @'*! = (! o &%) that
can be formed by appending a joint decision rule §° to .

Alternatively, it is possible to interpret this as enumera-
tion of the joint policies 3 of a collaborative Bayesian game
(CBG) B(") constructed for ¢ [Oliehoek et al., 2008]. In
this perspective, an AOH corresponds to a fype and a decision

2028

rule corresponds to a joint policy 3 for the CBG: 8 = &' with
heuristic value given by

V(B) = _Pr(8'¢" b°)Q(6".5(6")).
Ot

where Pr(6%|¢",b°) is the probability of a joint AOH, called
a joint rype; @(5t,a) is a heuristic payoff function for the
CBG; and ﬁt(ét) = <Bi(6_‘;‘t)>i:1...n denotes the joint action
that results from application of the individual BG-policies to

the individual AOH 6! specified by 6.
The valuation of a child node ¢'™* = (' o B) is given by

V(') = v D(ph) + V(8), ®
where now the expected immediate reward for stage ¢ is rep-

resented within the heuristic V(3). When Q faithfully rep-
resents the expected immediate reward, this reformulation is
exactly equal to regular MA A* [Olichoek et al., 2008].

The redefinition of MAA* to work on CBGs is exploited
by GMAA*-Cluster by clustering individual types in a CBG
in such a way that the solution of the clustered CBG corre-
sponds to a solution of the original CBG. This can result in
great computational savings, since the number of 3 is expo-
nential in the number of types. To avoid having to cluster an
exponential number of types (corresponding to the number
of OHs) for each CBG, GMAA*-IC performs incremental
clustering by bootstrapping from the clustered CBG for the
previous stage.

A remaining source of complexity in these methods is the
full expansion of search nodes; when no clustering is possi-
ble, the number of 8" (used to form the children of a node
at depth ¢ in the search tree) is doubly exponential in ¢. In an
attempt to counter this problem, for the last stage MAA* gen-
erates the child nodes one by one until a node is found with
value equal to its parent’s heuristic value. If this happens, no
other siblings will have to be generated. Unfortunately, this
method does not provide much leverage in practice, since it is
unlikely that a child node will have the same heuristic value
as its parent and, even if one does, there is no effective way
to find such a child [Seuken and Zilberstein, 2008]. There-
fore Seuken and Zilberstein [2008] argue that MAA* “can
at best solve problems whose horizon is only 1 greater than
those that can already be solved by naive brute force search.”

In this paper, we address these problems. That is, we pro-
vide efficient incremental expansion through a method that is
able to select the highest ranked child at all stages. Moreover,
we combine this approach with clustering of histories.

1)

3 Incremental Expansion

Recently, new methods for solving CBGs have been devel-
oped [Kumar and Zilberstein, 2010; Olichoek ef al., 2010]
that can provide speedups of multiple orders of magni-
tude over brute force search (enumeration). Unfortunately,
MAA¥* has not been able to profit from these methods: in or-
der to guarantee optimality, it relies on expansion of all (child
nodes corresponding to all) joint BG-policies 3 for the inter-
mediate stages.! However, many of the expanded child nodes

"For the last stage, clearly it is possible to only generate the best
child node of @™~ by appending the optimal solution of the CBG.

(¢",0) nodes
in open list

t+2

t+1

t
Root node

Legend:

Next sqlution of
B(a),V=5.5

Figure 1: Illustration of incremental expansion, which shows
the evolution of the open list (! are indexed by letters).

may never be selected for further expansion. The key obser-
vation is the following:

Observation 1. If we have a way to generate the children in
increasing heuristic order and that heuristic is admissible, we
do not have to expand all the children.

We discuss this in more detail below, starting with a for-
malization of the relative heuristic values of two child nodes.

Lemma 1. Given two joint BG policies 3,3 for a CBG
Bt(ph), if V(B) > V(B'), then for the corresponding child

~

nodes V(ptt1) > V(ptt1),
Proof. This holds directly by the definition of V(got)
V(™) = vo-t=D(ph) + V(B)
> VO (o) + V(8) = V(e*Y),
as given by (2). O

It follows directly that, if for B(¢?) we use a CBG solver
that can generate a sequence of policies 3, 3, . .. such that

Vi) =V(B)>...

then, for the sequence of corresponding children

V(e > V(e > ...

Exploiting this knowledge, we can expand only the first
child "1, compute its V(**1) and set the value of the
parent node to q.0 < V (e'*1), since we know that all the

-~

unexpanded siblings will have V' lower or equal to that. As
such, we can reinsert ¢ into P to act as a placeholder for all its
non-expanded children. To ensure that children are expanded

2029

before their parents, we break ties in a consistent manner,
ranking children nodes higher in case of equal value. Fig. 1
illustrates incremental expansion.

We integrate incremental expansion in GMAA*-IC re-
sulting in GMAA* with incremental clustering and expan-
sion (GMAA*-ICE). It performs an A* search over nodes
q = (pt, 9, PH), where PH is a boolean indicating whether
the node is a placeholder. At every iteration, the heuristically
highest ranked ¢ is selected from an open list P and expanded.
When a new best full joint policy is found, the lower bound
v&MAA s updated. Each time a new CBG is constructed, it
is built by extending the CBG for the parent node and then
applying lossless clustering. However, rather than expanding
all children, GM A A*-ICE requests only the next solution 3
of an incremental CBG solver, which is then used to construct
a single child ' = (¢! 0 B).

For the incremental CBG solver, we use the BAGABAB
algorithm [Oliehoek et al., 2010], which performs a second
(nested) A* search, but now over (partially specified) CBG
policies.? The solver for ¢ is initialized with lower bound

VCBG — XGI\/IAA _ VO...(tfl) ((pt)7 (3)
and, in case of the last stage ¢ = h — 1, upperbound
VCBG _ ‘7((‘0}1—1) _ VO"'(h_2)(QOh_1). (4)

This can be used to stop expanding when we find a lower
bound equal to the upper bound v*B¢ = V(3), as in the
original A*. Note that each time when asking BAGABAB
for a next solution, v¢BC is reset by re-evaluating (3), be-
cause v¥MA4 may have changed since the last solution was
delivered. Then it continues searching by selecting the heuris-
tically best-ranked node from its own internal open list.

Additional details can be found in an expanded version of
this paper [Spaan er al., 2011].

4 Theoretical Guarantees

We shall now prove some properties of GMAA*-ICE. We
say that two search algorithms are search-equivalent if they
select exactly the same set of nodes to expand in the search
tree. We will show that the IC and ICE variants are search-
equivalent. To do so, we will talk about equivalence of the
open lists maintained. The open list P maintained by IC only
contains non-expanded nodes g. That of ICE, PE, contains
both non-expanded nodes ¢ and placeholders (previously ex-
panded nodes), g. We use Q and @) to denote the respective
(ordered) subsets of P, We think of these open lists as or-
dered sets of heuristic values and their associated nodes.

Definition 1. P and P are equivalent, P = PE vwhen:

1. QCP
2. The q’s have the same ordering: P.remove(P \ Q) = Q.

(A.remove(B) removes the elements of B from A with-
out changing A’s ordering.)

*In principle, GMA A *-ICE can use any CBG solver that is able
to incrementally deliver all 3 in descending order of V' (3).

3. Nodes not present in P instead have a placeholder,
Vg = (¢Ligfalse) € (P\ Q) : 3G =
(@', 0g,true) € Q such that: is the parent of q
(p' = (p'™' 0 B)), and q is ranked higher: v > ¥g.

4. There are no other placeholders.

Let us write IT-IC(P) and IT-ICE(P®) for one iteration of

the respective algorithms. Let IT-ICE* denote the operation
that repeats IT-ICE as long as a placeholder g was selected.

Lemma 2. If P = P, then executing IT-IC(P) and IT-
ICE*(P'E) will lead to new open lists that again are equiv-
alent: P' = P'F'.

Proof. When IT-ICE* selects a placeholder g, it will gen-
erate child ¢’ that was already present in P (due to prop-
erty 3 and 4 of def. 1) and insert it at the proper location,
thereby preserving properties 1 and 2. If there are remain-
ing unexpanded children of ¢, IT-ICE* will reinsert ¢ with
an updated heuristic value G.0 < ¢’.9 which is guaranteed
to upper bound the value of unexpanded siblings ¢ since
¢ =V(gp)>V(q".¢) = ¢ (preserving properties 3
and 4).

When IT-ICE* finally selects a non-placeholder ¢, it is
guaranteed to be the same ¢ as selected by IT-IC (due to
property 1 and 2). Expansion in ICE will generate 1 child ¢/
(again, inserted at the same relative location as in IC) and in-
sert placeholder ¢ = (g.¢p, ¢'.0, true) for the other siblings ¢
(again preserving properties 3 and 4). O

Theorem 1. GMAA*-ICE and GMAA*-IC are search-

equivalent.

Proof. This follows directly from the proof of Lemma 2:
Both algorithms initialize with the same (equivalent) open
list and therefore maintain equivalent open lists through-
out search. At each point IT-ICE(PE) will either select a
qd = {g, 0, true)—then IC also expanded a node for p—or
a q. In the last case, because of property 2 of def. 1 we know
that the same ¢ is selected by IT-IC(P).]

Note that Theorem 1 does not mean that the runtime and
space requirements of GMAA*-ICE and GMAA*-IC are
identical: for each expansion, GMAA *-ICE will only gener-
ate one ¢ to be stored on the open list versus a number of chil-
dren that is, in the worst case, doubly exponential in the depth
of the selected node.® On the other hand, GMAA*-ICE may
select a placeholder for further expansion.

We say that a search algorithm is complete if it searches
until it finds an optimal solution.

Corollary 1. When using a heuristic of the form

Q(0'a) = E[R(sa) | 0] + E[V(6") | 6%.a], (5)
where V(6'1) > Q- (871, w*(8'11)) is an overestima-
tion of the value of an optimal joint policy w*, GMAA*-ICE
is complete.

Proof. Under the stated conditions, GMAA*-IC is complete
[Oliehoek et al., 2008; 2009]. Since GMAA*-ICE is search-
equivalent to GMAA*-1C, it is also complete. O

3 When a problem allows clustering, the number of child nodes
grows less dramatically.

Memory required

LI

3 4 5 6 1234567829
Horizon Horizon
(b) FireFighting. (c) Hotel 1.

Figure 2: Hybrid heuristic representations. (a) Comparison of
different representations. (b), (c) The number of real numbers
stored for different representations of Qgg.

S Heuristic Representation

Previous research indicated that the upper bound provided
by Qumpp is often too loose for effective heuristic search
[Oliehoek er al., 2008]. However, for tighter heuristics such
as Qpompp Or Qg the space needed to store these heuris-
tics grows exponentially with the horizon. There are two ap-
proaches to computing Qpoppp OF Qpg- The first approach
constructs a tree of all joint AOHs and their heuristic values,
which is simple to implement, but requires storing a value

for each (5t, a)-pair (and their number grows exponentially
with ¢, illustrated in Fig. 2(a)(left)). The second approach
maintains a vector-based representation as is common for
POMDPs (Fig. 2(a)(middle)). It also has exponential space
complexity; even though pruning will provide leverage, in the
worst case the number of maintained vectors grows exponen-
tially with h — ¢, the number of stages-to-go.

In practice, we found that these space requirements become
a bottleneck. To mitigate this problem we introduce a hybrid
representation, as illustrated in Fig. 2(a)(right). The insight is
that the exponential growth of the discussed representations is
in opposite directions. Therefore, we can use the low-space-
complexity side of both representations: the later stages use a
vector-based representation (and later stages have fewer vec-
tors), while the earlier stages use a history-based represen-
tation (and earlier stages have fewer histories). It is easy to
compute a minimally-sized representation.

Figs. 2(b)-(c) illustrate the memory requirements for the
“Tree”, the “Vector”, and the “Hybrid” representation for
Qgpg, wWhere missing “Vector” bars indicates those represen-
tations grew beyond limits. The vector-based Qpg represen-
tation is computed using a variation of Incremental Pruning.
The pruning performance depends on the problem and the
complexity of the value function, which can increase sud-
denly, as for instance happens in Fig. 2(c). We see that the
hybrid representation allows for very significant savings, al-
lowing us to compute tight heuristics for longer horizons.

2030

[A] V'] Tic)| Tices)] [] V'] Tics)| Tice®)] [R] V'] Tic(s) | Tice(®) |
Dec-Tiger Hotel 1 Cooperative Box Pushing
2| —4.000000 | <0.01 <0.01 2 10.000000 <0.01 <0.01 2 17.600000 | <0.01| <o0.01
3 5.190812 | < 0.01 <0.01 3 16.875000 <0.01 <0.01 3 66.081000 | §10.11| 1 <0.01
4 4.802755 §0.27 <0.01 4 22.187500 | § 1 < 0.01 | § 1 <0.01 4 98.593613 * | §313.07
5 7.026451 | {21.03 §10.02 5| 27.187500 <0.01 <0.01 5 # #
6| 10.381625 — 46.43 6| 32.187500 <0.01 <0.01 BroadcastChannel
7 — * 7| 37.187500 <0.01 <0.01 7 6.590000 | 1 < 0.01 | 1 <0.01
FireFighting (n, = 3,ny = 3) 8| 42.187500 <0.01 <0.01 10 9.290000 | <0.01| <0.01
2| —4.383496 | <0.01 <0.01 9| 47.187500 0.02 <0.01 20 18.313228 | <0.01| <o0.01
3| —5.736969 §0.11 0.10 | | 10 # # 25 22.881523 | <0.01| <0.01
4| —6.578834 | 1 950.51 1.00 Recycling Robots 30| 27421850 | <0.01| <0.01
5| —7.069874 — 1 4.40 5 16.486000 | 1<0.01| 1<0.01 50| 45.501604 | <0.01| <0.01
6| —7.175591 0.08 0.07| | 15 47.248521 | §<0.01 <0.01 53| 48.226420 | §<0.01 | § <0.01
7 # #||18| 56.479290 <0.01] §<0.01 100 | 90.760423 | <0.01| <0.01
GridSmall 20| 62.633136 <0.01 <0.01 250 | 226.500545 0.06 0.07
2 0.910000 | < 0.01 <0.01]|30]| 93.402367 0.08 0.05 500 | 452.738119 0.81 0.94
3 1.550444 §0.10 <0.01||40]|124.171598 0.42 0.25 600 | 543.228071 11.63 13.84
4 2.241577 +1.771§1<0.01| |50] 154.940828 2.02 1.27 700 | 633.724279 0.52 0.63
5| 2.970496 — 0.02 | | 60 | 185.710059 9.70 6.00 800 — —
6| 3.717168 — 0.04 | | 70 | 216.479290 — 28.66 900 | 814.709393 9.57 11.11
7 # #1180 — — 1000 — —

Table 1: Experimental results comparing the computation times of GMAA*-IC (IT7¢) and GMAA*-ICE (T1¢cE), using the

hybrid Qg representation. Bold entries highlight results for which no previous solution was known in literature. Legend: “—

2

are memory limit violations; “x” time limit overruns; “#” memory or time overruns computing the heuristic; § indicates the
maximum planning horizon when using the Qypp heuristic; and 1 shows the highest i using a tree-based Qg representation.

6 Experiments

We performed an empirical evaluation of GMAA*-ICE by
comparing to GMAA*-IC, which is currently (one of) the
fastest optimal solvers for finite-horizon Dec-POMDPs.* We
tested on a suite of benchmark problems from the literature
[Oliehoek et al., 2009], using discount factor v = 1.0.> We
used Qpg with a hybrid representation, and GMAA*-ICE
uses BAGABAB [Oliehoek et al., 2010] (with joint types or-
dered according to increasing probability). Experiments were
run on an Intel iCore5 CPU running Linux, and we limited
each search process to 2Gb of RAM and a maximum compu-
tation time of 3,600s. Reported CPU-times are averaged over
10 independent runs and have a resolution of 0.01s. They
concern only the MAA* search process, since computation
of the heuristic can be amortized over multiple runs.®

The main results are listed in Table 1. It clearly shows
that incremental expansion combined with the hybrid repre-
sentation allows for significant improvements over the state
of the art: for the vast majority of problems tested we pro-
vide results for longer horizons than any previously known
(the bold entries). Thus, incorporating the hybrid representa-
tion into GMAA*-IC greatly increases its scalability, while
adding the incremental expansion of GMAA*-ICE results
in even more performance improvements. When comparing
against GMAA*-IC, for Dec-Tiger we see that for h = 5

*The method by Amato er al. [2009] effectively focuses on state
space reachability in problem structure.

SAll problem definitions are available at http://www.isr.
ist.utl.pt/ mtjspaan/decpomdp.

®The heuristics’ computation time ranges from less than a second
to many hours (for high A in some difficult problems).

2031

GMAA*-ICE achieves a speedup of 3 orders of magnitude,

and it is also able to compute a solution for h = 6, un-
like GMAA*-IC. For GridSmall we see a large speedup
for h = 4 and very fast solutions for h = 5,6, where

GMAA*-IC runs out of memory. Similar positive results
are obtained for Cooperative Box Pushing and FireFighting.
An interesting counter-intuitive behavior can be observed for
FireFighting, h = 6, which could be solved much faster than
h = 5. Analysis reveals that the CBG instances encountered
during the A = 6 search happen to cluster much better than
the CBGs in the h = 5 search, which is possible because the
heuristics vary with the horizon. Also, for BroadcastChannel
we can see that the search is not necessarily monotonic in h.

Due to the hybrid representation we can compute Qgg
heuristics for all these problems and horizons, and as a con-
sequence our results, also for GMAA*-IC, are much better.
The § entries show the limits of running GMAA*-IC and
GMAA*-ICE using Qypp instead of Qpg: in most of these
problems we can reach longer horizons with Qgg. Further-
more, the T entries indicate the horizon to which we can solve
a problem with a tree-based Qg representation.

The efficacy of a hybrid representation can be clearly
seen for problems like GridSmall, Cooperative Box Pushing,
FireFighting and Hotel 1 (for the latter two see Fig. 2(b)
resp. 2(c)), where neither the tree nor the vector represen-
tation is able to provide a compact Qgg heuristic for longer
horizons. Apart from FireFighting, for these problems com-
puting and storing Qg (or another tight heuristic) for longer
horizons becomes the bottleneck for scaling further.

As a final note regarding Table 1, we see that only on the
BroadcastChannel problem GMAA*-IC is (slightly) faster
than GMAA*-ICE. Because this problem exhibits clustering

=10

a

S

@ . ¢ Dec—Tiger, h=6 — Full Exp.

810 -&-Dec-Tiger, h=6 - Inc. Exp.

s -x--GridSmall, h=6 — Full Exp.
-&GridSmall, h=6 - Inc. Exp.
- FireFighting, h=5 — Full Exp.

1 {)FireFighting, h=5 — Inc. Exp.

Figure 3: Number of expanded partial joint policies ! for
intermediate stagest = 0,...,h — 2.

to a single joint type [Oliehoek et al., 2009], the overhead of
incremental expansion does not pay off (cf. footnote 3).

Summarizing our main results, we can conclude that 1)
GMAA*-ICE outperforms GMAA*-IC leading to solu-
tions of longer horizons in many problems, 2) both methods
benefit from the improved heuristic representation, 3) in sev-
eral problems computation and representation of the heuristic
is the bottleneck that prevents from scaling further. The last
point implies that our method may scale even further when
the computation of the heuristic is further improved.

Finally, we have also investigated the impact of incremen-
tal expansion in terms of the number of nodes that are actu-
ally expanded for intermediate stages t = 0, ... ,h — 2. Fig. 3
shows the number of nodes expanded in GMAA*-ICE and
the number that would be expanded for GMAA*-IC (which
can be easily computed as they are search-equivalent). The
plots confirm our initial hypothesis that in practice only a
small number of child nodes are being queried.

7 Conclusions & Future work

Decentralized POMDPs offer a rich model for multiagent
coordination under uncertainty. Optimal solution methods
for Dec-POMDPs are of great interest; they are of practi-
cal value for smaller or decomposable problems and lie at
the basis for most successful approximate methods [Emery-
Montemerlo et al., 2004; Seuken and Zilberstein, 2007;
Wu et al.,, 2011]. In this paper, we advance the state of
the art by introducing an effective method for incremental
expansion of nodes in the search tree. We proved that the
resulting algorithm, GMAA*-ICE, is search-equivalent to
GMAA*-IC and therefore complete. A new bottleneck, the
amount of space needed for representation of the heuristic,
was addressed by introducing a representation that is a hy-
brid between tree-based and vector-based representations.

We demonstrated our approach experimentally with and
without incremental expansion, showing that its effect is com-
plementary to clustering of histories. With just the new
heuristic representation, optimal plans could be found for
larger horizons than any known previous work for four bench-
marks. In one case, horizons that are over an order of mag-
nitude larger could be reached. By exploiting incremental
expansion, GMAA*-ICE achieves further improvements in
scalability. The combination of the hybrid representation and
incremental expansion provides a powerful method for opti-
mally solving Dec-POMDP over longer horizons.

Some possible extensions of this work are the following.
First, we may consider improving the current CBG solver

2032

or try to adapt other CBG solvers, e.g., [Kumar and Zilber-
stein, 2010]. Second, incremental solvers for graphical CBGs
may allow for further scaling of optimal solutions of Dec-
POMDPs with multiple agents. Finally, future work should
further consider improved heuristics and methods of compu-
tation, which can allow GMAA*-ICE to scale even further.

Acknowledgments

We would like to thank Anthony Cassandra for his pomdp-solve
code (used for vector pruning), and the reviewers for their insight-
ful suggestions. This work was funded in part by Fundagdo para
a Ciéncia e a Tecnologia (ISR/IST pluriannual funding) through the
PIDDAC Program funds and was supported by projects PTDC/EEA-
ACR/73266/2006 and CMU-PT/SIA/0023/2009 (the latter under the
Carnegie Mellon-Portugal Program). Research supported in part by
AFOSR MURI project #FA9550-09-1-0538.

References

[Allen and Zilberstein, 2007] M. Allen and S. Zilberstein. Agent
influence as a predictor of difficulty for decentralized problem-
solving. In AAAI 2007.

[Amato er al., 2009] C. Amato, J. Dibangoye, and S. Zilberstein.
Incremental policy generation for finite-horizon DEC-POMDPs.
In ICAPS, 2009.

[Emery-Montemerlo et al., 2004] R. Emery-Montemerlo, G. Gor-
don, J. Schneider, and S. Thrun. Approximate solutions for par-
tially observable stochastic games with common payoffs. In AA-
MAS, 2004.

[Kumar and Zilberstein, 2010] A. Kumar and S. Zilberstein. Point-
based backup for decentralized POMDPs: Complexity and new
algorithms. In AAMAS, 2010.

[Oliehoek et al., 2008] F. A. Oliehoek, M. T. J. Spaan, and N. Vlas-
sis. Optimal and approximate Q-value functions for decentralized
POMDPs. JAIR, 32:289-353, 2008.

[Oliehoek et al., 2009] F. A. Olichoek, S. Whiteson, and M. T. J.
Spaan. Lossless clustering of histories in decentralized POMDPs.
In AAMAS, 2009.

[Oliehoek et al., 2010] F. A. Oliehoek, M. T. J. Spaan, J. Diban-
goye, and C. Amato. Heuristic search for identical payoff Bayes-
ian games. In AAMAS, 2010.

[Rabinovich et al., 2003] Z. Rabinovich, C. V. Goldman, and J. S.
Rosenschein. The complexity of multiagent systems: the price of
silence. In AAMAS, 2003.

[Seuken and Zilberstein, 2007] S. Seuken and S. Zilberstein.
Memory-bounded dynamic programming for DEC-POMDPs. In
IJCAI, 2007.

[Seuken and Zilberstein, 2008] S. Seuken and S. Zilberstein. For-
mal models and algorithms for decentralized decision making un-
der uncertainty. JAAMAS, 17(2):190-250, 2008.

[Spaan ef al., 2011] Matthijs T. J. Spaan, Frans A. Oliehoek, and
Christopher Amato. Scaling up optimal heuristic search in Dec-
POMDPs via incremental expansion. In Multi-agent Sequential
Decision Making in Uncertain Domains, 2011. Workshop at AA-
MASII.

[Szer et al., 2005] D. Szer, F. Charpillet, and S. Zilberstein. MAA*:
A heuristic search algorithm for solving decentralized POMDPs.
In UAI, 2005.

[Wu et al.,2011] E Wu, S. Zilberstein, and X. Chen. Online plan-
ning for multi-agent systems with bounded communication. Ar-
tificial Intelligence, 175(2):487-511, 2011.

