
Personalized Mathematical Word Problem Generation
Oleksandr Polozov

University of Washington
polozov@cs.washington.edu

Eleanor O’Rourke
University of Washington

eorourke@cs.washington.edu

Adam M. Smith
University of Washington

amsmith@cs.washington.edu

Luke Zettlemoyer
University of Washington
lsz@cs.washington.edu

Sumit Gulwani
Microsoft Research Redmond

sumitg@microsoft.com

Zoran Popović
University of Washington
zoran@cs.washington.edu

Abstract
Word problems are an established technique for
teaching mathematical modeling skills in K-12 ed-
ucation. However, many students find word prob-
lems unconnected to their lives, artificial, and un-
interesting. Most students find them much more
difficult than the corresponding symbolic represen-
tations. To account for this phenomenon, an ideal
pedagogy might involve an individually crafted
progression of unique word problems that form a
personalized plot.
We propose a novel technique for automatic gen-
eration of personalized word problems. In our
system, word problems are generated from gen-
eral specifications using answer-set programming
(ASP). The specifications include tutor require-
ments (properties of a mathematical model), and
student requirements (personalization, characters,
setting). Our system takes a logical encoding of the
specification, synthesizes a word problem narrative
and its mathematical model as a labeled logical plot
graph, and realizes the problem in natural language.
Human judges found our problems as solvable as
the textbook problems, with a slightly more artifi-
cial language.

1 Introduction
Word problems are notoriously difficult for children and
adults alike [Verschaffel, 1994]. This phenomenon is not al-
ways related to mathematical understanding; in fact, many
people find word problems much more difficult than the cor-
responding symbolic representations. Children have been re-
ported to perform up to 30% worse on word problems than on
corresponding algebraic equations [Carpenter et al., 1980].
Multiple studies have conjectured that this is caused by lan-
guage understanding, conceptual knowledge, discourse com-
prehension, and other aspects required to build a mental
representation of a word problem [Cummins et al., 1988;
Schumacher and Fuchs, 2012].

Moreover, many students find word problems artificial and
irrelevant to their lives [Ensign, 1996]. This perception is
known to be altered by introducing individual interest in a

context of a word problem [Renninger et al., 2002]. Many re-
searchers have found that personalizing word problems raises
understanding and engagement in a problem solving pro-
cess, which, in turn, increases children’s performance [Davis-
Dorsey et al., 1991; Hart, 1996]. However, personalizing a
progression of word problems is impractical in a textbook,
and would place unreasonable burden on teachers, who would
need to maintain awareness of each student’s interests.

According to observations above, an ideal pedagogy might
involve an individually crafted progression of unique word
problems that form a personalized plot. Educational scaf-
folding of such a progression should be able to vary mul-
tiple aspects of a word problem individually. Such aspects
should include but are not limited to: concepts of a mathemat-
ical model, plot complexity, discourse structure, and language
richness. Moreover, problem personalization should rely on
the students’ own preferences, and ideally should generate
word problems automatically according to their requirements.

In this work, we present a system for automatic person-
alized word problem generation from general specifications.
In our system, word problem generation is defined as a con-
strained synthesis of labeled logical graphs that represent ab-
stract plots. The constraints are given by a tutor and a student
independently as a set of mathematical and narrative require-
ments. Our system has the following properties:

• It is automatic: a mathematical model, a plot, and a dis-
course of a word problem are generated automatically
from general specifications.

• It is personalized: students can set preferences for a
problem’s setting, characters, and their relationships.

• It is sensible: we enforce coherence in a synthesized plot
using a novel technique called discourse tropes.

• It is fit for scaffolding: varying requirements to different
layers of a word problem enables a tutor to scaffold a
unique educational progression.

Synthesis of logical graphs is implemented with answer-set
programming (ASP), a logic programming paradigm, well-
suited for exploration of a huge space of possible models un-
der declarative constraints [Gebser et al., 2012]. The techni-
cal novelty of this approach lies in (a) application of ASP to
a novel domain, and (b) using a relatively underexplored sat-
uration technique [Eiter et al., 2009] to solve the universally
quantified problem of graph generation with discourse tropes.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

381

The system also includes a natural language generation
(NLG) module for generating a textual representation of a
synthesized logical graph. It is built according to the clas-
sic guidelines of NLG systems [Reiter and Dale, 1997]. To
reduce the impact of poor language clarity on problem com-
plexity, the system includes an algorithm for unambiguous
and non-repetitive reference resolution in problem text.

This paper makes the following contributions:

• We define the problem of personalized word problem
generation from tutor and student requirements (§3.1).

• We formulate plot generation of a word problem as con-
strained synthesis of labeled graphs in ASP (§4).

• We build a system of discourse tropes, designed to en-
force semantic coherence in a synthesized plot. We for-
mulate the problem of graph synthesis with discourse
tropes as an NPNP problem, and present its encoding in
ASP using the saturation technique (§4.4).

• We present a method for translating abstract problem
plots into unambiguous textual representations (§5).

• We report an evaluation of generated problems by com-
paring human judgements with textbook problems (§6).
Our problems have slightly more artificial language, but
they are generally comprehensible, and as solvable as
the textbook problems.

2 Related Work
Problem generation
Automatic problem generation for various educational do-
mains has been studied since the mid-1960s [Wexler, 1968].
Recently it has gained new interest with novel approaches
in problem generation for natural deduction [Ahmed et al.,
2013], algebraic proof problems [Singh et al., 2012], pro-
cedural problems [Andersen et al., 2013], embedded sys-
tems [Sadigh et al., 2012], etc. All of them apply a simi-
lar technique: they first generalize an existing problem into
a template, and then explore a space of solutions that fit this
template. However, the specific approaches vary. Ahmed et
al. build templates automatically, Andersen et al. and Singh
et al. do it semi-automatically, and Sadigh et al. write tem-
plates manually. Our system builds templates automatically
w.r.t. the set of requirements, provided by tutors and students.

The underlying search space for possible problem mod-
els is usually explored with logical reasoning and exhaustive
search, as opposed to combinatorial model space exploration
in our approach. Andersen et al. [2013] use a state-of-the-art
code coverage toolkit that is built on a SMT-based constraint
solver. In this way, their approach is similar to our usage of
ASP solvers for space exploration. However, the specific ap-
plication of solvers to a new subject domain often requires
significant technical insight, such as the usage of disjunctive
ASP for enforcing narrative constraints for our domain.

In the word problem domain, the most common automa-
tion approach is a database of worksheets with templates, pre-
pared in advance. This approach has proved itself valuable for
assessment, but its personalization level is insufficient for en-
gaging education. Deane and Sheehan [2003] built one of the

rare projects that performs automatic word problem genera-
tion. They focus on natural language generation using Frame
Semantics [Fillmore, 1976] with the standard NLG architec-
ture introduced by Reiter and Dale [1997], and explore dis-
tance/speed word problems as an example domain. Our work
builds upon the same architecture for NLG, but it also in-
cludes automatic generation of the word problem logic.

Declarative content generation using ASP
A number of systems have explored procedural content gen-
eration (PCG) via declarative specification of desired prop-
erties and constraints. Tutenel et al. [2009] describe a rule-
based interior generation system for building design systems.
Brain and Schanda [2009] present a declarative Warzone 2100
map generator. Smith et al. [2012] generate levels for an ed-
ucational puzzle game. Many of such projects use ASP as a
paradigm for declarative specification of content constraints,
and rely on state-of-the-art ASP solvers for combinatorial
model space exploration [Smith and Mateas, 2011].

Our system also uses ASP for automatic generation of a
word problem. However, it also pushes the approach further,
using a saturation technique for automatic verification of a
universally quantified property. Smith et al. [2013] produc-
tively applied this technique in puzzle generation where they
used universally quantified constraints to require key con-
cepts across all possible puzzle solutions.

3 Overview
This section defines the problem of personalized mathemat-
ical word problem generation and gives a general overview
of our solution at a high level. We describe our implementa-
tion in details in §4 and §5. Throughout the paper, we use the
following simple addition problem as our running example:
Example 1. Knight Alice has 30 chalices. Dragon Elliot has
9 chalices. Alice slays the dragon, and takes his chalices.
How many chalices does she have now?

3.1 Problem Definition
The word problem generation procedure takes as input a set
of requirements R to the problem and produces as output a
textual representation of the problem. Out of many require-
ments that a progression designer would want to include in
the set R, we study two requirement classes that define ped-
agogical and narrative constraints on the generated problem:
tutor requirements RT and student requirements RS .

Tutor requirements provide pedagogical constraints on the
problem’s mathematical model. They vary from general con-
straints (“Should include multiplication”) to equation patterns
like “x = ?+6× ?”, where “?” stands for any subexpression.
One might imagine more complex requirements like constrai-
ning any solution to include certain steps [Smith et al., 2013].

Student requirements provide personalized narrative con-
straints on the problem plot according to the student’s literary
preferences. Student requirements can be of three kinds:

• Setting requirements – define the literary setting of the
problem plot, e.g. “Science Fiction,” “Fantasy.”

• Character requirements – define characters to be in-
cluded in the plot, along with their names and genders.

382

• Relationship requirements – define narrative relation-
ships between the characters, e.g. “Amanda and Billy are
friends.” The word problem plot should explicitly show-
case these relationships, and should not include any plot
elements that logically contradict these relationships.

The output of the system is a textual representation of the
word problem. Its plot and mathematical model should satisfy
all the requirements in R.

3.2 Architecture
Figure 1 shows the architecture of our solution to the word
problem generation problem. The process consists of two
phases: logic generation and natural language generation.

Logic generation
The first phase constructs a logical representation of a word
problem plot, given the requirements R. It builds the mathe-
matical and the narrative layers of a word problem. The result
is a logical graph of actors, actions, and entities.

The system starts with equation generation (§4.2). It builds
a mathematical model of the problem (an abstract equation
E), taking into account tutor requirements RT .

Given a specific equation E, the system generates a prob-
lem plot (§4.3, §4.4). This involves finding setting-dependent
interpretations for every variable in the equationE, according
to the setting in the student requirements RS . Plot actors and
actions, generated from the ontology according to the rest of
the requirements RS , complete the logical graph of the word
problem. At this step the generator also gives concrete values
to any constants present in the equation E according to the
constraints of their setting-dependent logical types.

Natural language generation
The NLG phase takes a generated logical graph, and realizes
it into a concrete textual representation (§5). First, it makes
use of primitive sentence templates that form a placeholder
for the word problem text. The language produced by such
templates is unnatural: it is repetitive, every entity is refer-
enced identically every time it appears, and every sentence
describes exactly one action. Thus, the rest of the NLG phase
is a post-processing of the template-generated text to make
the generated language more natural, before passing it to the
surface realizer to produce technically valid English.

At the sentence ordering step, the sentences produced by
templates are ordered into a linear narrative according to tem-
poral and causal relationships between the sentences.

At the reference resolution step, every entity reference in
the text is realized into its textual representation. Elements of
representations include pronouns, articles, type determiners
(knight, dragon), etc. We present a reference resolution algo-
rithm that finds the shortest unambiguous non-repetitive rep-
resentation for every reference, given its discourse context.

4 Logic Generation
We use ASP to implement the logic generation phase of the
process. ASP is a logic programming paradigm where pro-
grams declaratively describe a set of models, called answer
sets. In this section, we describe our usage of ASP for word
problem generation. We start with a general description of
ASP, and then proceed to explanation of logic generation.

Requirements

Equation
generation

Plot
generation

Ontology

Logical
graph

Sentence
ordering

Primitive templates

Reference
resolution

Surface
realizer

Text

Figure 1: Word problem generation. Red blocks represent
logic generation steps, and blue blocks represent NLG steps.

4.1 Answer-set programming
In ASP [Gebser et al., 2012], programs are composed of
facts and rules in a first-order logic representation (syntacti-
cally similar to Prolog). After propositionalization of this pro-
gram (called grounding), answer set solvers search the space
of truth assignments associated with each logical statement.
Each satisfying solution, called an answer set, is a set of self-
consistent statements identifying a different possible world.

Conventionally, a program in ASP consists of three parts
that correspond to three different types of rules. The “Gen-
erate” part consists of choice rules. They allow the solver to
guess facts that might be true. The “Define” part consists of
deductive rules. They allow the solver to deduce new facts
from the established ones. The “Test” part consists of in-
tegrity constraints. They forbid solutions that have certain
properties. These three parts together define a general formu-
lation of a problem, called a general problem encoding. It is
later combined with a specific problem instance (a set of facts
that describe input data), and passed to the solver.

4.2 Equation generation
In this section, we describe the equation generation phase in
ASP. It takes tutor requirements RT as a problem instance,
and generates an equation E that satisfies constraints in RT .

Example 2. The set of requirements R for our running ex-
ample in ASP syntax. Line 2 shows a tutor requirement.
1 require_setting(fantasy).
2 require_math(plus(any, any)). % ”? + ?” subexpression
3 require_character(cAlice, ("Alice", female)).
4 require_character(cElliot, ("Elliot", male)).
5 require_relationship(adversary, cAlice, cElliot).

The ASP formulation of equation generation follows the
conventional approach, described in §4.1. The key idea is to
encode an equation E as an expression tree. The encoding
first guesses a tree shape (of given maximal size) and an as-
signment of mathematical operators to internal binary nodes.
Then it deduces whether every mathematical requirement in
RT is covered by some subexpression of the guessed tree.
Finally, it forbids the solutions that do not cover all of the
requirements in RT or do not represent a valid equation.

Example 3. One of many possible answer sets that represent
our running example is shown below, along with its graphical
representation as an expression tree. The tree has five nodes,
labeled 1 through 5. The subtree that covers a tutor require-
ment plus(any, any) from Example 2 is highlighted.

node_op(1, eq). node_op(2, plus).
node_arg(1,1,3). node_arg(1,2,2).
node_arg(2,1,4). node_arg(2,2,5).

=

1

+

23

4 5

383

4.3 Plot generation
Given an equation E, the following phase of logic generation
synthesizes a word problem plot that models E. A plot is de-
scribed with an ontology that consists of types, relations, and
discourse tropes. A logical graph of a word problem instance
consists of entities that are annotated with ontology types,
facts that are annotated with ontology relations, and connec-
tives that are annotated with discourse tropes. We first give a
formal definition of entities and facts in a logical graph, and
describe their meaning. We defer the discussion of discourse
tropes and connectives to §4.4.

Definition 1. A logical graph G is a tuple 〈E ,F , C〉 where:
• E is a set of entities. Every entity e ∈ E has a correspond-

ing ontology type τ , denoted e : τ . Types form a hierarchy
tree: every type τ except for the root has a parent type par(τ).
We write τ 4 τ ′ to denote that τ is a subtype of τ ′.
• F is a set of facts. Every fact f ∈ F has a correspond-

ing ontology relation R = relation(f). Every relation R
has a set of named arguments args(R). For a fact f ∈ F
in a logical graph G, every argument a ∈ args(relation(f))
is associated with an entity e ∈ E . We denote this as f =
R(a1 = e1, . . . , an = en) or simply f = R(e1, . . . , en).

Facts are required to type-check w.r.t. their associated rela-
tions. Each relation argument (aj : τ) ∈ args(R) is annotated
with its required ancestor type τ . The corresponding entities
ej : τ ′ in the fact instances of this relation should have τ ′ 4 τ .
• C is a set of temporal (T) and causal (C) connectives. A

connective c ∈ C is a tuple 〈t, f1, f2〉, where tag t ∈ {T,C}.
Example 4. In our example, G consists of the following sets:
E = {k1, d1, ck, cd, cu}where:

k1 : TKnight d1 : TDragon ck, cd, cu : TChalice

F = {ownsk, ownsd, ownsu, slays, acq, total, unk}where:
ownsk = Owns(owner = k1, item = ck)

ownsd = Owns(owner = d1, item = cd)

slays = Slays(slayer = k1, victim = d1)

acq = Acquires(receiver = k1, item = cd)

total = TotalCount(total = cu, count1 = ck, count2 = cd)

ownsu = Owns(owner = k1, item = cu)

unk = Unknown(unknown = cu)

C = {〈T, ownsk, slays〉, 〈T, ownsd, slays〉, 〈C, slays, acq〉}
Some of the relationsR in the ontology are annotated with

their corresponding mathematical operations. We say that a
logical graph G models an equation E, if its subgraph gener-
ated by such operations is isomorphic to the expression tree
of E. For example, the relation TotalCount represents an op-
eration total = count1 + count2 over its arguments. This
operation is isomorphic to E, hence G models E.

We describe the ontology with ASP facts like:
% Type TWarrior with par(TWarrior) = TPerson belongs to a fantasy setting.
type(setting(fantasy), t_warrior, t_person).
% Slays(slayer : TWarrior, victim : TMonster) belongs to a fantasy setting.
relation(setting(fantasy), p_slays(t_warrior, t_monster)).
% Arguments slayer and victim in Slays relation can only be adversaries in RS .
only_relationship(p_slays, adversary(1, 2)).
% TotalCount(total : TCountable, count1 : TCountable, count2 : TCountable)
relation(setting(common),

p_total_count(t_countable, t_countable, t_countable)).
math_skeleton(p_total_count, eq(1, plus(2, 3))).

We say that G fits a set of student requirements RS , if (a)
every type and relation in G are either setting-neutral, or be-
long to a setting from RS , (b) every character in RS corre-
sponds to a distinct entity e ∈ E , and (c) facts f ∈ F that
include character entities as arguments do not violate rela-
tionship requirements from RS semantically.

The goal of plot generation phase is: given an equation E,
student requirements RS , and an ontology, generate any log-
ical graph G from types, relations, and tropes in the ontology,
such that it models the equation E, and fits the requirements
RS . In ASP, we solve this problem using a generalization of
equation generation technique from §4.2, sketched below. We
first guess the graph topology, then deduce whether it type-
checks w.r.t. the ontology, and whether it models the equation
E, and then forbid graphs that do not fit the requirementsRS .

% Guess a single type for each entity.
1 { entity_type(E, T): concrete_type(T) } 1 :- entity(E).
instanceof(E, T1) :- entity_type(E, T), subtype(T, T1).
% Guess a relation and an assignment of typed arguments for each fact.
1 { fact_relation(F, R): relation(R) } 1 :- fact(F).
1 { fact_argument(F, K, E): instanceof(E,T) } 1 :-

fact_relation(F, R), K = 1..@arity(R), argument_type(R, K, T).

% Deduce whether a logical graph models an equation.
models(Eq, F) :- fact_relation(F, R), math_skeleton(R, S),

shape_matches(Eq, F, S).
shape_matches(Eq, F, S) :- . . . % Deduce inductively from arguments.
% Forbid solutions that do not model the required equation.
:- equation(Eq), #count { F: matches(Eq, F) } == 0.

The main part of the deduction is the inductive verification
that the graph topology, guessed in the first section of our
ASP program, models the equation E. For that, the encoding
recursively follows the argument edges inE and in the mathe-
matical operations of ontology relations in parallel. This pro-
cess is denoted by the predicate shape matches(Eq, F, S)
above. Here Eq denotes the equation E, F denotes the cur-
rent fact f under verification, and S denotes the skeleton of
the mathematical operation against which f is being matched.
Our encoding implements shape matches as follows:

1. For each numbered placeholder k in the skeleton S, re-
cursively follow the paths from the root of S and the root
of E in parallel, arriving at the equation argument node
nk ∈ E. Fail if the paths in S and E are not isomorphic.

2. Map each equation argument nk to the kth plot argument
ek of the fact f = R(e1, . . . , en) under verification.

3. Fail if the deduced mapping between E and E is non-
injective or is not a function, succeed otherwise.

Example 5. Matching the skeleton eq(1, plus(2, 3))
of the relation TotalCount against the nodes of equation E
from Example 3, we obtain the following corresponding equa-
tion nodes: n1 = 3, n2 = 4, n3 = 5. They are respectively
mapped to the arguments of the fact “total”: n1 → cu, n2 →
ck, n3 → cd. This mapping is functional and injective, hence
the logical graph G from Example 4 models the equation E.

Multiple integrity constraints forbid insensible logical
graphs (not shown in the snippet above). They require the
graph to be connected, to include an entity for every char-
acter in RS , to comply with character relationships, to have
a single “unknown” value (that the students recover by solv-
ing the problem), to use types and relations only from the
required setting or from common life, etc.

384

4.4 Discourse tropes
Relying on the ontology type system is sufficient for gener-
ating plausible logical situations, but insufficient for generat-
ing engaging plots. Word problems are primarily short stories,
and every short story needs a developed narrative. This aspect
is even more important for our setting of personalized word
problems, where the story is centered around student-defined
characters and their relationships.

An ASP solver, when presented with an encoding above,
generates any logical graph G that fits the requirements, mod-
els the equation, and is logically sound w.r.t. the ontology
type system. However, requiring G to represent a coherent
narrative is a more challenging problem. Consider the logi-
cal graph in Example 4. One might ask, why did the solver
not choose any subset of F instead? Or why did the solver
not add a fact slays′ = Slays(slayer = d1, victim = k1)? In
both of these situations, the resulting graph would still be log-
ically sound, but it would either lack plot-driving details, or
include unnecessary statements. To forbid such answer sets,
we describe such narrative constraints in discourse tropes.

Definition 2. A discourse tropeD is a constraint on a logical
graph G of form ∀~x ⊂ E [Φ(~x)⇒ ∃ ~y ⊂ E : Ψ(~x, ~y)]. Here
Φ,Ψ are quantifier-free formulas that make use of ontology
relations as logical predicates. ~x, ~y are groups of distinct en-
tities in G that participate in the constraints Φ,Ψ.

A subgraph of G generated by facts corresponding to pred-
icates in Φ,Ψ and their arguments is called an instance of D
if both D and Φ(~x) hold on this subgraph.

Example 6. A fantasy trope “A warrior slays a monster only
if the monster has some treasures” is described logically as:
D = ∀w,m ∈ E [Slays(w,m)⇒ ∃ t ∈ E : Owns(m, t)]

In Example 4 a subgraph {slays, ownsd} is an instance ofD.
The snippet below shows D in our ontology syntax:

discourse(forall(m, w), premise(p_slays(w, m)),
exists(t), conclusion(p_owns(m, t)),
temporal(p_owns(m, t), p_slays(w, m))).

The syntax describes arbitrary first-order logical formu-
las of the form above with predicates forall, exists, and,
etc. Distinctly named variables are assumed to match dis-
tinct entities. Expressions premise and conclusion repre-
sent constraints Φ and Ψ, respectively. The last argument of
discourse predicate instructs a solver to generate connec-
tives C between some pairs of facts when they belong to an
instance of this trope in G. These connectives are later used
by the NLG phase to order problem sentences (§5).

Our plot generator takes the ontology discourse tropes into
account by requiring every fact in the generated logical graph
G to either be mathematical or belong to an instance of some
discourse trope. Thus, any solution that does not represent a
coherent literary narrative will be forbidden by the solver.

Saturation technique
Verifying a discourse trope on a logical graph is non-trivial.
ASP is well-suited for solving search problems with existen-
tially quantified goal conditions, which lie in the complexity
class NP. However, the problem of plot generation with dis-
course tropes has a ∃ ∀∃ structure. Here the first quantifier

represents a search for a graph G that satisfies both the prob-
lem encoding and the set of tropes in the ontology. The last
two quantifiers represent validation of G w.r.t. D according
to Definition 2. A naı̈ve encoding of such a problem in ASP
would cause an exponential blowup in grounding time.

In our setting, the innermost ∃ quantifier is expanded
during grounding using skolemization [Benedetti, 2005]. It
causes only a polynomial blowup in grounding time, because
every trope in our ontology has at most 3 existentially quanti-
fied variables ~y. After that, we are left with a 2QBF problem,
which lies in the complexity class NPNP. In order to express
a 2QBF problem in ASP without an exponential blowup, we
leverage an extension of classic ASP with a special fourth rule
type in a relatively underexplored saturation technique.

Disjunctive rules, not supported by many ASP solvers, in-
clude disjunction in rule heads, allowing the solver to deduce
any of the facts in the head, given the body. The solution is
then chosen according to subset minimality semantics: no an-
swer set is emitted as a solution if any of its subsets is also a
valid solution [Gebser et al., 2013].

Consider for simplicity the problem of searching for a
graph G, constrained with a single trope ∀~xΦ(~x). In the snip-
pet below, we briefly demonstrate the saturation technique for
this problem (see [Eiter et al., 2009] for a detailed overview):
1 % Example discourse trope: ∀a, b ∈ E : Owns(a, b) ∧ Acquires(a, b)
2 discourse(forall(a,b), premise(owns(a,b), acquires(a,b))).
3 % Assign each formal variable V ∈ {“a”, “b”} to some entity e ∈ E .
4 bind(V, E): entity(E) :- var(V).
5 sat(Xs, F) :- . . . % Deduced if Φ(~x) holds under the current assignment ~x.
6 valid :- discourse(Xs, F), sat(Xs, F).
7 bind(V, E) :- valid, var(V), entity(E).
8 :- not valid.

We want to enforce the property ∀~xΦ(~x). For that, we non-
deterministically choose an assignment of formal variables ~x
to a subset of entities, using a disjunctive rule in line 4. If the
assignment is a valid counterexample to Φ(~x), valid will not
be deduced, and the integrity constraint in line 8 will elim-
inate this answer set. On the other hand, if the assignment
is not a counterexample, line 7 will saturate the answer set,
including every possible bind(V, E) fact into it. According
to subset minimality semantics, a valid answer set is emitted
only if all of its subsets are not valid. However, for a satu-
rated answer set, every other answer set is its subset. Thus,
the solver will emit a solution only after a thorough check of
all other variable assignments, which is equivalent to enforc-
ing a ∀~xΦ(~x) property.

5 Natural Language Generation
After generating a logical graph of a problem, our system re-
alizes it into a textual representation. First, it approximates
the text with sentences produced using primitive templates,
and then it orders sentences produced by templates, resolves
entity references unambiguously and non-repetitively, and re-
alizes the result into valid English.

Primitive Templates
Figure 2 shows an example of a primitive template. It matches
a subset of facts in F , and produces a syntactic tree of a sen-
tence, where some NP (noun phrase) subtrees are replaced

385

〈
Unknown(unknown = e1),

Owns(owner = e2, item = e1)
〉 SBARQ

WHNP

WHNP

How many

e1

SQ

VBZ

does

e2 VP

have

.

?

Figure 2: A primitive template that matches 2 facts from F .

with entities they describe. As a result, we obtain a first ap-
proximation to the word problem text – an unordered bag of
sentences S with somewhat unnatural, repetitive language.

Sentence ordering
The key idea in turning the sentences S into a linear narrative
is leveraging connectives C that were added to G from dis-
course tropes during plot generation. Each connective c ∈ C
specifies a temporal or causal relationship between two facts
f1, f2 ∈ F . Consequently, corresponding sentences s1, s2 ∈
S that describe f1, f2 should follow the same ordering in a
narrative. The set C thus defines a partial ordering on S . Any
total ordering of sentences in S that satisfies this partial or-
dering constitutes a valid narrative.

Example 7. After this phase, the template-generated problem
text of our running example turns into the following text. The
subtrees are marked with corresponding entities from E .

“[Knight Alice]k1 has [30 chalices]ck . [Dragon Elliot]d1 has [9
chalices]cd . [Knight Alice]k1 slays [Dragon Elliot]d1 , and takes [9
chalices]cd . How many [chalices]cu does [knight Alice]k1 have?”

Reference resolution
At the reference resolution step, we convert every entity-
marked text node into some textual representation for this en-
tity. Our method is inspired by classic NLG guidelines [Krah-
mer and Van Deemter, 2012], and is based on type attributes.

Every type τ has a set of named attributes. We divide
them disjointly into implicit and explicit, denoted imp(τ) and
exp(τ). Every textual reference to e : τ implicitly or explic-
itly mentions all attributes in imp(τ) to the reader. For exam-
ple, gender is an implicit attribute for sentient entities: once e
is introduced, every reference to it preserves the memory of
its gender to the reader. Names, types, and quantities can be
mentioned only explicitly, and hence belong to exp(τ).

Given a reference to an entity e : τ , a subset of its attributes
A ⊂ exp(τ), and its discourse context, we can generate a tex-
tual representation of e that mentions exactly the attributes in
A∪ imp(τ) to the reader. The representation also depends on
some contextual properties, e.g. whether e is a subject or an
object in the sentence, or whether e is a definite reference (i.e.
has it been introduced before). For example,A = ∅ represents
a pronoun only if the reference is definite.

The key idea of our reference resolution algorithm is to
choose the smallest set of attributes for every reference that
makes it unambiguous w.r.t. the preceding discourse. For ev-
ery reference to e : τ after its introduction, the algorithm enu-
merates the subsets of exp(τ), and chooses the smallest one
that does not share at least one attribute value with other en-
tities in the preceding discourse. To avoid repetition, we often

choose a second or third unambiguous representation instead.
Example 8. Consider a reference to cd on the third line of Ex-
ample 7. The algorithm first checks A = ∅, which corre-
sponds to the pronoun representation “them.” However, it is
ambiguous because imp(cd) = {plural}, and the value of this
attribute is equal to the value of the same attribute of a pre-
viously processed reference to ck. In several iterations, the
algorithm finds an unambiguous subset A = {owner, type},
corresponding to the representation “[d1]’s chalices.”

6 Evaluation
In this work, we chose not to evaluate the personalization as-
pect of our system, since a complete study of its pedagogi-
cal value on the students is beyond the scope of this paper.
Instead, we evaluate our generation techniques by assessing
the content of the produced word problems w.r.t. its language
comprehensibility and its mathematical applicability.

User Study
We prepared an ontology of 100-200 types, relations, and
tropes in three literary settings: “Fantasy,” “Science Fiction,”
“School of Wizardry.” This one-time initial setup of the sys-
tem took about 1-2 person-months. From it, we randomly
generated 25 problems in the domains of age, counting, and
trading, with the solutions requiring 2-4 primitive arithmetic
operations. We sampled the problems with sufficient linguis-
tic variability to evaluate the overall text quality. Although the
ASP solving has exponential complexity, every problem was
generated in less than 60 s, which is a feasible time limit for
realistic problems within our range of interests.

We selected 25 textbook problems from the Singapore
Math curriculum [Publications, 2009] with the equivalent dis-
tribution of complexity (solution lengths), and conducted two
studies using Mechanical Turk. Study A assessed language
aspects of the problems. It asked the subjects 4 questions
(shown in Figure 3) on a forced-choice Likert scale. Study B
assessed mathematical applicability of the problems. It asked
the subjects to solve a given problem, and measured solving
time and correctness. For both studies, each problem was pre-
sented to 20 different native English speakers (1000 total).

Our experimental hypotheses were: (a) the generated prob-
lems should be rated equally or slightly less comprehensible
than the textbook problems (by the nature of our problems
being artificial), (b) the language of our problems should re-
main generally comprehensible with possible slight oddities
(with a mean > 3 on the forced-choice Likert scale converted
to 1-4), and (c) problems should remain solvable with no sta-
tistical difference from the textbook problems.

Figure 3 presents the results of the studies A and B on the
aggregated dataset of 50 problems. The hypotheses (a) and
(b) were confirmed: the judges rated the textbook problems
significantly better than our problems across all 4 questions
with moderate effect sizes (for the most general Q1 we had
χ2 = 193.52, p < 0.001, V = 0.44), but our problems were
generally comprehensible with occasional oddities (mean rat-
ing ranged from 3.36 to 3.50). The original results invali-
dated hypothesis (c): participants correctly solved textbook
problems significantly more often than the generated prob-
lems (χ2 = 9.474, p < 0.005, V = 0.01). However, since

386

Q1: How comprehensible is the problem? How well
did you understand the plot?
Q2: How logical/natural is the sentence order?
Q3: When the problem refers to an actor (e.g. with a
pronoun, a name), is it clear who is being mentioned?
Q4: Do the numbers in the problem fit its story (e.g. it
wouldn’t make sense for a knight to be 5 years old)?

Figure 3: Top-left: the forced-choice Likert scale questionnaire for the study A. Bottom and top-right: evaluation results for the
studies A and B, respectively. Generated/textbook problems are prefixed with g/t. The outliers are marked with an asterisk.

Start: RT = {(?× 3)− ?},
RS as in Example 2

Step 1: RT = {(?× 3)− ?},
RS : “adversaries”→ “friends”

Step 2: RT = {(?× 3) + ?},
RS as in Step 1

Step 3: RT = {(?× 3) + ?},
RS : “Fantasy”→ “Wizardry”

Step 4: RT = {(?× x) + ?},
RS as in Step 3

Duchess Alice leads 3 squads
of 12 mounted knights each
in a brave attack upon duke
Elliot’s camp. Scouts have re-
ported that there are 17 mounted
knights in his camp. How many
more mounted knights does El-
liot need?

Duchess Joan’s countryside con-
sists of 11 towers, surrounded by
3 villages each. She and baron
Elliot are at war. He has al-
ready occupied 16 villages with
the help of wizard Alice. How
many villages are still unoccu-
pied by Elliot?

Orc Bob has 11 chests. Inspired
by recent advances in burglary,
dwarf Alice steals chests from
the orc. They have 3 gold bars
each. She gets a honorable re-
ward of 15 gold bars from the
master thief Elliot. How many
gold bars does the dwarf have?

Professor Alice assigns Elliot to
make a luck potion. He had to
spend 9 hours first reading the
recipe in the textbook. He spends
several hours brewing 11 por-
tions of it. The potion has to
be brewed for 3 hours per por-
tion. How many hours did Elliot
spend in total?

Professor Elliot assigns Alice to
make a sleep potion. She had to
spend 5 hours first reading the
recipe in the textbook. It has to be
brewed for 9 hours per portion.
She spends several hours brew-
ing several portions of it. The to-
tal time spent was 59 hours. How
many portions did Alice make?

Figure 4: A series of independently generated word problems. For demonstration purposes, each step makes a change of a single
aspect in the requirements. The last step demonstrates an unknown variable requirement. Entity references are highlighted.

a Cramer’s V effect size of 0.01 is considered very small,
we conjectured that the result was driven by a handful of
problems with poor nondeterministic choices during the NLG
phase (§5). To validate this hypothesis, we excluded outlier
problems from the analysis (those with a mean answer < 3
to any Study A question). As Figure 3 shows, there were only
4 outliers out of 25 generated problems. A new analysis of the
resulting filtered dataset found no statistically significant dif-
ference in solving performance (χ2 = 2.439, n.s.). The par-
ticipants solved textbook problems correctly 78% of the time,
compared to 73% of the time for generated problems. There
was also no statistically significant difference in the solving
times for generated (mean = 232 s, SD = 367.2) and textbook
(mean = 220 s, SD = 378.7) problems (t(918) = 0.473, n.s.).
The mean Q1-4 rating of non-outlier generated problems was
3.45-3.65, as compared to 3.90-3.92 for textbook problems.

Study B also exposed two generated problems with clear
language but mostly incorrect solutions (g18 and g23). This
happened because of incomplete semantics of the participat-
ing ontology relations (e.g. an intermediate result assuming
less than 24 hours/day). One way to resolve it is a richer ontol-
ogy with commonsense background knowledge such as Cyc
[Lenat, 1995], which is an important area of future work.

Examples
Figure 4 demonstrates how various problem requirements
correspond to different aspects of word problem complexity.
It shows a series of generated word problems, where each
step changes one requirement at a time, thereby producing a

different problem with respect to a single complexity aspect.
The aspects are, in order: character relationships, mathemat-
ical model, literary setting, unknown value. We highlighted
entity references in each sentence to demonstrate how our
reference resolution impacts language clarity. This aspect, to-
gether with sentence ordering in the last two steps, demon-
strates variation in linguistic complexity of word problems.

7 Conclusions and Future Work
In this work, we defined and explored the problem of person-
alized mathematical word problem generation. We presented
a system that focuses on synthesis of single word problems
from general specifications, provided by a tutor and a student
independently. Our usage of constrained logic programming
and our coherence enforcement with universally quantified
discourse tropes allows a tutor to define the word problem
structure in the form of its abstract concepts. Word problems,
as a domain with multiple independent layers of complexity,
also entail a personalized approach, where students express
personal preferences to the generated content. In that case, the
student’s engagement often overcomes the impact of seman-
tic and linguistic problem complexity on their performance.

Automatic problem generation under individually tailored
conceptual constraints could be a valuable tool for instruc-
tional scaffolding in any educational domain. Since problem
generation through synthesis of labeled logical graphs is a
domain-independent idea, it allows a wide spectrum of appli-
cations. For instance, replacing mathematical constraints with
logical implications enables generation of language com-

387

prehension problems, notoriously confusing in elementary
school. Augmenting an ontology with background knowl-
edge enables problem generation in physics or programming.
Problem generation in such domains is not only beneficial for
education or assessment, but also valuable for data-driven re-
search on the individual aspects of problem complexity. This
work takes an important step towards realizing the vision
of providing personalized pedagogy to support the needs of
teachers and the interests of students simultaneously.

8 Acknowledgments
This work was supported by the Office of Naval Research
grant N00014-12-C-0158, the Bill and Melinda Gates Foun-
dation grant OPP1031488, the Hewlett Foundation grant
2012-8161, Adobe, and Microsoft. We also thank Roy Szeto
and Robert Duisberg for helpful discussions, and the anony-
mous reviewers for their feedback.

References
[Ahmed et al., 2013] Umair Z. Ahmed, Sumit Gulwani, and Amey

Karkare. Automatically generating problems and solutions for
natural deduction. In IJCAI, pages 1968–1975. AAAI Press,
2013.

[Andersen et al., 2013] Erik Andersen, Sumit Gulwani, and Zoran
Popović. A trace-based framework for analyzing and synthe-
sizing educational progressions. In CHI, pages 773–782. ACM,
2013.

[Benedetti, 2005] Marco Benedetti. Evaluating QBFs via symbolic
skolemization. In Logic for Programming, Artificial Intelligence,
and Reasoning, pages 285–300. Springer, 2005.

[Brain and Schanda, 2009] Martin Brain and Florian
Schanda. DIORAMA (Warzone 2100 map tools).
http://warzone2100.org.uk/, 2009.

[Carpenter et al., 1980] Thomas P Carpenter, Mary Kay Corbitt,
Henry S Kepner, Mary Montgomery Linquist, and Robert E Reys.
Solving verbal problems: Results and implications from national
assessment. Arithmetic Teacher, 28(1):8–12, 1980.

[Cummins et al., 1988] Denise Dellarosa Cummins, Walter
Kintsch, Kurt Reusser, and Rhonda Weimer. The role of
understanding in solving word problems. Cognitive psychology,
20(4):405–438, 1988.

[Davis-Dorsey et al., 1991] Judy Davis-Dorsey, Steven M Ross,
and Gary R Morrison. The role of rewording and context person-
alization in the solving of mathematical word problems. Journal
of Educational Psychology, 83(1):61, 1991.

[Deane and Sheehan, 2003] Paul Deane and Kathleen Sheehan.
Automatic item generation via frame semantics: Natural lan-
guage generation of math word problems. In Annual meeting
of the National Council on Measurement in Education, Chicago,
IL, 2003.

[Eiter et al., 2009] Thomas Eiter, Giovambattista Ianni, and
Thomas Krennwallner. Answer set programming: A primer. In
Reasoning Web. Semantic Technologies for Information Systems,
pages 40–110. Springer, 2009.

[Ensign, 1996] Jacque Ensign. Linking life experiences to class-
room math. PhD thesis, University of Virginia, 1996.

[Fillmore, 1976] Charles J Fillmore. Frame semantics and the na-
ture of language. Annals of the New York Academy of Sciences,
280(1):20–32, 1976.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Answer set solving in practice.
Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, 6(3):1–238, 2012.

[Gebser et al., 2013] Martin Gebser, Benjamin Kaufmann, and
Torsten Schaub. Advanced conflict-driven disjunctive answer set
solving. In IJCAI, pages 912–918. AAAI Press, 2013.

[Hart, 1996] Janis M Hart. The effect of personalized word prob-
lems. Teaching Children Mathematics, 2(8):504–505, 1996.

[Krahmer and Van Deemter, 2012] Emiel Krahmer and Kees
Van Deemter. Computational generation of referring expres-
sions: A survey. Computational Linguistics, 38(1):173–218,
2012.

[Lenat, 1995] Douglas B Lenat. Cyc: A large-scale investment
in knowledge infrastructure. Communications of the ACM,
38(11):33–38, 1995.

[Publications, 2009] Frank Schaffer Publications. Singapore Math
70 Must-Know Word Problems, Level 3 Grade 4. Carson-Dellosa
Publishing, LLC, 2009.

[Reiter and Dale, 1997] Ehud Reiter and Robert Dale. Building ap-
plied natural language generation systems. Natural Language
Engineering, 3(1):57–87, 1997.

[Renninger et al., 2002] KA Renninger, L Ewen, and AK Lasher.
Individual interest as context in expository text and mathematical
word problems. Learning and Instruction, 12(4):467–490, 2002.

[Sadigh et al., 2012] Dorsa Sadigh, Sanjit A Seshia, and Mona
Gupta. Automating exercise generation: A step towards meet-
ing the MOOC challenge for embedded systems. In Proceed-
ings of the Workshop on Embedded Systems Education (WESE),
ESWeek, 2012.

[Schumacher and Fuchs, 2012] Robin F Schumacher and Lynn S
Fuchs. Does understanding relational terminology mediate ef-
fects of intervention on compare word problems? Journal of ex-
perimental child psychology, 111(4):607–628, 2012.

[Singh et al., 2012] Rohit Singh, Sumit Gulwani, and Sriram K Ra-
jamani. Automatically generating algebra problems. In AAAI,
2012.

[Smith and Mateas, 2011] Adam M Smith and Michael Mateas.
Answer set programming for procedural content generation: A
design space approach. Computational Intelligence and AI in
Games, IEEE Transactions on, 3(3):187–200, 2011.

[Smith et al., 2012] Adam M Smith, Erik Andersen, Michael
Mateas, and Zoran Popović. A case study of expressively con-
strainable level design automation tools for a puzzle game. In
FDG, pages 156–163. ACM, 2012.

[Smith et al., 2013] Adam M Smith, Eric Butler, and Zoran
Popović. Quantifying over play: Constraining undesirable so-
lutions in puzzle design. In FDG, pages 221–228, 2013.

[Tutenel et al., 2009] Tim Tutenel, Rafael Bidarra, Ruben M Sme-
lik, and Klaas Jan de Kraker. Rule-based layout solving and its
application to procedural interior generation. In CASA Workshop
on 3D Advanced Media In Gaming And Simulation, 2009.

[Verschaffel, 1994] Lieven Verschaffel. Using retelling data to
study elementary school children’s representations and solutions
of compare problems. Journal for Research in Mathematics Ed-
ucation, pages 141–165, 1994.

[Wexler, 1968] Jonathan D Wexler. A self-directing teaching pro-
gram that generates simple arithmetic problems. Computer Sci-
ences Technical Report, 19, 1968.

388

