
Inference with Multinomial Data:
Why to Weaken the Prior Strength

Cassio P. de Campos and Alessio Benavoli

Dalle Molle Institute for Artificial Intelligence

Manno-Lugano, Switzerland

{cassio,alessio}@idsia.ch

Abstract

This paper considers inference from multinomial
data and addresses the problem of choosing the
strength of the Dirichlet prior under a mean-
squared error criterion. We compare the Maxi-
mum Likelihood Estimator (MLE) and the most
commonly used Bayesian estimators obtained by
assuming a prior Dirichlet distribution with “non-
informative” prior parameters, that is, the parame-
ters of the Dirichlet are equal and altogether sum
up to the so called strength of the prior. Under
this criterion, MLE becomes more preferable than
the Bayesian estimators at the increase of the num-
ber of categories k of the multinomial, because
non-informative Bayesian estimators induce a re-
gion where they are dominant that quickly shrinks
with the increase of k. This can be avoided if the
strength of the prior is not kept constant but de-
creased with the number of categories. We argue
that the strength should decrease at least k times
faster than usual estimators do.

1 Introduction

In this paper we consider the problem of inference from
multinomial data with chances θ = [θ1, . . . , θk]

′. We com-
pare the Maximum Likelihood Estimator (MLE) and the most
commonly used Bayesian estimators obtained by assuming a
prior Dirichlet distribution with “non-informative” prior pa-
rameters such as Laplace, Perks, Jeffreys, and Haldane. In-
ference in a multinomial-Dirichlet model is a recurrent prob-
lem in Artificial Intelligence and Statistics. For instance, it
appears in parameter learning of probabilistic graphical mod-
els (such as Bayesian networks and some variations) [Koller
and Friedman, 2009, Ch. 17], in smoothing methods in infor-
mation retrieval [Zhai and Lafferty, 2001] and topic models
[Mimno and McCallum, 2008], in Bayesian reliability analy-
sis [Somerville et al., 1997], etc.

Consider c1, . . . , ck categories and θj the chance of cj to
be observed, for j = 1, . . . , k. Inference about the vector
of k parameters θ = [θ1, . . . , θk]

′ ∈ Sθ is desired, where
Sθ = {θj : 0 ≤ θj ≤ 1 for all j and θ

′
1 = 1} (1 denotes a

row of 1s, i.e., 1 = [1, 1, . . . , 1]′ ∈ R
k). The observed data

consists in a vector of counts n = [n1, n2, . . . , nk]
′, where nj

is the number of times in which the j-th category is observed
and N = n

′
1 is the total number of observations.

The goal is thus to estimate the parameter vector θ

based on the vector of observations n. Assuming that
the probability of observing n, conditionally on θ, can
be represented as a multinomial distribution: P (θ,n) =

N !/(n1!n2! · · ·nk!)
k∏

j=1

θ
nj

j , a point estimate of θ can then

be obtained by computing the Maximum Likelihood Esti-
mator (MLE), i.e., by maximizing the likelihood P (θ,n)
w.r.t. θ subject to the constraint θ

′
1 = 1, which gives:

θ̂MLE = n/N .
An alternative way is to follow a Bayesian approach. The

multinomial is a member of the exponential family and its
natural conjugate prior is the Dirichlet distribution. Hence,
assuming a Dirichlet prior over θ and applying Bayes’ rule
to the multinomial-Dirichlet conjugate model, the following
posterior density function is obtained:

p(θ|n) ∝ L(θ,n)D(α, θ) ∝
k∏

j=1

θ
nj+αj−1
j , (1)

where D(α, θ) ∝
k∏

j=1

θ
αj−1
j is the Dirichlet prior with pa-

rameters α = [α1, . . . , αk]
′ and αj > 0 for j = 1, . . . , k.

In the following we introduce the notation used in this paper.

We assume αj = stj and s =
∑k

j=1 αj , with 0 < t < 1,

t
′
1 = 1, t = [t1, t2, . . . , tk]

′. Notice that s is the strength
of the prior information (equivalent sample size or number of
pseudo-counts) and tj is the prior mean. The posterior expec-
tation of θ given n is then given by:

θ̂ =
n+α

N +
∑k

j=1 αj

=
n+ st

N + s
, (2)

which gives a point estimate of θ.
The parameters s and t represent the a-priori informa-

tion. In case no prior information is available, the common
approach is to select these parameters to represent a non-
informative prior. The most used non-informative priors se-
lect tj = 1/k for j = 1, 2, . . . , k but differ in the choice of
the value of s. Bayes and Laplace suggest to use a uniform
prior s = k, Perks suggests s = 1, Jeffreys suggests s = k/2,
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and Haldane suggests s = 0. Nevertheless, the analysis we
conduct is general and applies to other choices of s too.

To compare the goodness of different point estimates, a
measure of estimation performance must be defined. A popu-
lar measure of performance is the matrix mean-squared error
(MSE), which is defined as

En[(θ̂ − θ)(θ̂ − θ)′] = (En[θ̂]− θ)(En[θ̂]− θ)′

+ (θ̂ − En[θ̂])(θ̂ − En[θ̂])
′, (3)

where the first term of the summation is the “squared-bias”
of the estimator and the second term is its variance matrix.1

Here the unknown parameter vector θ is assumed to be deter-
ministic and, thus, the expectation is only over the data.

In the problem of inference from multinomial data, it

is well known that the estimate θ̂MLE is unbiased, which
means that En[θ̂] = θ; and achieves the Cramer-Rao Lower

Bound (CRLB) for unbiased estimators, i.e. En[(θ̂MLE −
θ)(θ̂MLE − θ)′] = ΣMLE , where ΣMLE is the inverse of
the Fisher information matrix. These facts do not imply that
MLE always provides a small MSE, especially for small data
samples. In fact, since “MSE=variance + squared bias” and
trading-off bias for variance, it is possible to design estima-
tors that yield a lower MSE than the CRLB for unbiased esti-
mators [Ghosh et al., 1983; Stein, 1956].

Since the MSE depends on the unknown θ, it is not obvious
how to compare estimators in terms of MSE. However some
estimators may be uniformly better than others in terms of
MSE, in other words, they can be better for all possible values

of θ. For this purpose, we say that an estimator θ̂ dominates

another estimator θ̂0 on a convex set Θ if its MSE is never
greater than that of θ̂0 for all values of θ in Θ, and is strictly
smaller for some θ in Θ. An estimator is Θ-admissible if it
is not dominated by any other estimator on Θ [Berger, 1985].
Hence, it is reasonable to prefer admissible estimators. In the
problem of inference from multinomial data, it can be shown
that the MLE is admissible w.r.t. the MSE criterion ifΘ = Sθ

[Johnson, 1971]. However, MLE might not be admissible on
Θ ⊂ Sθ , because estimators that dominate MLE may exist if
a proper subregion of the parameter space is considered.

If one assumes the estimator θ̂ = (n + st)/(N + s), ob-
tained by a prior Dirichlet distribution with parameters s and
t for θ, then the values of s and t can be designed in order to
dominate MLE on Θ. The answer to this question is partially
given in [Benavoli and de Campos, 2009], where the authors
determine a closed-form solution for the dominance. This
solution is employed there with two aims. First, for the bino-
mial case, the authors analyze the performance of Bayesian
estimators with t = 1/2 and different choices of s corre-
sponding to the most used non-informative priors. In partic-
ular, they determine the region Θ (an interval in the bino-
mial case) where these estimators dominates MLE. Second,
assuming that Θ is given as prior information, they derive
an ad-hoc criterion to choose an “optimal” value for s and t

1The MSE defined in Eq. (3) is a matrix and not a scalar. In the
literature, sometimes the MSE is defined as the trace of the matrix
in Eq. (3), however in this paper we adopt the matrix definition. The
motivation for this choice will be clarified in Section 2.

which guarantees the dominance. In this paper, we generalize
the analysis to the multinomial case, where we show that the
coverage of the set Θ (that is, the ratio between volume of Θ
and the volume of the whole space Sθ) on which the Bayesian
estimator of Eq. (2) dominates MLE decreases at the increas-
ing of the number of categories k. This means that, if s is
kept constant, then the region where MLE is preferable to the
estimator of Eq. (2) becomes larger with the increasing of
k, and soon the MLE becomes the only admissable estimator
for any practical scenario. However, this can be avoided if
the strength s of prior is not kept constant but decreased with
k. As it will be clear by the analysis, we argue that s should
decrease at a rate proportional to k, or in other words, each
Dirichlet parameter αj should be further corrected by divid-
ing it to k. This corrected version of the Bayesian estimator
tends quickly to MLE as k increases, having almost no prac-
tical difference already for somewhat small values of k (15
or so), but are still preferable to MLE as they avoid problems
with zero counts.

Before proceeding, we point out that the analysis per-
formed here assumes that no additional information is avail-
able to select the prior. It is obvious that better priors can
be chosen if a-priori information, for example from domain
knowledge or other data source, is available. For instance,
this is mostly the case in language processing [Zhai and Laf-
ferty, 2001]. Nevertheless, the argument that prior strength
should be reduced with the increase of k might still have to
be taken into account, however centering the analysis on the
informative prior.

2 MLE-dominating priors

In this section we summarize the results from [Benavoli and
de Campos, 2009] that are used in the rest of this paper. Con-
sider an estimator with structure as in Eq. (2). The goal is to
choose the free parameters s and t so as to guarantee that:2

En[(θ− θ̂)(θ− θ̂)′] ≤ En[(θ− θ̂MLE)(θ− θ̂MLE)
′], (4)

for each vector θ in a convex set Θ. The right-hand side of
Ineq. (4) is denoted by ΣMLE = (σij), which represents
the covariance matrix of the MLE whose elements are σii =
θi(1 − θi)/N and σij = −θiθj/N , for i, j = 1, 2, . . . , k
and i �= j. The matrix domination considered in Ineq. (4)
guarantees a MSE reduction for all the components of the
parameter vector θ to be estimated and, thus, is stronger than
a trace domination that would only guarantee an improvement
for the sum of the MSEs of such components. This is the
motivation behind the choice of the matrix MSE instead of
the trace MSE that we have followed in this paper.

Manipulating En[(θ − θ̂)(θ − θ̂)′], it can be shown that:

En[(θ − θ̂)(θ − θ̂)′] =
s2

(N + s)2
(θ − t)(θ − t)′

+
N2

(N + s)2
ΣMLE,

(5)

2Notice that Ineq. (4) is a matrix inequality. For two matrices
A,B of compatible dimensions, the inequality A ≤ B means that
B − A is nonnegative definite.
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and Ineq. (4) becomes

(θ − t)(θ − t)′ ≤ (2s + 1
N )NΣMLE . (6)

The above inequality is satisfied if and only if

k∑
i=1

(θi − ti)
2

θi
≤ (2s + 1

N ) (7)

holds for each θ ∈ Θ. Hence, an estimator θ̂ has MSE lower
than that of MLE for all θ ∈ Θ if s and t are chosen ac-
cording to Ineq. (7). If Θ is a convex polytope of vertices
θ
v1 , θv2 , . . . ,θvm , i.e. Θ = Ch{θv1 , θv2 , . . . ,θvm} (Ch{·}

stands for convex hull), then Ineq. (7) can be further simpli-
fied. In fact, in this case, a necessary and sufficient condition
for Ineq. (7) to be satisfied for each θ ∈ Θ is to hold on the
vertices of the polytope Θ. The MLE-dominance is guaran-
teed if s and t are chosen such that:

k∑
i=1

(θ
vj
i − ti)

2

θ
vj
i

≤ (2s + 1
N ), for j = 1, 2, . . . ,m, (8)

where θ
vj
i denotes the i-th component of the j-th vertex. The

above m-inequalities define all the values of s and t which
guarantee the MLE-dominance. Using Ineq. (8), the binomial
case can be analyzed by taking a Bayesian estimators with
t = 1/2 and different choices of s. In particular, the set Θ
becomes an interval [ε, 1− ε] and Ineq. (8) is satisfied if

0.5

⎛
⎜⎝1−

√√√√1− 1

1 +
2

s
+

1

N

⎞
⎟⎠ ≤ ε < 0.5. (9)

Hence, the values of the true θ1 (notice that θ2 = 1− θ1) for
which the MLE-dominance condition is satisfied when N →
∞ are: Haldane (s = 0) needs 0 ≤ θ1 ≤ 1; Jeffreys (s =
0.5) needs 0.05 ≤ θ1 ≤ 0.95; Perks (s = 1) needs 0.1 ≤
θ1 ≤ 0.9; Bayes/Laplace (s = 2) needs 0.15 ≤ θ1 ≤ 0.85;
For instance, if s = 6 the Bayesian estimator has a lower
MSE than MLE if the true θ is in [0, 25, 0.75], and thus it is
preferable in half of the parameter space. Assuming N →
∞ leads to two properties: (i) the choice of s (if one wants
to base their choice in this analysis) does not depend on the
sample size; (ii) the obtained value of s is a tighter bound
than that of using any finite N , which implies that such value
is also a feasible choice for any finite N (just slightly smaller
than it could be if the finite N was used).

3 Multinomial data

Hereafter we extend the analysis of the end of Section 2 to
the multinomial case. In particular, we aim to show that the
most used non-informative Bayesian estimators do have a re-
gion where they are MLE-dominant, but such region quickly
reduces in size with the increase in the number of cate-
gories of the multinomial. Before performing this analysis
we must define the meaning of “size” of a MLE-dominance
region. There are two criteria that are defined and explored
here: coverage and fitness. In the following, we assume that

θ = [θ1, . . . , θk]
′, with θ

′
1 = 1 and θ ∈ Θ

k (from now on
we use the superscript k on sets to indicate the dimension on
which the set is embedded).

3.1 Fitness of a region

A first way to characterize MLE-dominance regions is fitness.
The left-hand side of Ineq. (8) can be seen as a chi-square
distributed statistics, with t being the observed frequency and
θ the true distribution:

k∑
i=1

(θi − ti)
2

θi
≈ X 2(k − 1), (10)

where X 2(k) is a chi-square with k degrees of freedom. Let

Θ
k be the subset of Sθ

k where the Bayesian estimator dom-
inates MLE. Eq. (10) suggests that the “significance” of in-

formation encoded by a set Θk ⊆ Sθ
k can be evaluated by a

chi-square test with k − 1 degrees of freedom. As described

in Section 2, it not hard to see that the extremes of Θk will
generate the most extreme values of this statistics. Hence, we

define the fitness of Θk (w.r.t. prior mean t) by comparing

X2(Θk, t) = sup
vj

k∑
i=1

(θ
vj
i − ti)

2

θ
vj
i

to the chi-square distribution X 2(k − 1). If CDFk is the cu-
mulative distribution function of X 2(k), we have

F (Θk, t) = 1− CDFk−1(X
2(Θk, t))

defined as the fitness measurement of the set Θk w.r.t. t. In
fact this is the p-value of observing frequencies t if the true

is the farthest extreme of Θk, and therefore a small value of
F (Θk, t) indicates that few information is encoded by Θ

k.

For instance, F (Sθ
k, t) = 0 and F (Θk, t) = 1 if Θk = {t}.

3.2 Coverage of a region

Another way to characterize the information carried out by

Θ
k is through the ratio between its volume and the volume of

the whole parameter space Sθ
k. Assuming that these sets are

regular (k − 1)-simplices (corresponding to points in dimen-
sion k whose coordinates sum one) with sideL, their volumes

are given by Lk−1
√
k

2(k−1)/2(k−1)!
. Considering for instance

Sθ
k, which has side

√
2, its volume is:

V (Sθ
k) = (

√
2)k−1

√
k

2(k−1)/2(k − 1)!
=

√
k

(k − 1)!
.

We thus define the proportion of coverage λ(Θk) for a set

Θ
k ⊆ Sθ

k to be equal to its volume divided by the volume

of Sθ
k, that is λ(Θk) = V (Θk)/V (Sθ

k). An interesting
property of coverage is that, under the assumption that the
true θ has equal probability of being any point within Sθ ,

λ(Θk) can be viewed as the chance of θ lying in Θ
k.

3.3 The ε-contaminated set

In order to analyze the dominance that is implied by the
choice of different well-known priors, in the sequel we as-

sume Θk to be an ε-contaminated set defined as follows:

Θ
k
ε = Ch

{
(1 − ε)θext + ε

1

k
: θext ∈ ext{Sθ

k}
}
,
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Figure 1: Bayesian estimators have less coverage and greater fitness as the number of categories k increases. MLE becomes
the preferable estimator already for k around 4 (obviously apart from Haldane’s, which equals to MLE here).

where

ext{Sθ
k} = {[θ1, . . . , θk]′ ∈ Sθ

k : θi = 1, i ∈ {1, . . . , k}}
are the extreme points (vertices) of the simplex. Note that this

set is symmetric on Sθ
k and has k vertices, namely[

1− k − 1

k
ε,

ε

k
,
ε

k
,
ε

k
, . . .

]
,

[
ε

k
, 1− k − 1

k
ε,

ε

k
,
ε

k
, . . .

]
,

[
ε

k
,
ε

k
, 1− k − 1

k
ε,

ε

k
, . . .

]
, . . . ,

[
. . . ,

ε

k
,
ε

k
,
ε

k
, 1− k − 1

k
ε

]
.

The set Θk
ε has several useful properties for the analysis of

MLE-dominance: (i) it is symmetric w.r.t. t = 1

k ; (ii) it is a

regular simplex of side
√
2(1 − ε); (iii) its sides are equally

distant from the border of the simplex Sθ
k and touch it only

if ε → 0. This latter property is very important for the MLE-
dominance analysis. Consider Ineq. (8): if any coordinate θi
of θ is zero, then the left-hand side of the inequality will go to
infinity (because the denominator is zero and the numerator
is approximately 1/k), forbidding the inequality to hold for
any s except zero. As the coordinates θi get farther from zero
as the left-hand side of the inequality makes it easier to be
satisfied.

Considering the fitness and coverage of Θk
ε , we have:

X2(Θk
ε ,

1

k
) = (k − 1)

( εk − 1
k )

2

ε
k

+
(1 − ε (k−1)

k − 1
k )

2

1− ε (k−1)
k

=
(1− ε)2(k − 1)

k(ε+ k − ε · k) , (11)

and

λ(Θk
ε ) =

(
√
2(1− ε))k−1

√
k

2(k−1)/2(k−1)!
√
k

(k−1)!

= (1− ε)k−1.

(12)

Because of the symmetry of Θk
ε , Ineq. (8), which has to hold

for each vertex of the given set, reduces to:

(1− ε)2(k − 1)

k(ε+ k − ε · k) = X2(Θk
ε ,

1

k
) ≤ (

2

s
+

1

N
). (13)

As larger ε as faster the coverage of Θk
ε decreases, which im-

plies that the farthest possible θ in the set becomes quickly
close to 1/k (the sets are shrinking). Moreover, a quick anal-
ysis of Ineq. (13) shows that ε and the strength s of a prior

whose MLE-dominance region equals to Θ
k
ε are directly cor-

related. For any given k and N , at the increase of s there is
an increase of ε (and vice-versa).

3.4 Analysis of estimators

Figure 1 presents the estimators of Haldane, Jeffreys, Perks
and Bayes/Laplace, as well as an estimator with s = 2 (all
of them use t = 1

k ). We see that the coverages of all estima-
tors (apart Haldane, which gives the same estimate as MLE)
quickly drop with the number of categories, meaning that the
size (relative to the size of the simplex) of the region where
they are preferred quickly approaches zero. At the same pace,
their fitness increases, again showing their reduction in size.
For these reasons, MLE becomes the preferred estimator (in
the sense of better MSE on more than half of the parameter
space) already with k = 3 and greater, because the coverage
of the Bayesian estimators drastically reduces with k (Figure
1 shows that coverage is already small even for k = 4).

By Eq. (12) we clearly see that the coverage of Θk
ε con-

siderably decreases when k increases (ε is kept fixed on k –
this is equivalent to s kept fixed). Hence, a natural approach
to maintain the quality of the estimators is to keep the cov-

erage λ(Θk
ε ) constant over k, which implies that ε (and thus

the strength s) has to vary with k. If λ0 denotes the desired
coverage, we obtain:

(1− ε)k−1 = λ0 ⇐⇒ εk(λ0) = 1− λ
1

k−1

0 . (14)

Figure 2 shows the value of εk(
1
2 ), which keeps a coverage of

one half of the parameter space for every k. It also presents
the (dashed) curve with the value of εk to keep the fitness

measure F (Θk
ε) constant instead. We see that both curves

have similar slopes, indicating that coverage and fitness of

Θ
k
ε react similarly to the increase of k. At first this is slightly

surprising, because chi-square distribution that is used by the
fitness measure has a correction for the degrees of freedom of
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Figure 2: Value of ε to keep half of the parameter space within

the membership set Θk
ε . The dashed curve keeps the fitness

constant over k.

the multinomial. On the other hand, volumes used to compute
the coverage have no such adaptive parameter corresponding
to the increase in dimensionality. In spite of that, we analyze
how fitness and coverage are correlated (Figure 3). We point
out that this correlation is almost linear for small values of k,
but becomes non-linear with its increase. More over, with the
increase of the number of categories, we see that fitness goes
faster and faster to zero. Still, both measures lead to similar
conclusions w.r.t. the correction that has to be applied to ε
(or strength s) when one varies k within practical settings –
considerably large k suggests ε → 0 (i.e. s → 0) anyway.

0.0 0.2 0.4 0.6 0.8 1.0
Coverage

0.2

0.4

0.6

0.8

1.0

Fitness versus coverage

k�32
k�16
k�6
k�5
k�4
k�3
k�2

Figure 3: Comparison between fitness and coverage for vari-
ous values of k.

Applying Eq. (14) on Ineq. (13) and assuming that N →
∞ (which does not considerably affect the analysis, as we
discuss in the final part of this section), we have

sk(λ0) =
−2εk(

1
λ0
)(k − εk(

1
λ0
))

k − 1
. (15)

(When λ0 is omitted, then it is assumed that λ0 = 1/2 so as
to separate the parameter space in two equal parts.)

The main goal of this study is to devise rules to smartly
choose the strength s of the prior distribution. If the estima-

tor under analysis dominates MLE on (at least) half of Sθ
k,

5 10 15 20 25 30
N

2

4

6

8

10

12
s

Maximum value of s according to coverage

k�6

k�5

k�4

k�3

k�2

Figure 4: Maximum value of s for distinct k such that the
Bayesian estimator is preferred to MLE (for true θ uniformly
generated over the parameter space).

N k =2 3 4 5 6 8 16

1 any 4.83 1.17 0.65 0.45 0.27 0.11
2 any 2.19 0.91 0.56 0.40 0.26 0.10
4 24 1.72 0.81 0.52 0.38 0.25 0.10

10 8.57 1.52 0.77 0.50 0.37 0.24 0.10
100 6.19 1.42 0.74 0.49 0.37 0.24 0.10
∞ 6 1.41 0.74 0.49 0.37 0.24 0.10

Table 1: Maximum value of the prior strength s for different
number of categories and sample size (rounded to two digits
of precision).

then such an estimator is preferred to MLE. Hence, using Eq.
(15) with λ0 = 1/2, we obtain the maximum values that are
admissible for s in settings with different values of k (Table
1). Figure 5 presents the graph of sk for λ0 = 1/2 (and also
the dashed curve to keep the fitness measure constant).

We point out that the numerator of Eq. (15) approaches
2 log( 1λ) when k → ∞, and it, together with the denominator
(k − 1), justifies the reduction of s by a magnitude of O(k)
when k increases. Figure 6 shows that an adjustment of O(k)
is enough to make the coverage of Perks and the estimator
with s = 2 almost constant, but still insufficient for the es-
timators of Jeffreys and Bayes/Laplace, which use s = k/2
and s = k, respectively. In fact any estimator using strength
s = c/O(k), for any constant c and a properly chosen linear
function O(k), will have its coverage kept constant with the
increase of k. Therefore our suggestion of using estimators
with s = c/k follows.

Finally, if we do not assume N → ∞, the same values de-
rived for s are valid, because finite values of N can only help
(in the sense that finite N can only increase the upper bound
of s and the maximum strength s devised by Eq. (15) would
still suffice). Figure 4 shows the actual maximum value of s
such that at least half of the parameter space is covered, while
N varies between 1 and 30. For k = 2, s can be chosen as
high as 24 if the sample size is very small, and converges to
6 as the sample size increases. For greater values of k, the
convergence to the limit value as if N → ∞ is much faster,
and differences in the maximum admissible value of s only
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Figure 5: Maximum admissible value of s for varying number
of categories k such that coverage remains 1/2 and fitness
remains constant (equal to the fitness for k = 2).
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Figure 6: Comparison between Bayesian estimators with s
decreasing at a rate of O(k) as k increases.

occur for very small values of N (Table 1).

4 Conclusion

This paper discusses the problem of inference from multino-
mial data and address the problem of choosing the strength of
the Dirichlet prior under a MLE-dominance criterion. This
approach consists of designing free parameters of the es-
timator so as to guarantee, for any value of the unknown
parameter vector to be estimated, an improvement of the
mean-squared error with respect to MLE. Given that the true
parametrization is equally probable to be any vector of the
parameter space, desirable priors are those that lead to MLE-
dominance in at least half of the parameter space. We show
that non-informative Bayesian estimators have a region of
MLE-dominance that shrinks with the increase in the num-
ber of categories of the multinomial. After a careful analy-
sis, we devise formulas that suggest how one should select
the strength of their prior to avoid such problem. They are
are based on the coverage of the parameter space and the
fitness of the underlying MLE-dominance region. We con-
clude that priors must have their strength reduced by a factor
proportional to the number of categories of the multinomial,

otherwise the MLE becomes a preferred estimator. We em-
phasize that this regards even the estimators that are already
“smoothed” by k, such as Laplace (which would receive s/k2

for each Dirichlet parameter αj). Finally, we point out that if
one has additional information and can choose a better prior
than the non-informative, then the analysis of this paper does
not directly apply. Yet, the additional information could be
integrated into the analysis, and the general conclusion would
be similar: strengths of priors have to react to the number of
categories of the multinomial. As future work, we intend to
investigate other measures of quality for the estimators, such
as Kullback-Leibler divergence and mean absolute error in-
stead of mean squared error, as well as analyze the case of
informative priors.
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