Knowing that, Knowing what, and Public Communication: Public Announcement Logic with Kv Operators*

Yanjing Wang, Jie Fan

Department of Philosophy, Peking University {y.wang,fanjie}@pku.edu.cn

Abstract

In his seminal work [Plaza, 1989], Plaza proposed the public announcement logic (PAL), which is considered as the pilot logic in the field of dynamic epistemic logic. In the same paper, Plaza also introduced an interesting "know-value" operator Kv and listed a few valid formulas of PAL+Kv. However, it is unknown that whether these formulas, on top of the axioms for PAL, completely axiomatize PAL+Kv. In this paper, we first give a negative answer to this open problem. Moreover, we generalize the Kv operator and show that in the setting of PAL, replacing the Kv operator with its generalized version does not increase the expressive power of the resulting logic. This suggests that we can simply use the more flexible generalization instead of the original PAL+Kv. As the main result, we give a complete proof system for PAL plus the generalized operator based on a complete axiomatization of epistemic logic with the same operator in the single-agent setting.

Key words: public announcement logic, know-value operator, modal logic, multi-agent system

1 Introduction

As originally proposed in [Von Wright, 1951; Hintikka, 1962], classic epistemic logic (**EL**) focuses on *propositional knowledge* of agents, expressed as *knowing that p*. Such formalism of knowledge turns out to be very successful in the research of AI and theoretical computer science, demonstrated by the widely use of various **EL**-based multi-agent systems, such as the epistemic temporal approach proposed in [Fagin *et al.*, 1995; Parikh and Ramanujam, 1985] and the dynamic epistemic approach proposed in [Plaza, 1989; Gerbrandy and Groeneveld, 1997; Baltag *et al.*, 1998].

On the other hand, there are other types of knowledge which are relevant to AI, such as *procedural knowledge* (*knowing how* to do *a*), and *descriptive knowledge* (*knowing*

what is d). Compared to the heated discussion between propositional knowledge and procedural knowledge in epistemology (cf. e.g., [Ryle, 1949; Carr, 1979; Stanley and Williamson, 2001]), the distinction between "knowing that" and "knowing what" received relatively little attention, although some early work in AI, such as [McCarthy, 1979], claimed that "knowing what" is the most useful notion among the three.

At the first glance, "knowing what" may seem to be reducible to "knowing that", for example, instead of saying (1): "He knows [what] Peter's phone number [is]", we can also say (2): "He knows that Peter's phone number is 1234" if we know Peter's phone number. However, if we replace the "phone number" in (1) by "password" which is usually not known to us, then to express the exact meaning of the revised (1) in terms of knowing that, we may need to say the following:

(3): "He knows *that* Peter's password is 0000 *or* he knows *that* Peter's password is 0001 *or* ... *or* he knows *that* Peter's password is 9999"

Clearly, in every day communication, we prefer the succinctness of sentence (1) compared to (3). Actually the scenario behind (3) is crucial in the setting of information security, where it is very common to assume that each agent has its private key while others have no idea what it is. We would like to express "I know that he knows his password, but I do not know it." However, the literal translation in terms of propositional knowledge $(K_1K_2\phi \land \neg K_1\phi)$ is clearly inconsistent in classic epistemic logic. Such concerns inspired different formalisms of knowledge in epistemic logic related to security verification (cf. e.g., [Ramanujam and Suresh, 2005; Halpern and Pucella, 2003; Dechesne and Wang, 2010]).

Independently from all the above-mentioned works, Plaza proposed a very natural knowing what operator Kv in the seminal work [Plaza, 1989], which is well-known for its contribution to *public announcement logic* (**PAL**) and the reduction-style axiomatization. Intuitively, Kv_id expresses exactly that "Agent i knows what d is (or i knows the value of d, in Plaza's original term)." The Kv operator was used in [Plaza, 1989] to

^{*}This work is supported by the NSSF grant 11CZX054 and the key project of National Social Science Foundation of China 12&ZD119. We also would like to thank the anonymous referees for their insightful comments.

¹**PAL** was also independently proposed in [Gerbrandy and Groeneveld, 1997; Gerbrandy, 1999].

handle the "sum-and-product" puzzle,² where it is crucial to distinguish the two kinds of knowledge and express i knows that j does not know what d is (formally, $K_i \neg K v_j d$). With the corresponding semantics, formulas like $K_i K v_j d \land \neg K v_i d$ are perfectly consistent, in contrast to the inconsistency of $K_i K_j q \land \neg K_i q$ in the standard epistemic logic.

Plaza gave an axiomatization of **ELKv** (**EL** with the new Kv operator) and proposed a few axioms for **PALKv** (**PAL** with Kv). However, it is unknown whether these axioms are enough to axiomatize **PALKv** (cf. [Plaza, 1989] and [van Ditmarsch, 2007]).

In this paper, we will answer this open question and continue Plaza's work on Kv in the context of public announcement logic. Our main technical contributions of this paper are summarized as below:

- The axioms proposed in [Plaza, 1989] do *not* axiomatize **PALKv** completely (Section 3);
- We introduce the *relativized Kv* operator which is a generalization of the original *Kv* operator (Section 4). We give a highly non-trivial complete axiomatization of the *single-agent* epistemic logic with this new operator (**ELKv**^r), based on which a complete axiomatization of single-agent **PAL** with this operator (**PALKv**^r) is provided (Section 5);
- PALKv, PALKv^T and ELKv^T are equally expressive but ELKv is strictly less expressive than them. Therefore it is impossible to reduce PALKv to ELKv, and we can simply use the more flexible PALKv^T instead of PALKv without increasing the expressive power (Section 6).

2 Preliminaries

2.1 Public Announcement Logic

Definition 1 (Logical Languages EL(I,P) and PAL(I,P)). Given a set P of proposition letters and a set I of agent names, the language of public announcement logic PAL(I,P) is defined as follows:

$$\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \langle \phi \rangle \phi$$

where $p \in P$, $i \in I$. The language of epistemic logic (EL(I,P)) is the announcement-free fragment of PAL(I,P).

 $K_i\phi$ is read "agent i knows that ϕ ". $\langle\psi\rangle\phi$ says that " ψ can be truthfully announced publicly, and after its announcement ϕ holds." As usual, we define \bot , $\phi\lor\psi$, $\phi\to\psi$, $\hat{K}_i\phi$ and $[\psi]\phi$ as the abbreviations of $\neg\top$, $\neg(\neg\phi\land\neg\psi)$, $\neg\phi\lor\psi$, $\neg K_i\neg\phi$ and $\neg\langle\psi\rangle\neg\phi$ respectively.

In the sequel, we fix I and P thus simply writing PAL and EL for PAL(I,P) and EL(I,P) respectively.

The semantics of **PAL** is defined on (S5) Kripke structures. An *epistemic model* for **PAL** is a triple $\mathcal{M} = \langle S, \{\sim_i | i \in \mathbf{I}\}, V \rangle$ where S is a non-empty set of possible worlds, \sim_i is an equivalence relation over S, and V is a valuation function assigning a set of worlds $V(p) \subseteq S$ to each $p \in \mathbf{P}$. Given an epistemic model \mathcal{M} , the semantics is defined as follows:

$$\begin{array}{cccc} \mathcal{M},s \vDash \top & \Leftrightarrow & \text{always} \\ \mathcal{M},s \vDash p & \Leftrightarrow & s \in V(p) \\ \mathcal{M},s \vDash \neg \phi & \Leftrightarrow & \mathcal{M},s \nvDash \phi \\ \mathcal{M},s \vDash \phi \land \psi & \Leftrightarrow & \mathcal{M},s \vDash \phi \text{ and } \mathcal{M},s \vDash \psi \\ \mathcal{M},s \vDash K_i \psi & \Leftrightarrow & \text{for all } t \text{ such that } s \sim_i t : \mathcal{M},t \vDash \psi \\ \mathcal{M},s \vDash \langle \psi \rangle \phi & \Leftrightarrow & \mathcal{M},s \vDash \psi \text{ and } \mathcal{M}|_{\psi},s \vDash \phi \end{array}$$

where $\mathcal{M}|_{\psi} = (S', \{\sim_i' | i \in \mathbf{I}\}, V')$ such that:

$$S' = \{s \mid \mathcal{M}, s \models \psi\}, \sim_i' = \sim_i \mid_{S' \times S'}$$
 and $V'(p) = V(p) \cap S'$.

An announcement $\langle \psi \rangle$ is interpreted as a *model transformer* which deletes the worlds that do not satisfy ψ .

It is shown in [Plaza, 1989] via a reduction to **EL** that the following axiomatization is sound and complete (cf. also [van Ditmarsch *et al.*, 2007] for details):

System PAL

Axiom Schemas TAUT all the instances of tautologies Τ $K_i \phi \to \phi$ 4 $K_i \phi \rightarrow K_i K_i \phi$ $\neg K_i \phi \to K_i \neg K_i \phi$ 5 !ATOM $\langle \psi \rangle p \leftrightarrow (\psi \wedge p)$!NEG $\langle \psi \rangle \neg \phi \leftrightarrow (\psi \wedge \neg \langle \psi \rangle \phi)$ $\langle \psi \rangle (\phi \wedge \chi) \leftrightarrow (\langle \psi \rangle \phi \wedge \langle \psi \rangle \chi)$! CON $\langle \psi \rangle K_i \phi \leftrightarrow (\psi \wedge K_i (\psi \rightarrow \langle \psi \rangle \phi))$! K Rules MΡ NECK RE

where $p \in \mathbf{P} \cup \{\top\}$.

Note that in [Plaza, 1989] Plaza did not make it clear whether the RE rule (*replacement of equivalences*) allows the substitutions of the formulas inside the announcements. Here we suppose so.³

It can be shown that the following schemata are derivable/ admissible in \mathbb{PAL} :

Axiom Schema Rule DIST!
$$[\chi](\phi \to \psi) \to ([\chi]\phi \to [\chi]\psi)$$
 NEC! $\frac{\phi}{[\chi]\phi}$

<code>DIST!</code> and <code>NEC!</code> will appear in our later discussions. In the sequel, we use \mathbb{EL} to denote \mathbb{PAL} without the so-called "reduction axioms" (i.e., !ATOM, !NEG, !CON, and !K). It is well-known that \mathbb{EL} completely axiomatizes \mathbf{EL} .

2.2 Adding the Kv operator

Given I, P and a set D of names, the language PALKv(I, P, D) (PALKv for short) is defined as:

$$\phi ::= \top \mid p \mid Kv_i d \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid \langle \phi \rangle \phi$$

where $p \in \mathbf{P}$, $i \in \mathbf{I}$, and $d \in \mathbf{D}$. As before, we obtain an epistemic language $\mathbf{ELKv}(\mathbf{I},\mathbf{P},\mathbf{D})$ (\mathbf{ELKv} for short) when we ignore the announcements in \mathbf{PALKv} .

²See [van Ditmarsch *et al.*, 2008] for the history of the puzzle and discussions in **PAL** without the *Kv* operator.

³This makes our incompleteness result stronger.

⁴For a thorough discussion on axiomatizations of **PAL**, see [Wang and Cao, 2013].

To interpret the new Kv_id formulas, we need the assignment function $V_{\mathbf{D}}: \mathbf{D} \times S \to O$ in the epistemic models, where O is a non-empty set of *objects*. The semantics of Kv_id is as follows:

$$\begin{array}{ccc} \mathcal{M}, s \vDash \mathit{Kv}_i d & \Longleftrightarrow & \text{for any } t_1, t_2 : \text{ if } s \sim_i t_1, s \sim_i t_2, \\ & & \text{then } V_{\mathbf{D}}(d, t_1) = V_{\mathbf{D}}(d, t_2). \end{array}$$

Kv acts as a mixture of a modality and a predicate. It is not hard to see that Kv_i also obeys the positive and negative introspections, namely the following two axioms are valid:

Kv4
$$Kv_id \rightarrow K_iKv_id$$

Kv5 $\neg Kv_id \rightarrow K_i \neg Kv_id$

It is claimed (without a proof) in [Plaza, 1989] that adding Kv4 and Kv5 to \mathbb{EL} completely axiomatizes **ELKv**.

Now a natural question is: how can we axiomatize PALKv? [Plaza, 1989] proposed the following extra axioms on top of PAL with Kv4, Kv5:

KKV
$$\langle K_i \phi \rangle K v_i d \leftrightarrow K_i \phi \wedge K v_i d$$

KVKV $\langle K v_i c \rangle K v_i d \leftrightarrow K v_i c \wedge K v_i d$
!KV $\langle \phi \rangle K v_i d \rightarrow K_i (\phi \rightarrow \langle \phi \rangle K v_i d)$
!nKv $\langle \phi \rangle \neg K v_i d \rightarrow K_i (\phi \rightarrow \langle \phi \rangle \neg K v_i d)$

It is not known whether the above axiom schemata are enough to completely axiomatize PALKv.⁵

In fact, the last three axioms above are superfluous. In the sequel, let us denote PAL + Kv4 + Kv5 + KKv as $PALKV_p$. It is not hard to see that KvKv, ! Kv, ! nKv can all be derived in \mathbb{PALKV}_p by using Kv4, Kv5, T, KKv, !K and RE:

$$\begin{array}{ll} \textbf{Proposition 2.} & (1) & \vdash_{\mathbb{PALKV}_p} \langle Kv_ic \rangle Kv_id \leftrightarrow (Kv_ic \land Kv_id); \\ (2) & \vdash_{\mathbb{PALKV}_p} \langle \phi \rangle Kv_id \rightarrow K_i(\phi \rightarrow \langle \phi \rangle Kv_id); \\ (3) & \vdash_{\mathbb{PALKV}_p} \langle \phi \rangle \neg Kv_id \rightarrow K_i(\phi \rightarrow \langle \phi \rangle \neg Kv_id). \end{array}$$

Proof. For (1):

- (i) $Kv_ic \leftrightarrow K_iKv_ic$ Kv4,T
- $\langle Kv_ic\rangle Kv_id \leftrightarrow \langle K_iKv_ic\rangle Kv_id$ (ii)RE
- (iii) $\langle K_i K v_i c \rangle K v_i d \leftrightarrow K_i K v_i c \wedge K v_i d$ KKv
- $\langle Kv_ic\rangle Kv_id \leftrightarrow (Kv_ic \wedge Kv_id)$ MP(ii) (iii)

For (2):

(i)
$$Kv_id \rightarrow K_iKv_id$$
 Kv4

(ii)
$$\langle \phi \rangle K v_i d \rightarrow \langle \phi \rangle K_i K v_i d$$
 DIST!, NEC!

$$(iii) \quad \langle \phi \rangle K_i K v_i d \leftrightarrow (\phi \wedge K_i (\phi \rightarrow \langle \phi \rangle K v_i d)) \quad ! K$$

$$\begin{array}{ll} (iv) & \langle \phi \rangle K v_i d \to K_i (\phi \to \langle \phi \rangle K v_i d) & \text{MP(ii)(iii)} \\ \end{array}$$

The proof of
$$(3)$$
 is similar as (2) .

In the later discussion we will focus on \mathbb{PALKV}_n .

Incompleteness of \mathbb{PALKV}_p

To prove the incompleteness of \mathbb{PALKV}_p , we will show that the following valid formula is not derivable in \mathbb{PALKV}_p :

$$\theta: \langle p \rangle K v_i d \wedge \langle q \rangle K v_i d \rightarrow \langle p \vee q \rangle K v_i d$$

In order to show this, we design a semantics \Vdash on a class \mathbb{C} of special models such that all the axiom schemata and rules of \mathbb{PALKV}_p are valid w.r.t. \Vdash on \mathbb{C} but not θ . Namely we have for all **PALKv** formulas $\phi : \vdash_{\mathbb{PALKV}_n} \phi \implies \mathbb{C} \Vdash \phi$ and $\mathbb{C} \not \Vdash \theta$, thus we have $\not \vdash_{\mathbb{P} \mathbb{ALKV}_p} \theta$.

Inspired by the semantics developed in [Wang and Cao, 2013], we treat the announcement operator $\langle \phi \rangle$ as a standard modality interpreted on models with ϕ transitions.

Definition 3. (Extended model) An extended (epistemic) model for **PALKv** is a tuple $\langle S, \{\sim_i | i \in I\}, \{\stackrel{\phi}{\rightarrow} | \phi \in I\}$ PALKv, V, V_D where

- $\langle S, \{\sim_i | i \in I\}, V, V_D \rangle$ is a standard epistemic model for PALKv.
- For each **PALKv** formula ϕ , $\stackrel{\phi}{\rightarrow}$ is a binary relation over

We now define the truth conditions of PALKv formulas on extended models (w.r.t. \Vdash) as follows (we only show the clause which differs from \models):

$$\mathcal{M}, s \Vdash \langle \phi \rangle \psi \quad \Leftrightarrow \quad \text{for some } t, s \stackrel{\phi}{\rightarrow} t \text{ and } t \Vdash \psi$$

Compared with the standard semantics w.r.t. ⊨, the only change is the interpretation of $\langle \phi \rangle \psi$. It is clear that

Proposition 4. \Vdash *coincides with* \models *on ELKv formulas.*

Now we try to define a class of extended models where these two semantics get even closer on PALKv formulas.

Definition 5. (Normal extended epistemic model) An extended model $\mathcal{M} = \langle S, \{\sim_i | i \in I\}, \{\stackrel{\phi}{\rightarrow} | \phi \in PALKv\}, V, V_D \rangle$ is called normal if the following properties hold for any $s, t \in S$, any $d \in \mathbf{D}$ and $\phi \in \mathbf{PALKv}$:

P-INV If $s \stackrel{\phi}{\to} t$, then for all $p \in P$: $s \in V(p) \iff t \in$

PFUNC If $\mathcal{M}, s \Vdash \phi$ then s has a unique ϕ -successor. If $\mathcal{M}, s \not\Vdash \phi$ then s has no ϕ -successor.

NM If $s \sim_i s', s \xrightarrow{\phi} t$ and $s' \xrightarrow{\phi} t'$, then $t \sim_i t'$.

PR If $t \sim_i t'$ and $s \stackrel{\phi}{\to} t$, then there exists an s' such that $s \sim_i s'$ and $s' \stackrel{\phi}{\rightarrow} t'$.

D-INV If $s \stackrel{K_i \phi}{\to} t$, then $V_D(d, s) = V_D(d, t)$.

U-RE If
$$\mathcal{M} \Vdash \phi \leftrightarrow \psi$$
 then $s \stackrel{\phi}{\rightarrow} t \iff s \stackrel{\psi}{\rightarrow} t$.

Note that PFUNC and U-RE refer to \Vdash . Let \mathbb{C} be the class of all the normal extended models. We can show that PFUNC guarantees the validity of !NEG and !CON on $\mathbb C$. Under the presence of PFUNC, the validities of ! ATOM and ! K are guaranteed by P-INV and the combination of NM (no miracles) and PR (perfect recall) respectively (cf. [Wang and Cao, 2013] for a similar proof in the standard PAL). Moreover, U-RE helps to make sure that RE is valid, and D-INV is used to show, under the presence of PR and NM, the validity of KKv. Based on these observations (proofs are omitted due to space limitation), we can prove the following:

⁵Note that there is no obvious reduction axiom for Kv_id and we will show it is *impossible* to reduce **PALKv** to **ELKv** in Section 6.

Lemma 6. \mathbb{PALKV}_p is sound w.r.t \Vdash on \mathbb{C} .

However, the \models -valid formulas θ is not \Vdash -valid on \mathbb{C} .

Lemma 7.
$$\mathbb{C} \nVdash \langle p \rangle K v_i d \wedge \langle q \rangle K v_i d \rightarrow \langle p \vee q \rangle K v_i d$$
.

Proof. For simplicity we assume $\mathbf{I} = \{1\}, \mathbf{P} = \{p, q\}$ and $\mathbf{D} = \{d\}$. Consider the following model \mathcal{M} (we omit the reflexive epistemic links and only show the necessary parts for evaluating the desired formula, with \bullet and \circ denoting the objects assigned to d):

$$\begin{array}{c} t:\neg p,\neg q - 1 \longrightarrow s:p,q \xrightarrow{p \lor q} p,q: \circ \\ p,q: \circ \longrightarrow 1 \longrightarrow p, \neg q: \bullet \qquad p,q: \bullet \longrightarrow 1 \longrightarrow p, \neg q: \bullet \end{array}$$

Note that for any $\phi \colon \mathcal{M} \nVdash (p \lor q) \leftrightarrow K_1 \phi$, since $K_1 \phi$ will have a uniform truth value on t, s, s' while $p \lor q$ is false only on the leftmost world. Similarly, for any $\phi \colon \mathcal{M} \nVdash p \leftrightarrow K_1 \phi$ and $\mathcal{M} \nVdash q \leftrightarrow K_1 \phi$. Thus although U-RE and D-INV hold in \mathcal{M} , the assignments of d at s and s' can be different from the assignments at the bottom four worlds. It is not hard to see that (a proper completion of) \mathcal{M} is a normal extended model and

$$\mathcal{M}, s \Vdash \langle p \rangle K v_i d \wedge \langle q \rangle K v_i d \wedge \neg \langle p \vee q \rangle K v_i d.$$

Therefore θ is not valid in \mathbb{C} .

From Lemmata 6 and 7 we have:

Theorem 8. $\langle p \rangle K v_i d \wedge \langle q \rangle K v_i d \rightarrow \langle p \vee q \rangle K v_i d$ is not derivable in \mathbb{PALKV}_p , thus \mathbb{PALKV}_p is not complete w.r.t. \vDash on epistemic models.

4 PAL with the relativized Kv operator

To prevent the counter example in the previous section, we need an axiom to guarantee that the assignments of the names in **D** will essentially stay the same after any announcements. A similar issue applies to the basic propositions but we can use !ATOM to guarantee the propositional invariance. In contrast, we cannot directly talk about the assignments in **PALKv**.

In this section, instead of trying to give an axiomatization of **PALKv**, we will discuss the language **PALKv** r where Kv is replaced by a more general operator, which can be viewed as a relativized version of Kv. The idea of relativizing a modal operator also appeared in [van Benthem $et\ al.$, 2006] where the authors gave an axiomatization of **PALC** r which is **PAL** extended with a relativised version of the common knowledge operator.

Formally, the language of $PALKv^{r}$ is defined as follows:

$$\phi ::= \top \mid p \mid \neg \phi \mid \phi \land \phi \mid K_i \phi \mid K_{v_i}(\phi, d) \mid \langle \phi \rangle \phi$$

where $p \in \mathbf{P}, i \in \mathbf{I}, d \in \mathbf{D}$.

 $Kv_i(\phi, d)$ says that the agent i would know what d is if he were informed that ϕ is true. It is different from $\phi \to Kv_i d$, $K_i \phi \to Kv_i d$, and $K_i (\phi \to Kv_i d)$. The distinction will become clear after understanding the following semantics w.r.t.

$$\mathcal{M} = \langle S, \{\sim_i | i \in \mathbf{I}\}, V, V_{\mathbf{D}} \rangle$$
:

```
 \begin{array}{cccc} \mathcal{M}, s \vDash \mathit{Kv}_i(\phi, d) & \iff & \text{for every } t_1, t_2 \in S \text{ such that} \\ & s \sim_i t_1 \text{ and } s \sim_i t_2 : \\ & & \text{if } \mathcal{M}, t_1 \vDash \phi \text{ and } \mathcal{M}, t_2 \vDash \phi \\ & & \text{then } V_{\mathbf{D}}(d, t_1) = V_{\mathbf{D}}(d, t_2) \\ \end{array}
```

Now the original Kv_i operator can be viewed as $Kv_i(\top, \cdot)$. Therefore **PALKv**^r is indeed an extension of **PALKv**. As before, we denote the announcement-free part of **PALKv**^r as **ELKv**^r.

We can see there is a similarity between an announcement and a condition in the relativized Kv operator, demonstrated by the following validity:

!
$$Kv^r$$
: $\langle \phi \rangle Kv_i(\psi, d) \leftrightarrow (\phi \wedge Kv_i(\langle \phi \rangle \psi, d))$

Note that $! Kv^r$ is also in the shape of the reduction axioms which push the announcement to the "inner" part of the formulas. Based on this observation, we can show, as what Plaza showed for **PAL** and **EL**, that **PALKv**^r and **ELKv**^r are equally expressive.

Theorem 9. $PALKv^{T}$ is equally expressive as $ELKv^{T}$.

Proof. Since \mathbf{PALKv}^r is an extension of \mathbf{ELKv}^r thus \mathbf{PALKv}^r is no less expressive than \mathbf{ELKv}^r . We show that \mathbf{PALKv}^r is no more expressive than \mathbf{ELKv}^r by giving the following truth preserving translation $t: \mathbf{PALKv}^r \to \mathbf{ELKv}^r$ (we only show the non-trivial cases due to space limitation):

```
\begin{array}{lll} t(\mathit{Kv}_i(\phi,d)) & = & \mathit{Kv}_i(t(\phi),d) \\ t(\langle\phi\rangle\top) & = & t(\phi) \\ t(\langle\phi\rangle p) & = & t(\phi \wedge p) \\ t(\langle\phi\rangle\neg\psi) & = & t(\phi \wedge \neg \langle\phi\rangle\psi) \\ t(\langle\phi\rangle(\psi \wedge \chi)) & = & t(\langle\phi\rangle\psi \wedge \langle\phi\rangle\chi) \\ t(\langle\phi\rangle\mathit{K}_i\psi) & = & t(\phi \wedge \mathit{K}_i(\phi \to \langle\phi\rangle\psi)) \\ t(\langle\phi\rangle\mathit{K}_v(\psi,d)) & = & t(\phi \wedge \mathit{K}_v(\langle\phi\rangle\psi,d)) \end{array}
```

By defining a suitable complexity measure of **PALKv**^r formulas as in the case for **PAL** (cf. [van Ditmarsch *et al.*, 2007]), we can show the translation can eventually eliminate the announcement operators. We can also prove $\phi \equiv t(\phi)$ for every $\phi \in \textbf{PALKv}^r$ by induction on the structure of ϕ .

Now, as in the case of **PAL**, if we have a complete axiomatization of **ELKv**^r, then we can also axiomatize **PALKv**^r by using the reduction axioms:

Theorem 10. If $ELKv^{T}$ is completely axiomatized by \mathbb{S} then \mathbb{S} plus RE, !ATOM, !CON, !NEG, !K, and !K v^{T} completely axiomatizes $PALKv^{T}$.

Note that we need to include the rule RE to facilitate the completeness proof via reductions (cf.[Wang and Cao, 2013] for detailed discussions in the context of **PAL**). In the next section we will axiomatize **ELKv**^r in the single agent case.

5 Axiomatization of $ELKv_1^r$

As the reader may expect, axiomatizing \mathbf{ELKv}^{T} is much harder than the case of \mathbf{ELKv} due to the condition in the relativized operator. In the rest of this section, we will provide a

complete axiomatization of \mathbf{ELKv}^r for the *single agent* case (call it \mathbf{ELKv}_1^r). Although all the new axioms that we propose also hold in the multi-agent case, there are still some difficulties in the completeness proof related to multiple agents, to which we will come back at the end of the paper.

5.1 System \mathbb{ELKV}_1^r

Based on single-agent \mathbb{EL} , we propose the following extra axiom schemata and name the resulting system \mathbb{ELKV}_1^r :

DISTKv^r
$$K(\phi \to \psi) \to (Kv(\psi, d) \to Kv(\phi, d))$$

Kv^r4 $Kv(\phi, d) \to KKv(\phi, d)$
Kv^r \bot $Kv(\bot, d)$
Kv^r \lor $\hat{K}(\phi \land \psi) \land Kv(\phi, d) \land Kv(\psi, d) \to Kv(\phi \lor \psi, d)$

DISTKV^r is the distribution axiom for the relativised Kv operator (pay attention to the positions of ψ and ϕ in the consequent). Kv^T4 is a variation of the positive introspection axiom. $Kv^T \perp$ stipulates the precondition of the Kv operator. Maybe the most interesting axiom is $Kv^T \vee$ which will play a very important role in the later completeness proof. Intuitively, it handles the composition of the conditions in the relativized operator: suppose all the possible ϕ worlds agree on what d is and all the possible ψ worlds also agree on d, then the overlap between ϕ possibilities and ψ possibilities implies that all the $\phi \vee \psi$ possibilities also agree on what d is.

It is not hard to see that the extra axioms are all valid:

Theorem 11. \mathbb{ELKV}_1^r is sound with respect to the class of epistemic models with assignments.

In the sequel, for readability, we will sometimes write \vdash for $\vdash_{\mathbb{ELkV}_{7}}$.

Seeing Kv^T4 , the reader may miss a version of negative introspection $\neg Kv(\phi, d) \rightarrow K \neg Kv(\phi, d)$. Actually it can be derived in \mathbb{ELKV}_1^r :

Proposition 12.
$$\vdash_{\mathbb{ELKV}_{+}^{r}} \neg Kv(\phi, d) \rightarrow K \neg Kv(\phi, d)$$

Proof.

$$\begin{array}{ll} \mathit{KKv}(\phi,d) \leftrightarrow \mathit{Kv}(\phi,d) & \text{T, } \mathsf{Kv}^T 4 \\ \neg \mathit{KKv}(\phi,d) \to \mathit{K} \neg \mathit{KKv}(\phi,d) & \text{5} \\ \neg \mathit{Kv}(\phi,d) \to \mathit{K} \neg \mathit{Kv}(\phi,d) & \text{RE} \end{array}$$

 $Kv^r \lor$ can be generalized to arbitrary finite disjunctions due to an easy induction proof based on $Kv^r \lor$.

Proposition 13. For any finite set of $ELKv_1^r$ formulas U:

$$\vdash_{\mathbb{ELKV}_{\hat{1}}} \hat{\mathit{K}}(\bigwedge U) \land \bigwedge_{\phi \in U} \mathit{Kv}(\phi, d) \to \mathit{Kv}(\bigvee U, d).$$

5.2 Completeness of \mathbb{ELKV}_1^r

In this subsection we prove that \mathbb{ELKV}_1^r is complete w.r.t. the class of epistemic models. As in normal modal logics, we will show that every consistent set of \mathbf{ELKv}_1^r formulas is satisfiable at some state in a canonical model. In defining the canonical model we need to borrow some ideas from the Henkin construction in first-order logic. The difficulties lie in the definition of the canonical model and the proof of the truth lemma for the new Kv operator, as we will explain later.

Canonical model

The canonical model \mathcal{M}^c of \mathbb{ELKV}_1^r is $\langle S^c, \sim^c, V^c, V_{\mathbf{D}}^c \rangle$ where:

- $S^c = MCS \times \{0,1\}$, where MCS is the set of \mathbb{ELkV}_1^r -maximal consistent sets. That is, every maximal consistent set has two copies in S^c . We write $\phi \in s$ if ϕ is in the maximal consistent set of s. We write $\phi \in s \cap t$ if $\phi \in s$ and $\phi \in t$.
- $s \sim^c t \text{ iff } \{\phi \mid K\phi \in s\} \subseteq t.$
- $\bullet \ V^c(p) = \{s \in S^c \mid p \in s\}.$
- $V_{\mathbf{D}}^{c}(d,s) = |(d,s)|_{R}$. That is, $V_{\mathbf{D}}^{c}(d,s)$ is the equivalence class under the equivalence relation R defined below over $\{(d,s) \mid s \in S^{c}, d \in \mathbf{D}\}$:

$$R = \{((d,s),(e,t)) \mid d=e,s \sim^c t \text{ and } Kv(\phi,d) \in s \text{ for some } \phi \in s \cap t\} \cup \{((d,s),(d,s)) \mid d \in \mathbf{D}, s \in S^c\}$$

To show the above definition is well-defined, we need some simple propositions. The first is a standard exercise for \mathbb{EL} :

Proposition 14. $s \sim^c t$ iff $\{\phi \mid K\phi \in s\} = \{\phi \mid K\phi \in t\}$, thus \sim^c is an equivalence relation.

Based on Proposition 14 and $\mathbb{K} \vee^r 4$, the following is immediate:

Proposition 15. For any $s, t \in S^c$, if $s \sim^c t$, then $Kv(\phi, d) \in s$ iff $Kv(\phi, d) \in t$.

Based on the above two propositions and the definition of R, R is clearly reflexive and symmetric. The transitivity can be shown by using the axiom $Kv^T \lor$, and then we have:

Proposition 16. R is an equivalence relation on $\{(d,s) \mid s \in S^c, d \in \mathbf{D}\}$.

Remark 17. The readers may wonder why we used two copies of each maximal consistent set. Consider the following model:

$$p, d \mapsto \circ - - - p, d \mapsto \bullet$$

It is not hard to see that both worlds satisfy exactly the same **PALKv**^r formulas. However, we do need these two worlds to differentiate the assignments of the name d. These two copies of each maximal consistent set will play an important role in our proof of the completeness.

Completeness

In order to establish the truth lemma, we need to show that if $Kv(\phi, d) \not\in s$ then $\mathcal{M}^c, s \models \neg Kv(\phi, d)$. This is the most difficult part in the completeness proof which requires a few results below.

Given a state $s \in S^c$ such that $K\nu(\phi,d) \notin s$, let $Z = \{\psi \mid K\psi \in s\} \cup \{\phi\}$ and $X = \{\neg \chi \mid K\nu(\chi,d) \in s\}$. We have the following observations.

Observation 18. 1. For any $\neg \chi \in X$, $\{\neg \chi\} \cup Z$ is consistent.

2. Z is consistent and every element in X is also consistent.

Proof. In the sequel, we will write \vdash as the shorthand for $\vdash_{\mathbb{ELkV}^r}$.

For (1): Suppose not, then there exist ψ_1, \ldots, ψ_m such that $\vdash \psi_1 \land \cdots \land \psi_m \land \phi \rightarrow \chi$, equivalently, $\vdash \psi_1 \land \cdots \land \psi_m \rightarrow \chi$

 $(\phi \to \chi)$, and thus $\vdash K\psi_1 \land \cdots \land K\psi_m \to K(\phi \to \chi)$ by DISTK and NECK. Since $K\psi_1,\ldots,K\psi_m\in s, K(\phi o\chi)\in$ s. Now by DISTKv^r and the fact that $Kv(\chi, d) \in s$, it follows that $Kv(\phi, d) \in s$, contradiction.

For (2): followed immediately from (1) based on the nonemptiness of X due to $Kv^r \perp$.

Recall that we want to show that $Kv(\phi, d) \notin s$ implies \mathcal{M}^c , $s \models \neg K \nu(\phi, d)$. To show that $K \nu(\phi, d)$ does not hold on s, we need to construct two ϕ worlds which are linked with s but with different assignments for d. In order to do this, according to the definition of R, we have to make sure that these two worlds do not share any ψ such that $Kv(\psi, d) \in s$.

Now since \mathbf{ELKv}_1^r is denumerable, we can enumerate all formulas in X as $\neg \chi_0, \neg \chi_1, \dots$ Then we start to add these χ_i one by one to two copies of Z. The procedure is described as follows:

- 1. Let $B_0 = Z \cup \{ \neg \chi_0 \}$ and let $C_0 = Z$.
- 2. If B_k and C_k are defined then we take $\neg \chi_{k+1} \in X$, and try to add it into B or C as follows: if it is consistent with B_k then let $B_{k+1} = B_k \cup \{\neg \chi_{k+1}\}$ and let $C_{k+1} = \neg \chi_{k+1}$ C_k ; otherwise let $B_{k+1} = B_k$ and let $C_{k+1} = C_k \cup$ $\{\neg \chi_{k+1}\}.$
- 3. Let $B = \bigcup_{k < \omega} B_k$ and $C = \bigcup_{k < \omega} C_k$.

To construct two worlds out of B and C, we need to show B and C are consistent. From Observation 18, B_0 and C_0 are consistent. We only need to show that the second step preserves consistency, which amounts to the following lemma:

Lemma 19. Suppose $Kv(\phi, d) \notin s$. For any k, if B_k and C_k are consistent, then $B_k \cup \{\neg \chi_{k+1}\}$ is inconsistent implies $C_k \cup \{\neg \chi_{k+1}\}$ is consistent.

Proof. Suppose not, then there is a k such that both $B_k \cup$ $\{\neg \chi_{k+1}\}$ and $C_k \cup \{\neg \chi_{k+1}\}$ are inconsistent. Now let $\overline{U} =$ $B_k \backslash Z, \, \overline{V} \, = \, C_k \backslash Z, \, U \, = \, \{\chi \mid \, \neg \chi \, \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, V \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, X \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}, \, {\rm and} \, \, X \, = \, \{\chi \mid \, \neg \chi \in \, \overline{U} \}$ $\neg \chi \in \overline{V}$ }. Note that $U, V, \overline{U}, \overline{V}$ are all finite.

there exist $\psi_1, \ldots, \psi_l, \psi'_1, \ldots, \psi'_m$, $\psi_1'', \dots, \psi_n'' \in \{\psi \mid K\psi \in s\}$ such that

(i) and (ii) are immediate from the inconsistency of $B_k \cup$ $\{\neg \chi_{k+1}\}$ and $C_k \cup \{\neg \chi_{k+1}\}$. For (iii), first note that for any $\chi \in V$, $\{\neg \chi\} \cup B_k$ is inconsistent due to the construction of B_k . Therefore for each $\chi \in V$ there exist $\theta_1, \ldots, \theta_h \in \{\psi \mid$ $K\psi \in s$ } such that:

$$\vdash (\theta_1 \land \dots \land \theta_h \land \phi \land \bigwedge \overline{U}) \to \chi$$

Now since V is a finite set, we collect all such θ for each $\chi \in V$ to obtain (iii).

From (i) - (iii), NECK, DISTK and the fact that

 $K\psi_1,\ldots,K\psi_l,K\psi_1',\ldots,K\psi_m',K\psi_1'',\ldots,K\psi_n''\in s,$

we can show the following:

- (iv) $K((\phi \land \bigwedge \overline{U}) \to \chi_{k+1}) \in s$,
- $\begin{array}{ll} (v) & K((\phi \wedge \bigwedge \overline{V}) \to \chi_{k+1}) \in s, \\ (vi) & K((\phi \wedge \bigwedge \overline{U}) \to \bigwedge V) \in s. \end{array}$

In the following, we will show that $\hat{K}(\chi_{k+1} \wedge \bigwedge V) \in s$. First we claim $\hat{K}(\phi \wedge \bigwedge \overline{U}) \in s$. Suppose not, then $K \neg (\phi \wedge I)$ $\bigwedge \overline{U}) \in s$, thus $\neg(\phi \land \bigwedge \overline{U}) \in B_k$. Due to the construction of B_k we know ϕ and \overline{U} are in B_k , thus B_k is inconsistent, contradicting the assumption. Therefore $\hat{K}(\phi \wedge \bigwedge \overline{U}) \in s$ thus by (iv), (vi) we have $\hat{K}(\chi_{k+1} \wedge \bigwedge V) \in s$.

By our assumption, for any $\chi \in V \cup \{\chi_{k+1}\}$ we have $K\nu(\chi,d) \in s$. Now based on this fact and $\hat{K}(\chi_{k+1} \wedge \bigwedge V) \in$ s, we can use Proposition 13, and obtain the following:

(vii)
$$Kv(\chi_{k+1} \lor \bigvee V, d) \in s$$
.

Now let us change the from of (v) to the following:

$$(v')$$
 $K(\phi \to (\bigvee V \lor \chi_{k+1}) \in s,$

Based on (v'), (vii) and DISTK v^r , we have $Kv(\phi, d) \in s$, contradiction.

In sum, one of $B_k \cup \{\neg \chi_{k+1}\}$ and $C_k \cup \{\neg \chi_{k+1}\}$ is consistent.

Based on Lemma 19, using Lindenbaum-like argument, we have the following:

Lemma 20. There are X_0, X_1 such that $X_0 \cap X_1 = \emptyset$, $X_0 \cup X_1 = X$, and both $B = Z \cup X_0$ and $C = Z \cup X_1$ are consistent. Therefore B and C can be extended into two maximal consistent sets.

Note that the above lemma does not rule out the possibility that the two maximal consistent sets being the same. We will handle this by using different copies in the canonical model.

Now we will prove the completeness of \mathbb{ELKV}_1^r , i.e., every valid **ELKv**₁ formula is \mathbb{ELKV}_1^r -provable. As usual, we construct the canonical model which can satisfy each consistent set of \mathbf{ELKv}_1^r formulas.

Lemma 21 (Truth Lemma). For any $ELKv_1^r$ formula ϕ , $\phi \in$ $s \text{ iff } \mathcal{M}^c, s \vDash \phi.$

Proof. By induction on ϕ . We will only show the case of $Kv(\phi, d)$ in detail since other cases are standard exercises as in normal modal logic. The direction from $Kv(\phi, d) \in s$ to $\mathcal{M}^c, s \models Kv(\phi, d)$ is straightforward based on the induction hypothesis and our definition of R.

Now for the converse, suppose that $Kv(\phi, d) \notin s$, we need to show \mathcal{M}^c , $s \nvDash K\nu(\phi, d)$. Recall that $Z = \{\psi \mid K\psi \in s\} \cup \{\psi \mid K\psi \in s\}$ $\{\phi\}$ and $X = \{\neg \chi \mid K\nu(\chi, d) \in s\}$. Lemma 20 guarantees that we can find two (possibly identical) maximal consistent sets B' and C' such that $Z \cup X_0 \subseteq B'$ and $Z \cup X_1 \subseteq C'$ for some X_0, X_1 satisfying $X = X_0 \cup X_1$.

Now we can construct two different worlds $t_0 = (B', 0)$ and $t_1 = (C', 1)$. It is clear that $t_0, t_1 \in S^c$. Since $Z \subseteq t_0 \cap t_1$ we have $t_0 \sim^c s \sim^c t_1$, and $\mathcal{M}^c, t_0 \vDash \phi$ and $\mathcal{M}^c, t_1 \vDash \phi$ due to the induction hypothesis. Now we claim $((d, t_0), (d, t_1)) \not\in$ R. To see this, consider any $K\nu(\chi,d) \in s$ (equivalently, any $\neg \chi \in X$), we have either $\chi \not\in B'$ or $\chi \not\in C'$ since $X_0 \cup X_1 =$ X and B', C' are consistent.

Based on the above lemma it is routine to show:

Theorem 22. \mathbb{ELKV}_1^r is sound and complete.

Based on this theorem 10, and Theorem $\mathbb{ELKV}_{1}^{r}+!$ ATOM+!NEG+!CON+!K+!Kv^r is sound complete for $PALKv_1^r$.

Expressivity

In this section we compare the expressivity of the various logical languages that we discussed in this paper. The results are summarized in the following (transitive) diagram:

$$\begin{array}{cccc} \mathbf{ELKv}^r & \longleftrightarrow & \mathbf{PALKv}^r \\ \uparrow & & \downarrow \\ \mathbf{ELKv} & \longleftrightarrow & \mathbf{PALKv} \end{array}$$

Note that, in contrast to the axiomatization result, in this section all the results also hold in multi-agent cases.

Theorem 9 already shows that \mathbf{ELKv}^r and \mathbf{PALKv}^r are equally expressive. In the sequel, to complete the diagram, we first show that ELKv is strictly less expressive than **PALKv** then prove that **ELKv** r is equally expressive as PALKv. To compare ELKv and PALKv, we give two models that cannot be distinguished by any ELKv formula but can be distinguished by a **PALKv** formula. First we need a notion of bisimulation for ELKv models.

Definition 23. Let $\mathcal{M}_1 = \langle S_1, \{\sim_i^1 | i \in I\}, V_1, V_D^1 \rangle$ and $\mathcal{M}_2 = \langle S_2, \{\sim_i^2 | i \in I\}, V_2, V_D^2 \rangle$ be two models. A d-bisimulation between M_1 and M_2 is a non-empty relation $\mathcal{R} \subseteq S_1 \times S_2$ such that if $s_1 \mathcal{R} s_2$ then the following requirements hold for all $i \in I$:

Inv: $V_1(s_1) = V_2(s_2);$

if $s_1 \sim_i^1 t_1$, then there exists $t_2 \in S_2$ such that Zig:

 $s_2 \sim_i^2 t_2$ and $t_1 \mathcal{R} t_2$; if $s_2 \sim_i^2 t_2$, then there exists $t_1 \in S_1$ such that Zag: $s_1 \sim_i^1 t_1$ and $t_1 \mathcal{R} t_2$;

if $t_1 \sim_i^1 s_1 \sim_i^1 t_1'$, and $V_{\mathbf{D}}^1(d,t_1) \neq V_{\mathbf{D}}^1(d,t_1')$ for some d then there exist $t_2, t_2' \in S_2$ such that Kv-Zig:

between \mathcal{M}_1 and \mathcal{M}_2 linking s_1 and s_2 .

We can show d-bisimulation preserves **ELKv** formulas:

Theorem 24. If $\mathcal{M}_1, s_1 \, \stackrel{d}{\hookrightarrow}_d \, \mathcal{M}_2, s_2$, then $\mathcal{M}_1, s_1 \equiv_{ELKv}$ \mathcal{M}_2, s_2 .

Proof. Suppose that $\mathcal{M}_1, s_1 \leq_d \mathcal{M}_2, s_2$, we proceed by induction on the structure of **ELKv** formula ϕ . Here we only show the non-trivial case for Kv_id .

Suppose $\mathcal{M}_1, s_1 \nvDash Kv_i d$, then there exists t_1, t_1' with $t_1 \sim_i^1 s_1 \sim_i^1 t_1'$ and $V_{\mathbf{D}}^1(t_1, d) \neq V_{\mathbf{D}}^1(t_1', d)$. By Kv-Zig, there exist $t_2, t_2' \in S_2$ such that $t_2 \sim_i^2 s_2 \sim_i^2 t_2'$, and $V_{\mathbf{D}}^2(d, t_2) \neq V_{\mathbf{D}}^2(t_1', t_2')$. Therefore $A_1 \in \mathcal{A}_1 \subseteq \mathcal{A}_2$ and $A_2 \in \mathcal{A}_3$ and $A_3 \in \mathcal{A}_4$ and $A_3 \in \mathcal{A}_3$ are $\mathcal{A}_3 \in \mathcal{A}_3$ and $\mathcal{A}_3 \in \mathcal{A}_3 \in \mathcal{$ $V_{\mathbf{D}}^2(d, t_2')$. Therefore $\mathcal{M}_2, s_2 \nvDash K v_i d$.

The other direction can be proved similarly by using Kv-Zag.

Now consider the following two models (using \circ and \bullet for the objects assigned to d):

$$s: p \circ _1 _ \neg p \circ _1 _ p \bullet$$
 $s': p \circ _1 _ \neg p \bullet$

It is not hard to see that these two models are d-bisimiliar linking s and s'. However, we can distinguish s and s' easily by a **PALKv** formula $[p]Kv_1d$.

Based on this example and the fact that PALKv is an extension of **ELKv**, we have the following result:

Theorem 25. *PALKv* is strictly more expressive than *ELKv*.

The readers may recall a similar comparison in the context of (relativised) common knowledge between ELC, ELC r , **PALC** and **PALC**^r in [van Benthem *et al.*, 2006] where **PALC** is strictly less expressive than $PALC^{r}$. However, in our case the situation is different.

Theorem 26. *ELKv*^r is no more expressive than *PALKv*.

Proof. Define a translation function $t : \mathbf{ELKv}^r \to \mathbf{PALKv}$ as follows (we only show the non-trivial clause):

$$t(Kv_i(\phi, d)) = K_i \neg t(\phi) \lor \hat{K}_i \langle t(\phi) \rangle Kv_i d$$

It is not hard to show that t can eliminate the $Kv_i(\phi, \cdot)$ operators while preserving the truth of formulas.

Now based on Theorem 26, the fact that \mathbf{ELKv}^r and \mathbf{PALKv}^r are equally expressive, and the fact that \mathbf{PALKv}^r is clearly no less expressive than PALKv, the following corollary is immediate:

Corollary 27. PALKv^r, PALKv and ELKv^r are equally expressive.

Conclusion and Future work

In this paper, we proved that the system \mathbb{PALKV}_p is not complete. On the other hand, \mathbb{ELKV}_1^r is complete for single agent ELKv^r. Based on this and Theorem 10, \mathbb{ELKV}_1^r +!ATOM+!NEG+!CON+!K+!K \mathbf{v}^r is complete for \mathbf{PALKv}_1^r . We conjecture that \mathbf{PALKv}_1^r is decidable, since a version of filtration technique should work to show a small model property as in normal modal logic. We leave it to a future occasion.

It is not very clear whether multi-agent **ELKv**^r can be completely axiomatized by the multi-agent version of \mathbb{ELKV}_1^r . Two main difficulties in the completeness proof are as follows:

- 1. The definition of R in the canonical model is to be revised: we may need to take the reflexive transitive closure of R to make it an equivalence relation.
- 2. The definition of \sim_i^c also needs to be revised.

To see the second point, consider the following model:

It is clear that these two worlds satisfy exactly the same set of **PALKv**^r formulas. However, it is impossible to embed this model in our previously defined canonical model, since these two worlds must be connected by \sim_2 if they have the same maximal consistent sets. We leave the multi-agent axiomatization and the applications of the new relativized Kv operator for future work.

References

- [Baltag *et al.*, 1998] A. Baltag, L. Moss, and S Solecki. The logic of public announcements, common knowledge, and private suspicions. In *Proceedings of TARK* '98, pages 43–56. Morgan Kaufmann Publishers Inc., 1998.
- [Carr, 1979] D. Carr. The logic of knowing how and ability. *Mind*, 78:394–409, 1979.
- [Dechesne and Wang, 2010] F. Dechesne and Y. Wang. To know or not to know: epistemic approaches to security protocol verification. *Synthese*, 177(Supplement-1):51–76, 2010.
- [Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about knowledge. MIT Press, Cambridge, MA, USA, 1995.
- [Gerbrandy and Groeneveld, 1997] J. Gerbrandy and W. Groeneveld. Reasoning about information change. *Journal of Logic, Language and Information*, 6(2):147–169, April 1997.
- [Gerbrandy, 1999] J. Gerbrandy. *Bisimulations on Planet Kripke*. PhD thesis, University of Amsterdam, 1999.
- [Halpern and Pucella, 2003] J. Y. Halpern and R. Pucella. Modeling adversaries in a logic for security protocol analysis. In *Formal Aspects of Security*, pages 87–100, 2003.
- [Hintikka, 1962] J. Hintikka. *Knowledge and Belief: An Introduction to the Logic of the Two Notions*. Cornell University Press, Ithaca N.Y., 1962.
- [McCarthy, 1979] J. McCarthy. First-Order theories of individual concepts and propositions. *Machine Intelligence*, 9:129–147, 1979.
- [Parikh and Ramanujam, 1985] R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge. In *Proceedings of Conference on Logic of Programs*, pages 256–268, London, UK, 1985. Springer-Verlag.
- [Plaza, 1989] J. A. Plaza. Logics of public communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, and Z. W. Ras, editors, *Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems*, pages 201–216, 1989.
- [Ramanujam and Suresh, 2005] R. Ramanujam and S. P. Suresh. Decidability of secrecy for context-explicit security protocols. *Journal of Computer Security*, 13(1):135–165, 2005.
- [Ryle, 1949] G. Ryle. The Concept of Mind. Penguin, 1949.
- [Stanley and Williamson, 2001] J. Stanley and T. Williamson. Knowing how. *Journal of Philosophy*, 98:411–444, 2001.
- [van Benthem *et al.*, 2006] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change. *Information and Computation*, 204(11):1620–1662, November 2006.
- [van Ditmarsch *et al.*, 2007] H. van Ditmarsch, W. van der Hoek, and B. Kooi. *Dynamic Epistemic Logic*. (Synthese Library). Springer, 1st edition, November 2007.

- [van Ditmarsch *et al.*, 2008] H. van Ditmarsch, J. Ruan, and R. Verbrugge. Sum and product in dynamic epistemic logic. *Journal of Logic and Computation*, 18(4):563–588, 2008.
- [van Ditmarsch, 2007] H. van Ditmarsch. Comments to 'logics of public communications'. *Synthese*, 158(2):181–187, 2007.
- [Von Wright, 1951] G. H. Von Wright. An Essay in Modal Logic. North Holland, Amsterdam, 1951.
- [Wang and Cao, 2013] Y. Wang and Q. Cao. On axiomatizations of public announcement logic. *Synthese*, 2013. Online First: http://dx.doi.org/10.1007/s11229-012-0233-5.