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Abstract
The paper investigates a novel approach, based on
Constraint Logic Programming (CLP), to predict
potential 3D conformations of a protein via frag-
ments assembly. The fragments are extracted and
clustered by a preprocessor from a database of
known protein structures. Assembling fragments
into a complete conformation is modeled as a con-
straint satisfaction problem solved using CLP. The
approach makes use of a simplified Cα-side chain
centroid protein model, that offers efficiency and a
good approximation for space filling. The approach
adapts existing energy models for protein represen-
tation and applies a large neighboring search (LNS)
strategy. The results show the feasibility and ef-
ficiency of the method, and the declarative nature
of the approach simplifies the introduction of addi-
tional knowledge and variations of the model.

1 Introduction
Proteins are central components in the way they control and
execute the vital functions in living organisms. The func-
tions of a protein are directly related to its peculiar 3D confor-
mation, known as the native conformation or tertiary struc-
ture. Such conformation determines how the protein can in-
teract with other molecules and affect the functions of the
hosting organism. DNA genes determine uniquely the se-
quence of elements (amino acids) composing a protein. As
a result of advances in DNA sequencing techniques, there is
a growing number of protein amino acids sequences (a.k.a.
primary structures) of proteins, available in public databases
(e.g., UniProtKB/TrEMBL contains more than 13,000,000
protein sequences). On the other hand, knowledge of struc-
tural information (e.g., tertiary structures) is lagging behind,
with a much smaller number of structures deposited in pub-
lic databases—e.g., 70, 000 of them are stored in the Protein
Data Bank (PDB), www.pdb.org.

For these reasons, one of the most traditional and central
problems addressed by research in bioinformatics deals with
the protein structure prediction (PSP) problem, i.e., the prob-
lem of using computational methods to determine the native
conformation of a protein starting from its primary sequence.
Several approaches have been explored to address this prob-

lem that we do not investigate here for space limit—see e.g.,
[Zhang, 2008; Dal Palù et al., 2009] for a survey. Some of
the most successful approaches to protein folding build on
the principle of using substructures. The intuition is that,
while the complete folding of a protein may be unknown, it is
likely that all possible substructures, if properly chosen, can
be found among proteins whose conformations are known.
The folding can then be constructed by exploiting relation-
ships among substructures. A notable example of this ap-
proach is represented by Rosetta [Raman et al., 2009]—an ab
initio protein structure prediction method that uses simulated
annealing search to compose a conformation, by assembling
substructures extracted from a fragment library; the library is
obtained from observed structures stored in the PDB.

In this work, we follow a similar idea, by developing a
database of amino acid chains of length 4; these are clus-
tered according to similarity, and their frequencies are drawn
from the investigation of a relevant section of the PDB. The
database contains the data needed to solve the protein folding
problem via fragments assembly. Declarative programming
techniques are used to enable rapid prototyping and to gen-
erate modular code. Moreover, the problem of assembling
substructures is efficiently tackled using the constraint solv-
ing techniques provided by CLP on finite domains. This pa-
per has the goal of showing that our approach is feasible.
The main advantage, w.r.t. a highly engineered and impera-
tive tool, is the modularity of the constraint system, which
offers a convenient framework to test and integrate statistical
data from various predictors and databases. Moreover, the
constrained search technique itself represents a novel method,
compared to popular predictors, and we show its effectiveness
in combination with the development of new energy functions
and heuristics. The proposed solution includes a general im-
plementation of LNS in CLP, that turned out to be highly ef-
fective for the problem at hand. Another contribution is the
development of a new energy function based on three com-
ponents: a contact potential for backbone and side chain cen-
troids interaction, an energy component for backbone con-
formational preferences, and a component that keeps track of
mutual orientation of spatially close fragments.

2 Protein Abstraction
Preliminary notions. We focus on proteins described as se-
quences of amino acids selected from a set A of the 20 natu-
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Figure 1: (Left-right, Top-down) Two consecutive amino
acids (a), bend (b) and torsional (c) angles, fragments combi-
nation (d)

rally occurring ones. In turn, each amino acid is composed of
a set of atoms that constitute the amino acid’s backbone (see
Fig. 1(a)) and a set of atoms that differentiate amino acids,
known as side chain. One of the most important structural
properties is that two consecutive Cα atoms have an average
distance of 3.8Å. Side chains may contain from 1 to 18 atoms,
depending on the amino acid. For computational purposes,
instead of considering all atoms composing the protein, we
consider a simplified model in which we are interested in the
position of the Cα atoms (representing the backbone) and of
particular points, known as the centroids of the side chains
(Fig. 2). A natural choice for the centroid is the center of
mass of the side chain.

It is important to mention that, once the positions of all the
Cα atoms and of all the centroids are known, the structure of
the protein is already sufficiently determined, i.e., the position
of the remaining atoms can be identified almost deterministi-
cally with a reasonable accuracy.

Focusing on the backbone and on the Cα atoms, three con-
secutive amino acids define a bend angle (see θ in Fig. 1(b)).
Consider now four consecutive amino acids a1, a2, a3, a4.
The angle formed by n2 = (a4 − a3) × (a3 − a2) and
n1 = (a3 − a2) × (a2 − a1) is called torsional angle (see
φ in Fig. 1(c)). If these angles are known for all the consecu-
tive 4-tuples forming a protein, they uniquely describe the 3D
positions of all the Cα atoms of the protein.

Given a spatial conformation of a 4-tuple of consecutive
Cα atoms, a small degree of freedom for the position of the
side chain is allowed—leading to conformers commonly re-
ferred to as rotamers. To reduce the search space, we do
not consider such variations. Once the positions of the Cα
atoms are known, we deterministically add the positions of
the centroids. In particular, the centroid of the i-th residue
(Ĉi) is constructed by using the positions of Cαi−1, Cαi and
Cαi+1 as reference and by considering the average of the cen-
ter of mass of the same amino acid type centroids, sampled
from a non-redundant subset of the PDB. The parameters that
uniquely determine its position are: the average Cαi-Ĉi dis-
tance, the average bend angle defined by Ĉi, Cαi, Cαi+1 and
Cαi−1, Cαi, Ĉi, and the torsional angle defined by the 4-

tuple Cαi−1, Cαi, Cαi+1, Ĉi. Even with this simplification,
the introduction of the centroids in the model allows us to bet-
ter cope with the layout in the 3D space and to use a richer
energy model. In Fig. 2, we report an example of this abstrac-
tion with a fragment with 10 alanine (ALA) amino acids. For
these amino acids, the centroids coincide with the only heavy
atom of each sidechain. This has been experimentally shown
to produce more accurate results, without adding extra com-
plexity w.r.t. a model that considers only the positions of the
Cα atoms and without the use of centroids.

Figure 2: A fragment of 10 ALA amino acids in all-atom and
Cα-centroid representation

Clustering. Although more than 70,000 protein structures
are present in the PDB, the complete set of known proteins
contains too much redundancy (i.e., very similar proteins de-
posited in several variants) to be useful for statistical pur-
poses. Therefore we focused on a subset of the PDB called
top-500 [Lovell et al., 2003]. This set contains 500 pro-
teins, with 107, 138 occurrences of amino acids. The num-
ber of different 4-tuples occurring in the set is precisely
62, 831. Since the number of possible 4-tuples of amino acids
is |A|4 = 204 = 160, 000, this means that most 4-tuples do
not appear in the selected set; even those that appear, they oc-
cur too rarely to provide significant statistical information.
For this reason, we decided to cluster amino acids into 9
classes, according to the similarity of the torsional angles of
the pseudo bond between two consecutive Cα atoms [Fogo-
lari et al., 2007].1

Let γ : A −→ {0, . . . , 8} be the function assigning a class
to each amino acid, for i ∈ {0, . . . , 8}, and γ−1(i) = {a ∈
A : γ(a) = i}. In this work we use γ−1(0) ={ALA},

1Note that in reality there is no direct connection among con-
secutive Cαs, due to the presence of intermediate atoms—thus the
pseudo bond between Cαs is a simplification introduced in our
model.
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γ−1(1) ={LEU, MET}, γ−1(2) ={ARG, GLU, GLN,
LYS}, γ−1(3) ={ASN, ASP, SER}, γ−1(4) ={THR, PHE,
HIS, TYR}, γ−1(5) ={ILE, VAL, TRP}, γ−1(6) ={CYS},
γ−1(7) ={GLY}, γ−1(8) ={PRO}. Using this scheme, the
majority of the 94 = 6, 561 4-tuples have a representative in
the set (precisely, there are templates for 5, 830 of them).

A second level of approximation is introduced by stating
that two occurrences of the same 4-tuple in the set of struc-
tures have the “same” form when their Root Mean Square De-
viation (rmsd) is ≤ rmsd thr (a given threshold, currently
set to 1.0Å).

The program tuple generator creates a set of Prolog
facts of the form:
tuple([g1, g2, g3, g4], [X

α
1 , Y

α
1 , Zα

1 , . . . , X
α
4 , Y

α
4 , Zα

4 ],
g2-centroids, g3-centroids, FREQ, ID, PID)

where [g1, g2, g3, g4] ∈ {0, . . . , 8}4 identifies the class of
each amino acid, Xα

1 , . . . , Z
α
4 are the coordinates of the Cα

atoms of the 4-tuple, FREQ ∈ {0, . . . , 1000} is a frequency
factor of the template w.r.t. all occurrences of the 4-tuple
g1, . . . , g4 in the set top-500, ID is a unique identifier for
this fact, and PID is the first protein found containing this
template; this last piece of information will be printed in the
file produced as output of the computation, in order to allow
one to recover the source of a fragment used for the predic-
tion. Without loss of generality, tuple generator sets
Xα

1 = Y α
1 = Zα

1 = 0.
For i = 2, 3, and for each amino acid a ∈ γ−1(gi), we

compute the position of the centroid corresponding to the
positions Xα

1 , . . . , Z
α
4 of the Cα atoms, and add it to the

gi-centroids list. Let us observe that we do not add the
positions of the first and last centroids in the 4-tuples. As a
result, at the end of the computation, only the centroids of
the first and the last amino acid of the entire protein will be
not set; these can be assigned using a straightforward post-
processing step.

It is unlikely that a 4-tuple a1, . . . , a4 that does not appear
in the considered training set will occur in a real protein. Nev-
ertheless, in order to handle these cases, if [γ(a1), . . . , γ(a4)]
has no statistics associated to it, we map it to the special
4-tuple [−1,−1,−1,−1]. By default, we assign to this un-
known tuple the set of the six most common templates among
the set of all known templates. Other special 4-tuples are
[−2,−2,−2,−2] and [−3,−3,−3,−3]; these are assigned
to secondary structure elements (see Sect. 3).

We also introduce an additional collection of Prolog facts,
based on the predicate next, which are used to relate pairs
of tuple facts. The relation

next(ID1, ID2, Mat)

holds if the triplet g2, g3, g4 in the tuple fact identified by
ID1 is the same as the triplet g1, g2, g3 in the tuple fact ID2,
and the rmsd between the corresponding Cα positions is at
most rmsd thr. Mat is the rotation matrix to align the two
sequences.

Statistical energy. The energy function used in this work
builds on three components: (1) a contact potential for side
chain and backbone contacts, (2) an energy component for

each backbone conformation based on backbone conforma-
tional preferences observed in the database, and (3) a compo-
nent that considers the relative orientation of spatially close
triplets.

The first component uses the table of contact energies de-
scribed in [Berrera et al., 2003], modified for the protein
model adopted here. In the case of the side chain centroid,
each centroid has a radius determined by the structure and
mobility of its side chain. Thus, an energy contribution for a
pair of side chain centroids is introduced when their distance
is equal to the sum of their radii. Larger distances provide a
contribution that decays quadratically with the distance.

The torsional angle defined by four consecutive Cα atoms
is assigned an energy value defined by the potential of the
mean force derived by the distribution of the corresponding
torsional angle in the PDB. The procedure has been thor-
oughly described in [Fogolari et al., 2007].

The third energy component weighs the proper orientation
of three consecutive amino acid fragments in order to form
hydrogen bonds, following [Hoang et al., 2004]. This energy
contribution is introduced when the distance between two
three-amino acid fragments is less than 5.8Å. Each fragment
identifies a plane, and we are interested in those cases where
the planes of the two fragments are almost co-planar and nor-
mal to the distance vector i.e., the absolute product of the
cosines of the angles between the normals to the two planes
among themselves and with the distance vector is greater than
0.5.

Since these components come from independent work, we
have experimentally determined their relative weight. We
collected some structures predicted by the system, compared
against the corresponding known structure in terms of spatial
error and energy. We found that the suitable coefficients that
maximize the correlation are: 1 for the torsions, 0.4 for the
contacts, and 2 for the orientations.

3 Modeling
We have modeled the problem of fragments assembly using
constraints over finite domains. The input is a list Primary =
[a1, . . . , an] of n amino acids.2 A list Code of n − 3 vari-
ables is used. The i-th variable Ci of Code corresponds to
the 4-tuple (γ(ai), γ(ai+1), γ(ai+2), γ(ai+3)) and its possi-
ble values are the IDs of the facts of the form:

tuple([γ(ai), γ(ai+1), γ(ai+2), γ(ai+3)], , , Freq, ID, ).

This set is ordered using the frequency information Freq
in decreasing order, and stored in a variable ListDomi.

The next information is used to impose constraints be-
tween Ci and Ci+1. Using the combinatorial constraint
table, we allow only pairs of consecutive values supported
by the next predicate. Recall that, for each allowed com-
bination of values, the next predicate returns the rotation
matrix Mi,i+1, which provides the relative rotation when the
two fragments are best fit.

A list Tertiary with 6n variables is also used:
Xα

i , Y
α
i , Zα

i (resp., XC
i , Y C

i , ZC
i ) denoting the 3D position

2We also allow PDB identifiers as inputs; in this case, the pri-
mary structure of the protein is retrieved from the PDB.
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of the Cα atoms (resp., of the centroids). These variables
have integer values (representing a precision of 10−2Å).

In order to correlate Code variables and Tertiary
variables, consecutive 4-tuples must be constrained. Let
us focus on the Cα part; consider two consecutive tu-
ples: ti = ai, ai+1, ai+2, ai+3 (variable Ci), and ti+1 =
ai+1, ai+2, ai+3, ai+4, (variable Ci+1). When ti is placed in
the space, ti+1 needs to be rotated and translated in order to
match the placement of ti. ti+1 is rotated (according to Mat
in next) as to best overlap the points in common with ti, and
it is translated so that the point ai+3 in ti+1 overlaps the last
point of ti.

Let Xα
i , Y

α
i , Zα

i , . . . , X
α
i+4, Y

α
i+4, Z

α
i+4 be the variables

for the coordinates of these Cα atoms, stored in the list
Tertiary (Fig. 1(d), where Pi = (Xα

i , Y
α
i , Zα

i )). The
constraint introduced rotates and translates the template ti+1

from the reference of Ci (represented by the orthonormal ba-
sis matrix Ri) according to the rotation matrix Mi,i+1 to the
new reference Ri+1 = Ri × Mi,i+1. Moreover, when placing
the template ti+1, the constraint affects only the coordinates
of ai+4, since the other variables are assigned by the applica-
tion of the same constraint for templates tj , j < i + 1. The
constraint shifts the rotated version of ti+1 so that it overlaps
the third point �V3 with Pi+3. Formally, let �V r

k = Ri+1 × �Vk,
with k ∈ {1 . . . 4}, be the rotated 4-tuple corresponding to
Ci+1. The shift vector �s = Pi+3 − �V r

3 is used to constrain
the position of ai+4 as follows: Pi+4 = �s + Ri+1 × �V4.
Note that the 3.8Å distance between consecutive amino acids
(i.e., ai+3 and ai+4) is preserved, and this constraint allows
us to place templates without requiring an expensive rmsd
fit among overlapping fragments during the search. More-
over, during a leftmost search, as soon as the variable Ci is
assigned, the coordinates Pi+3 are uniquely determined.

Matrix and vector products are handled by FD variables
and constraints—by transforming the continuous range [0, 1]
to the discrete set {0, . . . , 1, 000}.

For the sake of simplicity, we omit the formal description
of the constraints associated to the centroids. The centroids’
positions are rotated and shifted accordingly, as soon as the
positions of the corresponding Cα atoms are determined.

The Xα
1 , Y

α
1 , Zα

1 , . . . , X
α
n , Y

α
n , Zα

n part of the Tertiary
list relative to the position of the Cα atoms, is also required
to satisfy a constraint which guarantees the all distant
property [Dal Palù et al., 2010b]: the Cα atoms of each pair
of non-consecutive amino acids must be distant at least D =
3.2Å. This is expressed by the constraint:

(Xα
i −Xα

j )
2 + (Y α

i − Y α
j )2 + (Zα

i − Zα
j )

2 ≥ D2

for all i ∈ {1, . . . , n − 2} and j ∈ {i + 2, . . . , n}. Similar
constraints are imposed between pairs of Cα and centroids
as well as pairs of centroids. In the latter case, in order to
account for the differences in volume of each possible side
chain, we determine minimal distances that depend on the
specific type of amino acid considered.

Additional constraints. A diameter parameter is used
to bound the maximum distance between every different pairs
Cα atoms (i.e., the diameter of the protein). As we argued

in earlier work [Dal Palù et al., 2004], an effective diameter
value is 5.68n0.38 Å.

The native structure of a protein is largely composed of
some recurrent local structures (e.g., α-helices and β-sheets)
that can be predicted with accuracy greater than 80% us-
ing neural networks, or recognized by using other techniques
(e.g., analysis of density maps from electron microscopy).

The knowledge and/or prediction of secondary structure ar-
rangements can be included as additional constraints as part
of the input —e.g., information indicating that the amino
acids i–j form an α-helix. In the processing stage, for
k ∈ {i, . . . , j − 3}, a particular tuple [−2,−2,−2,−2] is
assigned instead of the tuple [γ(ak), . . . , γ(ak+3)]. These
fragments are able to reproduce the helical arrangement when
repetitively combined together. Moreover, a list of the possi-
ble positions for the centroids of the 20 amino acids is re-
trieved. Since the domains for these Ck’s are singletons, as
soon as Ci is considered for value assignment, all the points
of the helix are deterministically computed. Including such
additional constraints reduces the non-deterministic choices
during computation and thus results in a smaller search space.
The case of β-strands is analogous.

4 Experimental results
A version of the current CLP implementation, along with a set
of experimental tests, is available at www.dimi.uniud.
it/dovier/PF/TUPLE. The experimental tests have been
performed on an AMD Opteron 2.2GHz Linux Machine.
Each computation was performed on a single processor us-
ing SICStus Prolog and each computed structure is saved in
pdb format which is a standard format for proteins (detailed
in the PDB repository) that can be processed by most protein
viewers (e.g., Rasmol, ViewerLite, JMol).

The solution search is guided by the instantiation of the Ci

variables. These variables are instantiated in leftmost-first or-
der; in turn, the values in their domains are tried starting with
the most probable value first. We experimentally observed
that other labeling strategies (e.g. first-fail) do not speed up
the search, probably due to the weak propagation of the ma-
trix product constraints. Moreover, the energy value is com-
puted by means of a FD constraint that links coordinates vari-
ables to amino acids types. These kinds of constraints do not
provide effective bounds for pruning the search space when
searching for optimal solutions.

In order to further reduce the time to search for solutions,
we have developed a logic programming implementation of
Large Neighboring Search (LNS) [Shaw, 1998]. LNS is a
form of local search, where the search for the successive solu-
tions is performed by exploring a “large” neighborhood. Here
we define a general move, where a large number of variables
is allowed to change while the others are constrained to pre-
vious fragments assignments. Worsening moves are allowed
with a probability of 0.1. A timeout mechanism is adopted to
terminate the search and the best solution found is returned.

Table 1 and in Fig. 3 show the results for a subset of pro-
teins we tested, ordered by increasing length. The timeout is
2 days for exhaustive search (denoted by enumeration) and 6
hours for LNS. The table reports the best results out of four
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Figure 3: Computed Structures (red/dark gray) compared to the original ones (white) (only Cα atoms are printed to simplify
the analysis). From left to right: 1ZDD (34AA), 2K9D (54AA), 1AIL (69AA), and 1JHG (100AA)

PID N Enumerate 2 days LNS 6 hours
Energy T rmsd Energy T rmsd

1ZDD 34 -113891 480 4.13 -111619 5 3.84
2K9D 54 -211502 800 7.54 -212328 5 4.44
1AIL 69 -339810 2500 7.27 -308206 5 20.75
1JHG 100 -525685 2000 13.82 -552907 52 13.22

Table 1: Computational results (T in minutes, rmsd in Å)

consecutive runs for each LNS experiment. In Table 1, N de-
notes the number of amino acids (AA) of the protein PID,
T denotes the running time (in seconds) elapsed to find the
best structure reported within the time limit. The Energy col-
umn stores the energy of that structure and the rmsd column
reports the root mean square deviation with respect to the de-
posited structure for PID. In Fig. 3 the computed and orig-
inal structures are aligned to show their similarity. For ev-
ery protein, we impose the secondary structure information
as specified in the corresponding PDB annotations. However,
we wish to point out that the proteins we tested are not in-
cluded in the top-500 Database from which we extracted
the 4-tuples.

As one might expect, the branch-and-bound constraint-
based enumeration search performs better for smaller pro-
teins, since it is possible to explore a large fraction of the
search space within the given time limit. The LNS determines
the same local minima in different runs for small proteins.

It is interesting to note that, for smaller chains, the rmsd
w.r.t. the native conformation in the PDB is rather small
(ca. 4Å); this indicates that the best solutions found cap-
ture the fold of the chain, and the determined solutions can
be refined using molecular dynamics simulations, as done
in [Dal Palù et al., 2004]. The same consideration applies
to the longer protein 1AIL, as it is possible to observe in Fig-
ure 3. Instead, for the protein 1JHG of length 100 a reason-
able solution is not found within the current time limits.

5 Discussion
The idea of constraining part of the protein to a specific pat-
tern (i.e. secondary structure shapes) can be extended to dif-
ferent and larger arrangements. Due to evolution, conserved

sub-sequences (sequence and structure are similar) usually
suggest a common functionality. Some analysis of the PDB
can locate the presence of homologous patterns. When study-
ing new protein families usually no structural information
about homology is found.

If homologous sub-structures are found, they can be im-
posed to the target protein with rigid block constraints,
namely a large set of atoms can be placed and rotated as a
single unit. This provides a fast and yet accurate search strat-
egy, since no non-deterministic choices can be made when
searching inside the rigid block, thus resulting in a reduced
search space.

Fig. 4 depicts an hypothetical example, where two homol-
ogous sequences are identified and imposed as rigid block
constraints (left and center). The sequence in between the
two blocks (dashed line on the right figure) on the target pro-
tein is constrained with tuples and it is free to move in the
space. The two blocks can move independently in the space
as long as the connecting loop satisfies tuple constraints.

Figure 4: Two rigid sub-blocks retrieved by homology (left
and center) and a tentative arrangement with a flexible chain
loop in between (dashed line)

The framework can be extended depending on the type
of information available: other analysis could suggest that
some rigid blocks may have particular spatial relationships
(e.g., α-barrels, β-sheet planar relationships, active site in-
formation). These facts could infer some distance constraints
among rigid blocks and restrict the search to the placement of
the sequence between the fixed rigid blocks. For example, re-
ferring to Fig. 4 on the right, the two blocks could be locked
in that relative position and no relative movement could be
performed. This would reduce drastically the search space,
since the non-constrained subsequence would have both ends
fixed in space.
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Since the constraint system is modular, we believe that the
presence of distance constraints can be exploited by the final
user to model a variety of protein properties, e.g., loop clo-
sure, disulfide bonds, volumes of interest for chain flexibility.

The presence of ad-hoc propagators to filter the search
space is essential to perform an efficient exploration of the
solution space. Currently, the rotation matrix constraint is
the only mean to propagate some spatial information along
the chain of amino acids. A chain/backbone propagator that
computes the approximated minimal volumes reachable by
an amino acid can be effective when combined to a distance
constraint propagator.

6 Conclusion
In this paper we presented the design and implementation
of a constraint logic programming tool to predict the native
conformation of a protein, given its primary structure. The
methodology is based on a process of fragments assembly,
using templates of length 4 retrieved from a protein database,
and clustered according to shape similarity. The constraint
solving process takes advantage of a large neighboring search
strategy.

The preliminary experimental results confirm the strong
potential for this fragment assembly scheme. Rosetta is in
fact the state-of-the-art predictor tool (e.g., usually proteins
smaller than 50 amino acids are predicted in less than one
minute with a rmsd less than 4.2 Å). Our method can scale
well and further speed-up may be obtained by considering
larger fragments as done by tools like Rosetta. The pro-
posed method has a significant advantage over highly tuned
schemes like Rosetta—the use of constraint modeling enables
the simple addition of ad-hoc constraints and experimentation
with different local search moves and energy functions.

The implementation presented here constitutes a proof of
concept. For a comparison with the relevant literature, please
see [Dal Palù et al., 2010a].

A realistic prediction scenario requires several improve-
ments to the current system. The choice of 4-residue frag-
ments will be improved in the next future in two directions:
fragments will be chosen based on sequence or profile align-
ment (rather than exact match) against a non-redundant repre-
sentative set of sequences whose structure is known; the size
of the fragment will be chosen based on the alignment and
will not be restricted to 4-residues (rigid blocks).

The reduced representation used here should be replaced
by an all-atom representation to predict hydrogen bonds more
accurately. We plan to test different energy functions that may
better correlate with rmsd w.r.t. the (known) native structures
and the computed ones. It is likely that with sequences longer
than those considered here predictions will not be equally
good in all parts of the molecule, therefore alternative mea-
surements of similarity like GDT-TS [Zemla, 2003] might be
more appropriate. We plan to move now to a constraint-based
parallel and imperative framework, since we seek a high flexi-
bility and low level access to the constraint solver. We plan to
implement crucial data structures in order to be able to run ef-
ficient propagators and to pass parallel work with a low com-
munication rate to parallel workers.
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