
Leveraging Unlabeled Data to Scale Blocking for Record Linkage

Yunbo Cao†‡, Zhiyuan Chen§, Jiamin Zhu†, Pei Yue∗, Chin-Yew Lin‡, Yong Yu†

†Department of Computer Science, Shanghai Jiao Tong University, China
‡Microsoft Research Asia, China

§School of Software, Dalian University of Technology, China
∗Microsoft Corporation, USA

{yunbo.cao, peiyue, cyl}@microsoft.com; {zy.chen, jmzhu}@live.com; yyu@apex.sjtu.edu.cn

Abstract

Record linkage is the process of matching records
between two (or multiple) data sets that repre-
sent the same real-world entity. An exhaustive
record linkage process involves computing the sim-
ilarities between all pairs of records, which can
be very expensive for large data sets. Blocking
techniques alleviate this problem by dividing the
records into blocks and only comparing records
within the same block. To be adaptive from domain
to domain, one category of blocking technique for-
malizes ‘construction of blocking scheme’ as a ma-
chine learning problem. In the process of learning
the best blocking scheme, previous learning-based
techniques utilize only a set of labeled data. How-
ever, since the set of labeled data is usually not
large enough to well characterize the unseen (un-
labeled) data, the resultant blocking scheme may
poorly perform on the unseen data by generating
too many candidate matches. To address that, in
this paper, we propose to utilize unlabeled data
(in addition to labeled data) for learning blocking
schemes. Our experimental results show that using
unlabeled data in learning can remarkably reduce
the number of candidate matches while keeping the
same level of coverage for true matches.

1 Introduction

Record linkage is the process of matching records between
two (or multiple) data sets that represent the same real-world
entity. Record linkage plays a central role in many applica-
tions. For example, a price comparison system collects offers
from different online shopping sites (e.g., Amazon1, eBay2)
that may refer to the same product. As another example, to
provide an integrated search experience for Facebook3 and
LinkedIn4, one web search engine may want to merge the
records from the two sites: for a given person that has ac-

1http://www.amazon.com
2http://www.ebay.com
3http://wwww.facebook.com
4http://www.linkedin.com

counts at both sites, it creates a composite record that com-
bines the information from both sites.

In principle, record linkage needs to compare every pair
of records from different data sets, which makes it prob-
lematic to scale the process to large data sets. For exam-
ple, if two databases, A and B, are to be linked, the to-
tal number of potential record pair comparisons thus equals
|A| × |B| (| · | denotes the number of records in a database).
The number can be extremely large in real applications (e.g.,
|A| = |B| = 107). To reduce the large amount of potential
record pair comparisons, typical record linkage approaches
employ a technique called blocking: a single record attribute,
or a combination of attributes, is used to partition (or group)
records into blocks such that records having the same value
in the blocking attribute are grouped into one block, and then
only records within the same block are compared by assum-
ing that records in different blocks are unlikely to match.

Various blocking methods have been proposed for record
linkage. One category of method [Newcombe and Kennedy,
1962; McCallum et al., 2000; Baxter and Christen, 2003;
Gu and Baxter, 2004] is based on manual selection of block-
ing attributes and manual parameter tuning. However, an ap-
propriate blocking scheme can be highly domain-dependent,
which may fail the blocking methods due to the ad-hoc
construction and manual tuning. To address that, another
category of method [Bilenko et al., 2006; Michelson and
Knoblock, 2006; Evangelista et al., 2010] based on machine
learning (thus also considered adaptive) is introduced. Given
a set of labeled data (matching or non-matching record pairs),
learning techniques are employed to produce blocking at-
tributes and comparison methods in the attributes by using
the objective: maximize the number of matching record pairs
found and minimize the number of non-matching record pairs
in the same block. In this paper, we are interested in extending
the machine learning based methods by incorporating unla-
beled data into the learning process.

When dealing with large-scale (real world) data collections
(e.g., the price comparison scenario), the machine-learning-
based blocking methods tend to generate either a large num-
ber of blocks or a large number of candidate matches in each
block (or both). Thus, the number of matches to be com-
pared is still intractable although it has been reduced much
by blocking (e.g., in our evaluation, one baseline method can
generate 4 × 1010 matches). The reasons are as follows.

2211

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



First, as labeled data is usually expensive to obtain in terms
of either human effort or time, the size of labeled data can-
not be large enough to well characterize unseen data within
concerned domains. Second, blocking schemes learned from
labeled data try to accommodate the labeled data as much as
possible. Therefore, one blocking scheme working best for
labeled data may not work well for unlabeled data in the same
domain. For example, blocking product offers by brands may
work well for a labeled data in which each brand only has
one product (and multiple offers for the product), but cannot
work well for a large amount of unseen data as one brand can
provide hundreds (or even thousands) of products.

To address the above issue, we propose to incorporate un-
labeled data into the learning process as well by introducing
a new objective function. Specifically, the new objective dif-
fers from the one used in previous work [Bilenko et al., 2006;
Michelson and Knoblock, 2006; Evangelista et al., 2010] in
that it considers an additional factor of minimizing the num-
ber of candidate matches (of records) in unlabeled data. Due
to its large scale, it is impractical (or even infeasible) to take
into account all unlabeled data in the learning process. To
address that, we then propose an ensemble method which is
on the basis of a combinative use of a series of subsets of
unlabeled data. Each subset is randomly sampled from the
unlabeled data such that its size is much smaller than that of
the original set. With the ensemble method, we are then able
to make use of unlabeled data efficiently and effectively.

The contributions of this paper can be summarized as fol-
lows. (a) We propose to use unlabeled data to help the learn-
ing about blocking schemes. Although the concept of using
unlabeled data has been explored much in the field of machine
learning, none of previous work studies its use for blocking.
(b) We design an algorithm for effectively and efficiently uti-
lizing unlabeled data by sampling the data. (c) We empiri-
cally verify the correctness of the proposal in a large scale
within a price comparison scenario.

2 Our Proposal

2.1 Blocking Scheme

Our learning-based method for blocking is about learning one
best blocking scheme from both labeled data and unlabeled
data. In the following, we introduce our definition for block-
ing scheme.

Following [Bilenko et al., 2006; Michelson and Knoblock,
2006], we base our definition for blocking scheme on a set of
predicates, referred to as blocking predicates.

Definition A blocking predicate is a pair of <blocking at-
tribute, comparison method>. Thus, if we have t blocking
attributes and d comparison methods, we will have t× d pos-
sible blocking predicates.

Using product offers as an example, an attribute can be
‘name’, ‘part number’, ‘category’, etc. And a comparison
method can be ‘exact match’, ‘same 1st three tokens’, etc.
For example, one blocking predicate, <part number, exact
match>, means that two records are grouped into the same
block if they share exactly same part number.

Definition A blocking scheme is a disjunction of conjunc-
tions of blocking predicates.

An example blocking scheme can be like (<name, same 1st
three tokens> ∧ <brand, exact match>)∨ <part number,
exact match>, which consists of two conjunctions.

In the following subsection, we introduce our formaliza-
tion for the problem of learning a blocking scheme on the
basis of both labeled data and unlabeled data.

2.2 Problem Formalization

Following the standard machine learning setup, we denote the
input and output spaces by X and Y , then formulate our task
as learning a hypothesis function h : X → Y to predict a y
when given x. In this setup, x represents a record consisting
of m attributes. y represents the true object (or entity) iden-
tifier for x. h is uniquely determined by a blocking scheme
P (a disjunction of conjunctions), and thus is also denoted as
hP . Given two records x1 and x2, hP (x1) = hP (x2) if and
only if x1 and x2 are grouped into the same block (namely,
they are linked to the same true object).

In our learning scenario, we assume that the training set
consists of two subsets: D = DL ∪ DU , where DL =
{xi,yi}li=1 and DU = {xj}

l+u
j=l+1. In real applications, usu-

ally u � l. We also denote {xi}li=1 by Dx
L.

The goal of the learning problem is to find the best hypoth-
esis function hP such that

G1) minimize the number of the candidate matches in DL,

G2) minimize the number of the candidate matches in DU ,

G3) maximize the number of the true matches in the candi-
date set generated from DL.

Formally, the goal can be expressed as the following objec-
tive function:

argmin
hP

cost(Dx
L, P ) + α · cost(DU , P ) (1a)

subject to cov(DL, P ) > 1− ε (1b)

where cost(∗, ∗) and cov(∗, ∗) are two functions defined as
follows:

cost(A, p) =
∑

x∈A,x
′∈A,x�=x

′

I[hp(x)=hp(x
′

)]
|A|(|A|−1) (2)

cov(Z, p) =
∑

(x,y)∈Z,(x
′

,y
′

)∈Z

x�=x
′

I[hp(x)=hp(x
′

),y=y
′

]
2M(Z) (3)

where A is a set of records without labels, Z is a set of
records with labels, and p is a blocking scheme. M(Z)
is the number of true matches in Z, and I[.] is an indica-
tor function that equals to one if the condition holds and
zero otherwise. The first term and the second term in equa-
tion (1a) correspond to G1 and G2, and the constraint (1b)
corresponds to G3. ε is a small value indicating that up
to ε true matches may remain uncovered, thus accommo-
dating noise and particularly difficult true matches. And
the parameter α is used to control the effect of the unla-
beled data DU . If α is set to 0.0, the objective function
is reduced to the objective used in [Bilenko et al., 2006;
Michelson and Knoblock, 2006] where only labeled data is

2212



used in the process of learning blocking scheme P . And
α = 1.0 means that we treat labeled data and unlabeled data
equally.

Linking to the metrics reduction ratio and pairs complete-
ness [Elfeky et al., 2002], minimizing the two terms in equa-
tion (1a) is equivalent to maximizing the reduction ratios cal-
culated with DL and Du respectively. And the constraint as-
sures that the pairs completeness is above a threshold (1− ε).

The size of DU can be rather large in real applications.
For example, our evaluation set regarding a price comparison
scenario includes about 29 million product offers. On one
hand, the large number demonstrates the necessity of lever-
aging unlabeled data in learning since a small amount of la-
beled data cannot characterize the data well. On the other
hard, it presents a challenge for fully utilizing it. As will
be elaborated later, the process of learning the best blocking
scheme with the above objective function involves multiple
passes of the data. This is also true for the algorithms in-
troduced in [Bilenko et al., 2006; Michelson and Knoblock,
2006]. Thus, it cannot be practical to include all unlabeled
data into the learning process. Instead, we propose to make
use of sampling techniques to deal with the dilemma. Specifi-
cally, we first construct s subsets {Di

U}
s
i=1 by randomly sam-

pling records from DU . By controlling the sampling rate, we
can assure that |Di

U | � |DU | (1 ≤ i ≤ s). Then, we approx-
imate the second term of equation (1a) with the following
value:

α · f({costi}
s
i=1) (4)

where f(·) is an aggregation function that returns a single
value from a collection of input values. And costi is calcu-
lated as,

costi = cost(Di
U , P ) (5)

In our context, the aggregation function can be average
and max. Specifically,

favg({costi}
s
i=1) =

1

s
·

s∑

i=1

costi (6)

fmax({costi}
s
i=1) =

s
max
i=1

costi (7)

By average, we examine every sample subset and treat
them equally. In contrast, by max, we care about only the
worse case, the subset generating most candidate matches.

2.3 Algorithm

The objective defined in Section 2.2 can be mapped to the
classical set cover problem [Karp, 1972]. Specifically, apply-
ing each conjunction of blocking predicates to the data Dx

L

can form a subset which includes all the matches in the block
satisfying the conjunction. Then the constraint (1b) in the ob-
jective function can be translated as: Given multiple subsets
of Dx

L (with each being determined by one conjunction in the
blocking scheme) as inputs, select a number of these subsets
so that the selected sets contain almost all the elements of a
set formed by all the matches in DL. The process of selecting
subsets needs to assure that equation (1a) is minimized.

As the set cover problem is NP-hard, we have to use greedy
algorithms to find an approximate solution. Particulary,

we utilize a modified version of sequential covering algo-
rithm (MSCA, algorithm 1) [Michelson and Knoblock, 2006;
Mitchell, 1997].

Within the main loop (line 8-13), MSCA forms a disjunc-
tion by learning a series of conjunctions of blocking predi-
cates with the function LEARN-ONE-CONJUNCTION (de-
tailed in algorithm 2). At each iteration, after a conjunction
is learned, the examples (or records) covered by the con-

junction are removed from the training data D
′

. The loop
stops with the constraint (1b) satisfied to accommodate noise
and particularly difficult true matches. MCSA learns con-
junctions independently of each other since LEARN-ONE-
CONJUNCTION does not take into consideration any previ-
ously learned conjunctions. Therefore, there is the possibility
that the set of records covered by one rule is the subset of
the records covered by the other rule. For that case, MCSA
removes the first rule (line 10).

Algorithm 1 differs from [Michelson and Knoblock, 2006]

in that the unlabeled data DU is incorporated into the learning
process as well. The incorporation is enabled by approximat-
ing DU with its randomly sampled subsets (line 3-7).

Algorithm 2 presents the implementation of LEARN-
ONE-CONJUNCTION. LEARN-ONE-CONJUNCTION
uses a greedy and general-to-specific beam search. General-
to-specific beam search makes each conjunction as restrictive
as possible because at each iteration it adds only one new
blocking predicate p to the best conjunction c∗. Although
any individual conjunction learned by general-to-specific
beam search might only have a minimum coverage σ (line 7),
the final disjunction P ∗ will combine all the conjunctions to
increase the coverage. Thus, the goal of each LEARN-ONE-
CONJUNCTION is to learn a conjunction that minimizes
the objective (1a) as much as it can, so when the conjunction
is disjoined with others, it contributes as few false-positive
candidate matches to the final candidate set as possible. In
the objective (1a), we take into account the effect of the

conjunction on the unlabeled data D
′

U as well (line 13).

That is, both the number of candidate matches for D
′

L and

2213



Algorithm 2 LEARN-ONE-CONJUNCTION

1: Input: Training set D
′

,
Set of blocking predicates {pi}
A coverage threshold parameter σ
A precision threshold parameter τ
A parameter for beam search k

2: c∗ ←null; C ← {pi};
3: repeat

4: C
′

= ∅;
5: for all c ∈ C do
6: for all p ∈ {pi} do

7: if cov(D
′

, c ∧ p) < σ then
8: continue;
9: end if

10: c
′

← c ∧ p;

11: C
′

= C
′

∪ {c
′

};

12: Remove any c
′

that are duplicates from C
′

;

13: if cost(D
′

L, c
′

)+α ·cost(D
′

U , c
′

) < cost(D
′

L, c
∗)+

α · cost(D
′

U , c
∗) precision(c

′

) > τ then

14: c∗ ← c
′

;
15: end if
16: end for
17: end for
18: C ← best k members of C

′

;
19: until C is empty
20: return c∗

that for D
′

U are minimized. In contrast, previous work
[Bilenko et al., 2006; Michelson and Knoblock, 2006;
Evangelista et al., 2010] only considers the first term.

The coverage threshold, σ, is used to control how aggres-
sive the algorithm is to claim uncovered labeled data. Michel-
son and Knoblock [2006] set it to 0.5, which means that
any learned conjunction has to cover at least 50% of uncov-
ered labeled data. However, our experience shows that, for
price comparison application, none of single conjunctions can
cover more than 30% labeled data. Thus, we set σ to 0.2,
instead. When σ is smaller, minimizing the objective (1a)
may have a higher probability of returning a highly inac-
curate blocking predicate (not addressed in [Michelson and
Knoblock, 2006]). To deal with that, we thus introduce an-
other condition (the second one in line 13) where precision
is calculated on the basis of a development set. By varying the
threshold τ , we can also manage to balance between precision
and recall of the resultant blocking scheme. Larger τ enforces
every conjunction to be highly accurate and thus gives a high
precision of the final blocking scheme, but it lowers recall
as it restricts the space of candidate conjunctions; vise versa.
For the formal definitions on precision and recall, please refer
to Section 3.1.

3 Empirical Evaluation

3.1 Experiment Setup

Dataset. We made use of a data collection from a com-
mercial search engine (SE) which provides a function for
price comparison in addition to its basic functions for web

pages/images/videos search. To help users compare product
offers (the things including price information) from different
sites, the SE has to link them to right products. We compared
our proposal with previous work within this scenario. The
data collection (a subset of the data in the SE) includes about
29 million product offers, which covers 14 categories such as
‘cameras & optics’, ‘movies’, ‘beauty & fragrance’, ‘toys’,
and etc. We denote it by RAW.

From RAW, 30,073 offers were randomly selected and
then linked to their corresponding products by humans. In our
experiments, we randomly separated the 30,073 offers into
four folds. And then, we used two folds as training data (TR)
for predicate scheme learning with given parameters (e.g, s,
σ, and α), one fold as development data (DEV) for tuning
the parameter τ evaluating the precision of each individual
conjunction (line 13 of algorithm 2), and one fold as test data
(TST). Thus, compared to the entire data set RAW, the vol-
ume of the labeled data used for learning, TR and DEV, is
rather small. As we will demonstrate later, only using TR
and DEV is not enough. For algorithm 1, we sampled the s
unlabeled data set from RAW.

Evaluation Metrics. We utilized both TST and RAW to
to evaluate the performance of blocking methods. On TST,
we adopted precision and recall, the metrics extensively used
in record linkage and information retrieval. As shown in the
following, they can be linked to the functions cov(∗, ∗) and
cost(∗.∗).

Precision(P ) =
2 ·M(DL) · cov(DL, P )

|Dx
L| · (|D

x
L| − 1) · cost(Dx

L, P )

Recall(P ) = cov(DL, P )

On RAW, we made use of the metric Reduction Ratio
(RR = 1 − cost(RAW, P )) to evaluate how effective our
proposal is in the sense of reducing the number of candidate
matches. As be shown later, both the baseline method and
our proposal can achieve a higher RR. However, we argue
that, for real applications, even a small difference (99.8% vs.
99.9%) in RR is of great values. To illustrate the significance
of the difference, we also reported the number of candidate
matches (denoted by #Cands).

Other Configurations. The set of attributes for offers
or products varies from category to category. In our exper-
iments, we just picked up a subset of them which can be
applied to more than one categories, and then used them as
blocking attributes. The blocking attributes include ‘name’,
‘brand’, ‘category’, ‘part number’, ‘GTIN’, ‘color’, and ‘gen-
der’. As for ‘comparison methods’, we used ‘exact match’,
‘case-insensitive match’, ‘same 1st two tokens’, ‘same 1st
three tokens’, ‘same last token’, ‘same last two tokens’, and
‘same last three tokens’.

For the data sampling, to demonstrate the necessity of us-
ing multiple sample subsets, s was set to 1 or 10. And the
sample size is 20,000, which is comparable to the size of the
labeled data TR plus DEV. For the beam search, in order to
consider as many good conjunctions as possible, k was set to
10. For the precision threshold τ , we tried the values 0.0, 0.1,
· · ·, 1.0.

2214



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
ec

al
l

Precision

α = 0
α = 10

α = 100

(a)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.2  0.4  0.6  0.8  1

R
R

τ

α = 0
α = 10

α = 100

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

R
at

io
 o

f #
C

an
ds

τ

α = 0
α = 10

α = 100

(c)

Figure 1: The blocking results when s = 10.

3.2 Results

Figure 1 presents the experimental results when s = 10.
Specifically, Figure 1(a) show the precision-recall curves ob-
tained with different values of α. Each precision-recall curve
is generated by varying the precision threshold τ , where the
blocking scheme with a bigger τ has a higher precision and
a lower recall (and vise versa). Thus, this result shows that
we can manage to control precision and recall by setting dif-
ferent values to τ . We also see that our proposal of using un-
labeled data (α > 0) in learning performs comparably with
(even better than) the blocking method not using unlabeled
data (α = 0). This result confirms that our proposal can make
use of labeled data well while taking into consideration of
unlabeled data. At the same time, our proposal can remark-
ably reduce the number of candidate matches on the unseen
data RAW . If we check this only through Figure 1(b) (in
terms of RR), the reductions are not so obvious. However,
if we examine how many candidate matches each blocking
scheme generated directly (Figure 1(c)), the reductions are
significant. The y axis in Figure 1(c) is the ratio of #Cands of
one blocking scheme to #Cands of the baseline method (not
using unlabeled data). As seen in the figure, for all the values
of τ , the ratio for our proposal with α = 10 is always below
1.0, which indicates that our proposal generates less candi-
date matches than the baseline method. For example, when
τ = 0.5, we even reduced more than 86.5% (= 1 − 13.5%)
of candidate matches. At the same point, according to Fig-
ure 1(a), we can also achieve a good balance between preci-
sion and recall. In a summary, our proposal is able to save
much (downstream) running time for record pair comparison
by reducing the potential number of matches in the data to be
linked while well balancing precision and recall.

In all the above experiments, only max aggregation was
employed. To see the difference between the aggregation
methods (equations (6) and (7)), we present a comparison on
them in Figure 2 where s = 10. From the figure, we ob-
serve that the two types of aggregation perform exactly same
when α = 10. However, when α = 100, they perform quite
differently from each other. In addition to the observations,
we can also have the suggestions as follows: (a) We should
employ max as aggregation method when τ ≤ 0.5, and em-
ploy average, otherwise; and (b) to simplify that, we can
always use average due to its robustness relative to max. If
we seek for a higher recall (the main purpose of blocking) and

at the same time want to avoid comparing/verifying too many
candidate matches, we should set τ to a value smaller than
0.5, emphasize the contribution of unlabeled data (α = 100),
and use max aggregation to reduce the number of candidate
matches in unlabeled data.

We also conducted the experiments to verify the necessity
of employing aggregation methods. Within the experiments,
we carried on three trials by setting s = 1 and α = 100.
The individual trials were fed with different sample subsets.
Figure 3 provides the results in terms of #Cands. From the
figure, we can see that the individual blocking schemes ob-
tained with the different unlabeled data (subsets A, B, and C)
can perform quite differently from each other. That is also
to say, the behavior of the blocking scheme learned by one
single unlabeled subset cannot be predicted. Thus, it is not
safe to use unlabeled data without aggregation in the process
of learning blocking schemes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

R
at

io
 o

f #
C

an
ds

τ

average, α=10
max, α=10

average, α=100
max, α=100

Figure 2: Comparison on different types of aggregation.

4 Related Work

Various blocking methods have been proposed for record
linkage. Among them, learning-based methods are most re-
lated to our research. Given a set of labeled data (matching or
non-matching record pairs), learning-based blocking meth-
ods [Bilenko et al., 2006; Michelson and Knoblock, 2006;
Evangelista et al., 2010] are to produce blocking attributes

2215



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1

R
at

io
 o

f #
C

an
ds

τ

subset A
subset B
subset C

Figure 3: The ratio of #Cands when s = 1.

and comparison methods in the attributes by using the objec-
tive: maximize the number of matching record pairs found
and minimize the number of non-matching record pairs in the
same block. All the methods base their blocking schemes
on disjunctive normal form (DNF) of blocking predicates.
They differ from each other mostly in the way that the block-
ing predicates are combined in the process of searching for
the best blocking scheme. Specifically, Bilenko et al. [2006]

utilized a modified version of Peleg’s greedy algorithm [Pe-
leg, 2000], Michelson and Knoblock [2006] used a modified
sequential covering algorithm [Mitchell, 1997], and Evange-
lista et al. [2010] used genetic programming. All the methods
make use of only a set of labeled data to learn the blocking
scheme. In contrast, in this paper, we propose to take into
consideration unlabeled data into the learning as well for the
aim of minimizing the number of candidate matches on the
data to be integrated (or linked).

A number of methods on the basis of fast nearest-neighbor
searching aims at adaptively solving the performance issue
on the large scale of data, too. For example, Andoni and In-
dykthe [2006] proposed to use the Locality-Sensitive Hashing
(LSH) scheme as an indexing method in approximate near-
est neighbor search problem. Yan et al., [2007] proposed
to achieve the adaptivity by dynamically adjusting the sizes
of sliding windows for the well-known algorithm, the sorted
neighborhood method. Later, Athitsos et al. [2008] proposed
a distance-based hashing (DBH) to address the issue of find-
ing a family of hash functions in LSH. Recently, Kim and
Lee [2010] proposed an iterative LSH for a set of blocking
methods called iterative blocking [Whang et al., 2009]. How-
ever, the methods typically rely on strong metric assumption
in the data space, while learning-based blocking methods (in-
cluding ours) work with arbitrary blocking predicates.

There exists also a large amount of work adopting ad-hoc
construction and manual tuning [Newcombe and Kennedy,
1962; McCallum et al., 2000; Baxter and Christen, 2003;
Gu and Baxter, 2004]. These methods focus on improving ef-
ficiency under the assumption that an accurate blocking func-
tion is known.

5 Conclusions

In this paper, we have proposed a novel algorithm for the
problem of blocking for record linkage. The algorithm learns
(not manually constructs) a good blocking scheme on the ba-
sis of both labeled data and unlabeled data. In contrast, pre-
vious learning-based methods for blocking can only utilize
labeled data in learning. Our experimental results showed
that the use of unlabeled data in learning can remarkably
reduce the number of candidate matches while keeping the
same level of coverage for true matches.

There exist two interesting directions for further extending
our work: First, in the current implementation, to incorporate
the large scale of unlabeled data in learning, we made use of
only a simple sampling method, random sampling. It would
be interesting to see how other sampling methods (e.g., guide
the sampling by the distribution of the blocking attributes)
can help. Second, in our experiments, we only studied the
use of our proposal within a price comparison scenario. We
would like to extend the study to other scenarios as well (e.g.,
linking Facebook records to LinkedIn records).

References

[Andoni and Indyk, 2006] Alexandr Andoni and Piotr Indyk.
Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In FOCS, 2006.

[Athitsos et al., 2008] Vassilis Athitsos, Michalis Potamias,
Panagiotis Papapetrou, and George Kollios. Nearest neigh-
bor retrieval using distance-based hashing. In ICDE, 2008.

[Baxter and Christen, 2003] Rohan Baxter and Peter Chris-
ten. A comparison of fast blocking methods for record
linkage. In SIGKDD, pages 25–27, 2003.

[Bilenko et al., 2006] Mikhail Bilenko, Beena Kamath, and
Raymond J. Mooney. Adaptive blocking: Learning to
scale up record linkage. In ICDM, pages 87–96, 2006.

[Elfeky et al., 2002] Mohamed G. Elfeky, Ahmed K. Elma-
garmid, and Vassilios S. Verykios. Tailor: A record linkage
tool box. In ICDE, pages 17–28, 2002.

[Evangelista et al., 2010] Luiz Osvaldo Evangelista, Eli
Cortez, Altigran Soares da Silva, and Wagner Meira Jr.
Adaptive and flexible blocking for record linkage tasks.
JIDM, 1(2):167–182, 2010.

[Gu and Baxter, 2004] Lifang Gu and Rohan A. Baxter.
Adaptive filtering for efficient record linkage. In ICDM,
2004.

[Karp, 1972] Richard M. Karp. Reducibility among com-
binatorial problems. In R. Miller and J. Thatcher, ed-
itors, Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[Kim and Lee, 2010] Hung-Sik Kim and Dongwon Lee.
Harra: Fast iterative hashed record linkage for large-scale
data collections. In EDBT, pages 525–536, 2010.

[McCallum et al., 2000] Andrew McCallum, Kamal Nigam,
and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference match-
ing. In SIGKDD, pages 169–178, 2000.

2216



[Michelson and Knoblock, 2006] Matthew Michelson and
Craig A. Knoblock. Learning blocking schemes for record
linkage. In AAAI, volume 1, pages 440–445, 2006.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning. New
York: McGraw-Hill, 1997.

[Newcombe and Kennedy, 1962] Howard B. Newcombe and
James M. Kennedy. Record linkage: making maximum
use of the discriminating power of identifying information.
Commun. ACM, 5(11):563–566, 1962.

[Peleg, 2000] David Peleg. Approximation algorithms for
the label-covermax and red-blue set cover problems. In
SWAT, pages 220–230, 2000.

[Whang et al., 2009] Steven Euijong Whang, David Men-
estrina, Georgia Koutrika, Martin Theobald, and Hector
Garcia-Molina. Entity resolution with iterative blocking.
In SIGMOD, pages 219–232, 2009.

[Yan et al., 2007] Su Yan, Dongwon Lee, Min-Yen Kan, and
C. Lee Giles. Adaptive sorted neighborhood methods for
efficient record linkage. In JCDL, pages 185–194, 2007.

2217




