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Abstract
The last two decades have seen a growing inter-
est in the development of automated agents that are
able to negotiate on the user’s behalf. When repre-
senting a user in a negotiation, it is essential for the
agent to understand the user’s preferences, without
exposing them to elicitation fatigue. To this end, we
propose a new model in which a negotiating agent
may incrementally elicit the user’s preference dur-
ing the negotiation. We introduce an optimal elic-
itation strategy that decides, at every stage of the
negotiation, how much additional user information
to extract at a certain cost. Finally, we demonstrate
the effectiveness of our approach by combining our
policy with well-known negotiation strategies and
show that it significantly outperforms other elicita-
tion strategies.

1 Introduction
Negotiation is a frequently used and important process by
which different parties can reach a mutually acceptable agree-
ment [Lomuscio et al., 2001]. At the same time, it is also
a time-consuming and expensive activity that humans often
find challenging and stressful [Fatima et al., 2014]. Software
agents can help alleviate some of the difficulties involved in
negotiation by representing the user in an automated man-
ner. For example, the agent may provide negotiation support
in highly complex negotiation domains, such as purchasing a
supercomputer or conducting union negotiations.

To do so effectively, the agent needs to obtain an accurate
user model through preference elicitation, which typically
precedes the agent negotiation phase. However, in many real-
istic settings, extracting the necessary preference information
is arduous and costly, as multiple interactions with the system
can result in user displeasure and bother [Buffett et al., 2004;
Fleming and Cohen, 2004]. In addition, the space of negotia-
tion outcomes is often too large to elicit in its entirety.

Until recently, the challenge of an agent not fully knowing
its own preferences and developing strategies to address the
tradeoff between negotiation outcome and effort expended in
elicitation has received very little attention [Boutilier, 2002].
The work by Chajewska et al. [1998; 2000] provides one
of the first starting points to this problem, but their solution

method often deals with computationally intractable decision
procedures. Costly preference elicitation has also been stud-
ied in the setting of auctions; notably by Conen and Sand-
holm [2001] and Parkes [2005]. These works are primarily
aimed at designing mechanisms that can avoid unnecessary
elicitation. Costly preference elicitation may alternatively be
cast as a problem in which agents have to allocate costly com-
putational resources to compute their valuation [Larson and
Sandholm, 2001], but this work focuses on interactions be-
tween different strategies.

To address the challenge of formulating an effective nego-
tiation and elicitation strategy, we propose a novel and effi-
cient approach whereby the agent incrementally asks the user
for information during the negotiation process. This reduces
time spent on the preference elicitation phase by minimizing
queries to the user, and allows the agent to interactively ex-
tract the most valuable information from the user at the most
relevant time.

Our main contribution is a generic, optimal, and efficient
elicitation strategy for a negotiation agent. The elicitation
method is generic in that it can be combined with any ex-
isting utility-based bidding strategy. It is optimal in the sense
that, during the deliberation cycle, the agent will optimally
choose whether or not to elicit further information from the
user, taking into account both the elicitation costs (i.e. user
bother) and the incremental learning effect of any subsequent
information gain. In doing so, the strategy will also take
into consideration the likelihood that any offer will be ac-
cepted by the opponent. Lastly, we show our algorithm is
O(n log n) efficient, which provides a considerable improve-
ment over the naı̈ve approach. As a second contribution, we
show in an experimental setting that our elicitation method
outperforms benchmark approaches when coupled with ex-
isting, well-known bidding strategies, regardless of the user
elicitation costs.

2 Problem Description
We consider a setting where the agent is negotiating with an
opponent on behalf of a user who is unwilling or unable to
fully specify their preferences. Hence, for each possible of-
fer, the agent has two types of uncertainty: (1) whether the
opponent will accept the offer (the opponent model), and (2)
the user’s utility of an offer (the user model). We assume
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that the agent has prior information about both the opponent
model and user model,1 which is updated during negotiation.

The opponent model is updated through the offers that are
exchanged with the opponent. At the same time, the agent
is allowed to approach the user if it believes it requires addi-
tional information to improve the user model.

Given this, at every point in the negotiation, the agent
needs to decide whether to ask the user for more informa-
tion, whether to submit or accept an offer, or whether to end
the negotiation. Each of these actions has potential benefits
and costs. Specifically, asking the user for information incurs
a user bother cost. Hence, the agent should take into account
whether this outweighs potential benefits compared to the al-
ready known information. The agent’s decision problem is
especially challenging because we allow incremental elicita-
tion: that is, when the extracted preferences of a potential of-
fer prove disappointing, the agent is allowed to continue the
elicitation process. Therefore, the agent should balance the
value of the current negotiation state with performing one or
more elicitation steps. In addition, the agent should take into
consideration the likelihood that the opponent is going to ac-
cept the offer, as this directly affects the benefits of requesting
more precise information.

As well as asking the user, the agent should be careful
when accepting an offer, as this forgoes the opportunity to
explore further offers. Figure 1 provides an overview of the
interaction between the opponent, agent, and user.
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Propose and 
accept offers 

Negotiation 
strategy

Receive offers,
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Update
user model

Elicitation
strategy

Figure 1: The interactions between the user, the agent, and
the opponent.

To make the setting more concrete, consider the following
scenario.

Example 1. Suppose Alice has an automated agent purchas-
ing software for her online. After some initial bargaining, the
agent has received two proposals, ω1 and ω2, from the soft-
ware supplier. There is another possible option ω3, but there
is only a 50% probability that the supplier will accept ω3.

1This information could be obtained from previous interactions
or could be the population average. In this paper we are not con-
cerned with how this information is obtained and assume it is avail-
able.

The agent is not fully aware of Alice’s preferences concern-
ing each offer, but from previous negotiations, it deduces that:
ω1 is a risky choice, with utility anywhere between 0 and 1;
ω2 is a safer alternative, with utility between 0.4 and 0.6; ω3

is the most certain and desirable choice, with utility between
0.8 and 0.9.

Not getting the software at all has utility 0.2, meaning ω1

could turn out to be worse than opting out. Asking Alice for
more information about ω1, ω2 or ω3 lowers the utility of the
outcome by 0.2 for every question. What is the agent to do?

Note that, although the expected utilities of ω1 and ω2 are
the same, they clearly should be handled differently by the
agent; for instance, if the agent asks Alice the true valuation
of ω1 and it turns out to be 0.9, the agent should immediately
stop and settle for this option, while this does not hold for the
other options.

To make this decision, the agent needs to optimally trade
off the costs of user bother against the chances of getting the
best deal for the user with the limited preference information
available. We will return to this example later in the paper
after presenting a formal framework to handle these cases.

3 Formal Model
Let Ω = {ω1, . . . , ωn} denote the space of all possible out-
comes of the negotiation. Every ω ∈ Ω is a possible agree-
ment, of which the utility for the user, denoted by U(ω), is
a priori uncertain. Specifically, before any information is
elicited from the user, the utility of an offer ω ∈ Ω is given by
a stochastic variable xω with cumulative distribution function
Fω(x), independent of the other offers.

At any point in time, the agent may ask the user to spec-
ify the actual utility U(ω) of a specific outcome ω at cost
c(ω), which represents the utility loss associated with both-
ering the user. We assume that, once the user provides the
utility, the information becomes certain. Note that the user
need not provide this utility value directly: the preferences
could be obtained by any elicitation method (e.g. queries that
compare outcomes), as long as we can extract a reasonable
utility value from this (e.g. using the Borda scoring rule as
in [Aydoğan et al., 2014]).

The agent may continue to elicit the user’s preferences in
an incremental fashion. In doing so, the user feedback parti-
tions the outcome space into two sets: a growing set S ⊆ Ω of
known offers, i.e. the set of offers for which the agent knows
the utility for certain, and the set S = Ω\S of still-uncertain
offers.

In addition, the agent models the probability that an offer
ω ∈ Ω is accepted by the opponent, which is denoted by pω .
The prior distributions for pω can be constructed from earlier
interactions and the opponent model is updated after each ne-
gotiation exchange so that it can take into account strategic
behavior. This constitutes the agent’s opponent model. Fur-
thermore, the agent has a known reservation value r ∈ [0, 1],
which is the utility of a disagreement and hence the minimum
acceptable utility for an offer by the user.

The agent exchanges offers with the opponent according to
a negotiation protocol.2 Whenever the agent receives an of-

2In the experiments we use the alternating offers protocol, but
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fer from the opponent, the opponent model is updated; simi-
larly, the agent can propose an offer and updates the opponent
model if it has been rejected. The negotiators can signal an
accept by resending an offer that was proposed previously by
the other. There is typically a non-zero probability the utility
of an unknown offer falls below the reservation value; there-
fore, we allow the agent to only send and accept known offers,
since otherwise the reservation value cannot be guaranteed.
When an offer is accepted, the negotiation ends in agreement.
An agreement must be reached before a fixed number of ex-
changes (or rounds)N . The agent may also choose to actively
end the negotiation process by signaling a break-off. At the
end of the negotiation, the utility of the agent is given by:

U =

{
U(ω)−

∑
ω′∈S c(ω

′) if ω ∈ S is accepted,
r −

∑
ω′∈S c(ω

′) if no agreement is reached.

4 Negotiation and Elicitation Strategies
We now proceed to discuss the negotiation and elicitation
strategies. Note that these strategies are tightly coupled since
proposing the right offers depends on what is known about
their utilities. Similarly, the elicitation strategy must consider
the negotiation process when choosing which offers to elicit.

At any point in time, the agent needs to decide on its ac-
tions by comparing two quantities: 1) the utility the agent
expects to obtain from the negotiation, given the set of cur-
rently known offers, called the negotiation value; and 2) the
expected utility after one or more elicitation steps (i.e., select-
ing an xω and observing it at a cost). We define both notions
in turn in Section 4.1 and 4.2.

4.1 The Negotiation Strategy
Given the set of known offers S from the elicitation strategy,
at each round j of the negotiation, the agent needs to decide
what offer to send to the opponent if any, whether to accept
an incoming offer, or whether to break off the negotiation.
In doing so, the agent’s goal is to maximize expected util-
ity. Therefore, we need to formulate the expected value of
performing a certain action, taking into account the opponent
model and any expected future utility if the offer is rejected
and the negotiation proceeds to the next stage.

While it is, in principle, possible to reason about all pos-
sible future states of the negotiation and work backwards to
define the negotiation value of an offer, this is computation-
ally intractable. Instead, we assume that the agent uses a
generic decision function which provides an aspiration value,
αj ∈ [0, 1], which depends on the current round j ≤ N and
thus can change over the course of the negotiation. This al-
lows our model to support a wide range of different negotia-
tion strategies; e.g. conceding quickly, or playing a Boulware
strategy, see also Section 5.1. The aspiration threshold rep-
resents ‘what seems attainable’ [Pruitt, 1981; Somefun et al.,
2004] and therefore acts as the expected reward of continuing
the transaction when an offer gets declined. A popular ap-
proach of this sort is using time-dependent tactics [Faratin et
al., 1998; Fatima et al., 2002]. However, the model does not

the model is sufficiently generic to allow other protocols.

restrict the types of functions that can be used, and the liter-
ature offers many other possibilities, e.g. [Chen et al., 2013;
Fatima et al., 2002; Kawaguchi et al., 2013].

Given the aspiration value αj , we can formulate the nego-
tiation value of sending an offer ω ∈ S as follows:

v(ω) = pωU(ω) + (1− pω)αj ,

which comprises its immediate payoff U(ω) if it gets ac-
cepted (with probability pω) and the expected future payoff
αj if it is rejected. To simplify notation, we augment S with a
dummy offer ω0 which has a known utility equal to the reser-
vation value, i.e. U(ω0) = r.

Provided that there is no need to elicit any more offers at
this point, then at each point in time during the negotiation
process, the optimal strategy for the agent is simply to select
the offer in S with the highest current negotiation value:

v∗(S) = max
ω∈S

v(ω). (1)

Note that this approach also models accepting opponent
offers and breaking off negotiations: if the chosen ω is the
same as the offer which was sent by opponent, this signals an
acceptance, while sending ω0 signals a breakoff. This nego-
tiation strategy is formalized in Algorithm 1.

Algorithm 1: A generic negotiation strategy.
Input: The current negotiation state.
Output: A break-off, a counter-offer or an accept.
begin

for ω ∈ Ω do
update(pω);

callElicitationStrategy();
ω ←− arg maxω′∈S (pω′U(ω′) + (1− pω′)αj)

return

{ BREAKOFF if ω = ω0,
ACCEPT if ω was offered,
SEND(ω) otherwise.

4.2 An Optimal Elicitation Strategy
Using the expected negotiation value v∗(S) of a given set
S of known offers, the elicitation strategy needs to deter-
mine which of the unknown offers, if any, to elicit from the
user. The problem is non-trivial because the optimal elici-
tation strategy is sequential: whether or not to elicit an of-
fer depends on the actual values of the offers elicited so far.
Therefore, the goal is to find an optimal sequence of offers to
elicit and a strategy which specifies when to stop the elicita-
tion process.

Now, because the utilities in S are independently dis-
tributed, and the costs of elicited offers are sunk, it is easily
verified that the elicitation strategy only depends on the set
of currently unknown offers, S, and the current negotiation
value v∗(S) that can be obtained. That is, the current elici-
tation state E can be summarized by

〈
S, y

〉
, which describes

all non-elicited offers S plus the negotiation value y = v∗(S)
that is currently available.
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Our goal is to formulate an elicitation policy π, which
chooses, given the state E , whether to elicit another offer (if
π(E) ∈ S), or to stop eliciting and proceed with the negotia-
tion (if π(E) /∈ S). The utility of a policy π can be computed
as follows:

U(π, E) =

 y if π(E) /∈ S,∫∞
−∞ U(π, E ′) dFxπ(E)

(x) otherwise,
−c(π(E))

where E ′ =
〈
S \ {π(E)},max(y, v(x))

〉
describes the new

state after the stochastic variable xπ(E) has been observed.
Given a state E , we are looking for the optimal elicita-

tion strategy π∗ = arg maxπ U(π, E). Note that when all
offers are known, U(π∗, 〈∅, y〉) = y; otherwise, the agent
may choose to elicit one or more offers ω ∈ S. Taking into
account the negotiation process, the negotiation value of an
unknown offer ω ∈ S is given by the random variable:

xvω = pωxω + (1− pω)αj ,

with F vω(x) denoting the corresponding cumulative distribu-
tion function.

Given this, the optimal policy should consider the follow-
ing: either stop the process and obtain y, or elicit an offer
ω ∈ S by sampling x from xvω at cost c(ω), while taking the
following into account:
• If x ≤ y, nothing changes except the utility of ω

is now known, and we have expected value −c(ω) +
U(π∗,

〈
S \ {ω}, y

〉
);

• Otherwise, we have found a better reward x > y, and
the expected utility is: −c(ω) + U(π∗,

〈
S \ {ω}, x

〉
).

More formally, U(π∗, E) must satisfy the following recur-
sive relation:

U(π∗, E) = max

{
y,max

ω∈S

{
U(π∗,

〈
S \ {ω}, y

〉
) · F vω(y)

(2)

−c(ω) +

∫ ∞
x=y

U(π∗,
〈
S \ {ω}, x

〉
) dF vω(x)

}}
.

The relation for π∗ given in Eq. (2) is essentially a Bell-
man equation which, in principle, could be solved by back-
ward induction. However, even for a moderate-size negoti-
ation space, this approach quickly becomes intractable. We
provide a simple (but optimal) index-based method to decide,
in O(n log n) time, which offers to elicit from the user and
to determine whether to stop eliciting. This index, denoted
zvω , provides us with an alternative to solving Eq. (2), and is
defined as the solution to:∫ ∞

zvω

(x− zvω) dF vω(x) = c(ω). (3)

Given state E =
〈
S, y

〉
, we are now ready to formulate our

elicitation strategy:
Elicitation Strategy π∗. Elicit the unknown offer with the
highest index zvω if it is higher than v∗(S); update the v∗(S)
if the realized value is higher and repeat the process. Stop the
elicitation process as soon as the highest index is less than
v∗(S), or when all offers are known.

Proposition 4.1. The elicitation strategy π∗ maximizes ex-
pected reward U(π∗, E).

Proof. We show that our formulation of the problem can be
mapped to Pandora’s problem [Weitzman, 1979], which is a
question in search theory about opening boxes. Specifically,
each offer in Ω can be viewed as a box, where S (includ-
ing ω0) is the set of open boxes with reward of pωU(ω) +
(1 − pω)αj . Unknown offers ω ∈ S are closed boxes with
distributions F vω(x) and cost c(ω), and with associated index
zvω . Furthermore, the reward of the open boxes S is given by
the negotiation value v∗(S) (Eq. 1). Weitzman [1979] shows
that, for a closed box with a reward distributed according to
the cumulative distribution function F and with opening cost
c, we can assign an index z, satisfying

∫∞
z

(x−z) dF (x) = c
which fully captures the relevant information about the closed
box: it should be opened exactly when it has the highest index
and exceeds the reward in one of the open boxes. It is proven
in [Weitzman, 1979] that this strategy is optimal in terms of
expected reward (Eq. 2).

The optimal elicitation strategy is shown in Algorithm 2.

Algorithm 2: Using Pandora’s Rule to formulate an opti-
mal elicitation strategy.

begin
for ω ∈ S do

zvω ←− Solve
∫∞
z

(x− z) dF vω(x) = c(ω) for z;
v ←− maxω∈S(pωU(ω) + (1− pω)αj)
Loop

ω ←− arg maxω′∈S z
v
ω′ ;

if zvω < v or S = ∅ then
return;

else
U(ω)←− elicitFromUser(ω);
elicitationCost←− elicitationCost + c(ω);
S ←− S ∪ {ω}; S ←− S \ {ω};
v ←− max (v, pωU(ω) + (1− pω)αj);

Proposition 4.2. The complexity of the elicitation strategy is
O(n log n).

Proof. Note that, crucially, the index values do not need up-
dating after Algorithm 2 has chosen to elicit a particular offer;
hence, to find the offer in S with the highest index, it suffices
to order the set of indexes {zvω | ω ∈ S} once, in O(n log n)
time, before entering the loop in Algorithm 2.

Our algorithm has a number of desirable properties. Firstly,
if it is costless to acquire information about an offer ω, then
the algorithm will always elicit it, provided it is not domi-
nated by an offer already in S:

Proposition 4.3. Let ω ∈ S be such that c(ω) = 0 and
F vω(v∗(S)) < 1. Then ω will be elicited by Algorithm 2.
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Proof. Olszewski and Weber [2012] show that, for an index
zvω satisfying Eq. (3), we have:

zvω = min{y | E [max (0, xvω − y)] ≤ c(ω) ∧ y ≥ 0}.

It follows that, if c(ω) = 0, then zvω will be the supremum
for the range of xvω . Hence, zvω ≥ v∗(S), which guarantees ω
gets elicited in Algorithm 2.

A second property is the negotiation behavior induced by
Algorithm 2: if the aspiration αj exceeds the utility of the
known offers, the algorithm tends to select risky offers; i.e.,
high utility offers with a low probability of acceptance. This
follows from the fact that, in this case, pωU(ω) + (1− pω)αj
is maximized for low pω and high U(ω). Conversely, when
αj approaches the reservation value r, the algorithm will op-
timize immediate reward, which is especially useful towards
the end of the negotiation. The agent will also always seek
to accept any received offer higher than the reservation value
rather than breaking off, as pωU(ω) + (1 − pω)αj > r for
any U(ω) > r.

To further illustrate the behavior of the algorithm, we con-
clude this section by providing a solution to our example of
Alice’s software purchasing agent.
Example 1 (continued). Let us assume that the probability
functions of all options are distributed uniformly, and that
the negotiation is drawing to a close, so that αj = r = 0.2.
Using Eq. (3), the index of ω1 can be computed to be zvω1

=
1
5 (5−

√
10) ≈ 0.37, while the index of ω2 is zvω2

= 0.3. For
ω3, we have pω3

= 0.5, so

xvω3
=

1

2
U(0.8; 0.9) +

1

2
· 0.2 = U(0.5; 0.55),

and from that, we can compute zvω3
= 13

40 = 0.325.
This means that the optimal elicitation strategy is as fol-

lows: since zvω1
> zvω3

> zvω2
, the agent should first extract

Alice’s utility value for the riskier option ω1. If U(ω1) turns
out to be higher than zvω3

= 0.325, it should be accepted; oth-
erwise, ω3 should also be elicited, and the agent should send
out this offer regardless of the outcome, as 1

2U(ω3) + 0.1 >
0.3.

5 Experiments
To analyze the performance of our elicitation strategy, we test
it across a wide range of negotiation scenarios against a set of
benchmark elicitation strategies. All elicitation strategies are
tested on the same set of scenarios, with the same set of aspi-
ration thresholds, and all of them use Algorithm 1 to decide
on their offer; they only differ in the way they elicit offers.
This means differences in results can be attributed exclusively
to the effectiveness of each elicitation strategy.

5.1 Setup
For our experiments, the agent exchanges bids with the oppo-
nent using the alternating offers protocol [Osborne and Ru-
binstein, 1994] with a deadline of N = 10 and N = 100
rounds. In the initial state of every negotiation, S = ∅ and
S = Ω, and hence the agent’s starting information about the
user’s preferences is limited to the stochastic distributions xω .

We select 200 different negotiation scenarios with |Ω| =
10. In each scenario, we select a different utility probabil-
ity function Fω for every ω ∈ Ω by setting it to either a
uniform distribution U(a, b), with a < b uniformly sam-
pled from U(0, 1), or a beta distribution Beta(α, β), with
α, β ∈ {1, . . . , 10}. To determine U(ω), we take a random
sample from xω; in other words, xω is an accurate stochas-
tic representation of U(ω). The reservation value r acts as a
reference value, which we set to 0.25. We vary the elicitation
costs c(ω) as a parameter of the experiments, choosing values
between 0 and 1 with 0.05 increments.

For every ω ∈ Ω, we initialize the agent’s opponent model
by sampling pω from U(0, 1). The learning method of the
agent is elementary: pω retains its initial value, unless ω is
rejected by the opponent, in which case it is set to pω = 0.
Conversely, if ω is offered by the opponent, we set pω = 1.

The opponent has a fixed set of offersB (unbeknown to the
agent) that it will accept, and from which it picks randomly
when proposing offers (or ending the negotiation in caseB =
∅). Every offer ω ∈ Ω has a probability of pω to be included
in the set of acceptable offers B.

As every opponent acts in a stochastic manner, we repeat
every negotiation in all of the 200 scenarios 10 times to in-
crease statistical significance of our results.

For setting the aspiration threshold αj of the agent, we
use the myopic version of our algorithm that maximizes
immediate payoff in the current round (αj = 0) as well
as well-known time-dependent tactics [Faratin et al., 1998;
Fatima et al., 2002]. Specifically, in round j ≤ N of the
negotiation, this family of strategies aims for utility closest
to:

αj = Pmin + (Pmax − Pmin) · (1− (j/N)1/e).

We set Pmin = r so that the aspiration threshold reaches the
reservation value at the deadline, and we set Pmax to 1/2,
which is a reasonable choice for the majority of elicitation
costs. Lastly, we select three types of time-dependent tactics
to define the aspiration threshold: Boulware (e = 5), Linear
(e = 1), and Conceder (e = 1

5 ).

5.2 Benchmarks
We compare our elicitation strategy with four benchmark
strategies. Two of them are included as baseline strategies:
first, we consider a policy in which the agent elicits an offer
at random at every negotiation round. Our second baseline
strategy elicits all offers, which is worthwhile for small user
bother costs.

Next, a reasonable benchmark strategy is to elicit the of-
fers with the highest expected value minus the cost; i.e.,
maxω∈S E(xvω) − c(ω). In a sense, this is a first-order ap-
proximation of Pandora’s Rule, as Eq. (3) simplifies to this
for sufficiently large elicitation cost. We also consider a vari-
ant of this strategy which, in addition, elicits all incoming
offers.

Finally, we include a theoretical upper bound that repre-
sents the maximum utility that can be obtained by an elicita-
tion strategy with perfect foresight; i.e., the agent pays elicita-
tion costs, but is allowed to cheat by using a perfect opponent
model.
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Figure 2: The performance of five different elicitation techniques for elicitation costs between 0 and 1. Error bars indicate one
standard error difference to the mean.

5.3 Results
Figure 2 shows the average utility obtained by every elici-
tation strategy in our experiments, as well as the theoretical
upper bound, for varying elicitation costs. Figure 2a shows
the results for αj = 0, while Figure 2b shows the super-
imposed results of three different time-dependent aspiration
thresholds. The results are given for N = 10 rounds and
uniform utility distributions; the results are very similar for
N = 100 rounds and for beta utility distributions, but we omit
them due to space constraints. The standard error is measured
over the different scenarios.

As is evident from Figures 2a and 2b, our optimal policy
significantly outperforms all others for all aspiration thresh-
olds (t-test, p < 0.05), acquiring utility higher than the other
methods across all elicitation costs in the crucial interval
[0.1, 0.7]. As expected, the optimal strategy’s payoff is higher
for lower costs, and peaks at zero costs, exactly overlapping
the utility obtained by eliciting all offers. This confirms our
earlier statement that our algorithm should work optimally in
this case (see Section 4.2). The obtained utility slowly de-
clines until around 0.65, where the bother costs are too high
to conduct a meaningful negotiation. In this case, it is optimal
to not elicit any offers and instead to break off the negotia-
tion, thereby earning r = 0.25. The performance of our opti-
mal policy comes surprisingly close3 to the theoretical upper
bound, considering that the latter uses perfect information.

The strategy that elicits all offers performs well for low
elicitation costs; however, for higher costs, the performance
of this strategy quickly degenerates and moves off the chart,
because of the rapid increase of the total costs

∑
ω∈Ω c(ω).

For higher elicitation costs, the random elicitation method
works slightly better, but performs poorly overall. In most
cases, the aspiration threshold set by Boulware performs

3Note that, although the upper bound seems to momentarily fall
below the graph of our optimal policy, none of the sampled points
actually exceed the upper bound; this is purely an artifact of linear
interpolation between the samples.

slightly worse than Linear, which in turn is outperformed by
Conceder. The differences are small though, especially for
the optimal policy, which indicates its robustness.

The benchmark strategies that elicit offers with the highest
expected reward (both with and without accepting incoming
offers) together count as second best. Eliciting incoming of-
fers is a safer choice for higher elicitation costs, because such
offers are sure to be accepted by the opponent. The differ-
ence with the optimal policy’s performance is significant, and
stems from the fact that our optimal policy takes future re-
ward into account when exploring the different options.

In general, the optimal policy will initially elicit the high-
risk/high-reward offers, as it knows when to incrementally
elicit other options in case this does not pay off. This look-
ahead behavior is able to balance exploration and exploitation
in an optimal way.

6 Discussion and Future Work
In this paper, we deal with the problem of representing a
user in a negotiation with only limited preference informa-
tion available. Our optimal elicitation strategy is efficient and
is generally applicable to a wide range of bidding strategies.
Our results indicate that our method performs well under a
variety of circumstances and significantly outperforms other
benchmark strategies in a robust way. By directly incorporat-
ing the user into the decision making process, our method can
be used to provide negotiation support in a variety of complex
negotiation domains, ranging from purchasing a supercom-
puter to conducting union negotiations.

In our model we make no assumptions about the structure
of the utility function U(ω), which could be drawn from of-
fline aggregate data and techniques such as collaborative fil-
tering. However, in some particular cases, for example for
linear additive utility functions, it would be possible to elicit
the user’s preferences more effectively by obtaining informa-
tion about the issue weights instead. In future work, it would
be interesting to apply Pandora’s Rule to such a setting, as
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this would require a separate decision layer that assigns the
value of information to each elicitation action, in the spirit of
the work by Chajewska et al. [1998].

Another general feature of our approach is that we allow
for different costs for each elicitation action. This means our
method works for any user bother cost function, which, as
a possible next step, could be determined by methods from
HCI and elicitation theory. This way, we could differentiate,
for example, between more patient and impatient users, and
take into account how much recent bother the user has been
subjected to, along the lines of [Buffett et al., 2004].
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