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Abstract

Parallel Test Paper Generation (k-TPG) is a biobjec-
tive distributed resource allocation problem, which
aims to generate multiple similarly optimal test
papers automatically according to multiple user-
specified criteria. Generating high-quality parallel
test papers is challenging due to its NP-hardness in
maximizing the collective objective functions. In
this paper, we propose a Collective Biobjective Opti-
mization (CBO) algorithm for solving k-TPG. CBO
is a multi-step greedy-based approximation algo-
rithm, which exploits the submodular property for
biobjective optimization of k-TPG. Experiment re-
sults have shown that CBO has drastically outper-
formed the current techniques in terms of paper
quality and runtime efficiency.

1 Introduction
With the rapid growth of the Internet and mobile devices, Web-
based education has become a ubiquitous learning platform
in many institutions to provide students with online learning
courses and materials through freely accessible educational
websites such as Khan Academy, or online classes such as
Coursera and Udacity. To make learning effective, it is impor-
tant to assess the proficiency of the students while they are
learning the concepts. As there may have many students in an
online class [Martin, 2012], to ensure the assessment reliabil-
ity of large-scale Web-based testing, pedagogical practitioners
have suggested that it is necessary to compose multiple tests
from a large question pool with equivalent properties. One
promising approach to support large-scale Web-based testing
is parallel test paper generation (k-TPG), which generates k
similarly optimal test papers automatically according to a user
specification based on multiple criteria. Specifically, it aims to
find k disjoint subsets of questions from a question database
to form multiple test papers according to a user specification
based on total time, topic distribution, difficulty degree, dis-
crimination degree, and so on.
k-TPG is a challenging problem especially with large num-

ber of questions and large number of generated test papers
(i.e. large k) due to its NP-hardness. Different from other
multiobjective optimization problems, k-TPG has collective

objective functions to be defined based on the evaluation objec-
tives of k generated test papers instead of a single test paper.
In fact, k-TPG is close to the spirit of optimal distributed
allocation problems [Feige and Vondrak, 2006] with collec-
tive objective functions. Formally, k-TPG is a biobjective
optimal distributed resource allocation problem, which aims
to simultaneously maximize two objective functions under
a multidimensional Knapsack constraint. The first objective
can be formulated as a Welfare Allocation problem [Vondrak,
2008], which aims to maximize the total quality of the gener-
ated test papers. The second objective can be formulated as
a Fairness Allocation problem [Asadpour and Saberi, 2010;
Bertsimas et al., 2011], which aims to maximize the fairness
quality of the generated test papers. Traditionally, optimizing
these two objectives is NP-hard and considered separately. To
the best of our knowledge, there has been no attempt to solve
both of the objectives simultaneously.

Submodular-based approximation algorithms, which are
polynomial time algorithms that have performance guaran-
tees, have been studied for distributed optimization problems
[Nedic et al., 2010]. Inspired by this novel idea, we propose
a greedy-based approximation algorithm, called Collective
Biobjective Optimization (CBO), for k-TPG. The key idea
of CBO is twofold. Firstly, it analyzes the properties of the
two collective objectives and reformulates the k-TPG problem
such that it can be solved effectively. Secondly, we propose
an effective multi-step framework for the reformulated opti-
mization problem. More importantly, we exploit submodular
optimization techniques to design greedy-based approximation
algorithms for enhancing each step in the proposed framework.
In this paper, we will discuss the proposed CBO algorithm for
k-TPG and its performance evaluation.

2 Related Work
For the past few years, heuristic-based intelligent techniques
such as Tabu Search [Hwang et al., 2008], Particle Swarm
Optimization [Ho et al., 2008] and Ant Colony Optimiza-
tion [Hu et al., 2009] have been proposed for k-TPG. How-
ever, the quality of the generated parallel test papers is of-
ten unsatisfactory [Hwang et al., 2008; Ho et al., 2008;
Hu et al., 2009] according to users’ test paper specifications.
The main issue of the current techniques is the exhaustive
search to optimize the biobjective functions simultaneously in
the very large space of possible candidates with multicriteria
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constraints. Although these heuristic-based techniques are
straightforward to implement, they suffer from some draw-
backs. They tend to get stuck in a local optimum as they are
mainly based on traditional weighting parameters for multiob-
jective optimization [Ishibuchi et al., 2008].

3 Parallel Test Paper Generation
Let Q = {q1, q2, .., qn} be a dataset consisting of n questions,
C = {c1, c2, .., cm} be a set of m different topics, and Y
= {y1, y2, .., yk} be a set of k different question types. Each
question qi ∈ Q, where i ∈ {1, 2, .., n}, has 6 attributes
A = {q, e, t, d, c, y} defined as follows:

• Question q: It is used to store the question identity.
• Discrimination degree e: It is a positive integer value to

distinguish user proficiency.
• Question time t: It is a positive integer value to indicate

the average time in minutes needed to answer.
• Difficulty degree d: It is a positive integer value to indi-

cate the question difficulty.
• Related topic c: It is a set of related topics of a question.
• Question type y: It is the type of a question.

A test paper specification S = 〈N,T,D,C, Y 〉 consists
of 5 attributes including the number of questions N , to-
tal time T , average difficulty degree D, topic distribution
C = {(c1, pc1), (c2, pc2), .., (cM , pcM )} and question type
distribution Y = {(y1, py1), (y2, py2), .., (yK , pyK)}, which
are defined based on the attributes of the selected questions.

In 1-TPG, it selects an optimal subset of questions to form
a test paper P , which maximizes the average discrimination
degree f(P ) = 1

N

∑N
i=1 ei, qi ∈ P while satisfying multiple

user-specified criteria in a test paper specification SP = S.
In k-TPG, user specification is given as a pair of 〈k,S〉,

where k is an integer parameter in addition to the test paper
specification S. The k-TPG aims to select k disjoint subsets
of questions P1, P2, .., Pk from the question datasetQ to form
k test papers with specification SPi , which satisfies the test
paper specification such that SPi = S, ∀i ∈ [1, k]. Apart
from maximizing the objective function as in single test paper
generation, k-TPG aims to generate the k test papers with
similar optimal quality according to the specification. It aims
to provide similar quality of test papers for different users. As
such, there are two important collective objective functions that
need to be maximized in k-TPG: total quality maximization
and fairness quality maximization.

Total Quality Maximization. It aims to maximize the sum
of discrimination degrees of k test papers

∑k
i=1 f(Pi), where

f(Pi) is the discrimination degree of test paper Pi, i ∈ [1, k].
Formally, the k-TPG problem is stated as follows:

maximize
P1,..,Pk

k∑
i=1

f(Pi) (1)

Fairness Quality Maximization. It aims to maintain the
fairness among the generated test papers with equivalent dis-
crimination degrees. However, solely maximizing the total
quality objective does not guarantee the fairness quality. Ac-
cording to [Asadpour et al., 2008; Bertsimas et al., 2011] , it

is more effective to optimize a fair allocation of the discrimi-
nation degrees of k generated test papers as:

maximize
P1,..,Pk

min
1≤i≤k

f(Pi) (2)

subject to the local multicriteria constraints:
Pi∩Pj = ∅,∀i 6= j (3)

SPi = S (4)

4 Proposed CBO Approach
To simultaneously optimize the total quality and fairness qual-
ity objective functions is a challenging problem. However,
by exploiting the relationship between the two objective func-
tions based on the submodular property [Lovasz, 1983], we
can devise an effective and efficient approach.

4.1 Problem Reformulation
Before reformulating the k-TPG problem, we review the fun-
damental concept of submodular function in optimization.
Definition 1 (Submodular Function Optimization). Given
a set X , a non-negative function f : 2X → R+, T ⊆ X ,
and x ∈ X . Let ∂f(S)

∂x = 4f (x|S) = f(S ∪ {x}) − f(S)
be the decreasing marginal value of f at S with respect to x.
A non-negative function f : 2X → R+ is submodular if for
every set S, T ⊆ X , we have:

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

Although NP-hard, the submodular property has led to the
existence of a Greedy-based Approximation Algorithm [Fu-
jishige, 2005] for the maximization. It is widely known that a
linear function as well as the combination of linear functions
are aslo submodular [Fujishige, 2005]. [Nguyen et al., 2013]
shows that 1-TPG can be reformulated as an integer linear
program which aims to maximize a linear objective function
f(P ) under multiple knapsack constraints. Hence, the quality
function f(P ) is submodular due to the linearity property.
Lemma 1. Given a test paper P generated from a question set
Q (P ⊆ Q), the quality evaluation function of discrimination
degree f(P ) : 2Q → R+ is submodular and monotone.

Hence, the total quality objective function is also submodu-
lar due to a linear combination of k submodular functions.
Corollary 1. The total quality objective function of k test
papers

∑k
i=1 f(Pi), Pi ⊆ Q is submodular and monotone.

To jointly optimize the biobjective functions, we take the
advantage of submodularity to reformulate the total quality
objective such that it also integrates the fairness objective.

Let fφ(P ) = min{f(P ), φ} be a truncated function, where
φ is a non-negative constant. Note that fφ(P ) is also submod-
ular and monotone due to [Fujishige, 2005]. For any constant
φ, we have the following important observation:

min
l∈{1,..,k}

f(Pl) ≥ φ⇐⇒
k∑
l=1

fφ(Pl) = kφ (5)

As k is a constant, this means that the fairness quality objective
value of a paper is larger than or equal to φ if the total quality
objective value is kφ and vice versa. Therefore, we have the
following result in Theorem 1:
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Theorem 1. Given the optimal fairness value φ∗, i.e.,
maxP1,..,Pk minl f(Pl) = φ∗, then it is sufficient to jointly
optimize the two objective functions of the original k-TPG
problem by solving the following equivalent problem:

g-17pt

maximize
P1,..,Pk

k∑
l=1

fφ∗(Pl) s.t. Pi ∩
∀i6=j

Pj = ∅ , SPi = S (6)

Proof Sketch: The original k-TPG problem is equivalent
to the problem given in (6) since, by (5), there exists k test
papers P1, .., Pk such that

∑k
l=1 fφ∗(Pl) = kφ∗. In addition,

because of the property of the truncated function fφ∗(Pl),
we have max

∑k
l=1 fφ∗(Pl) ≤ kφ∗. Thus, for any optimal

generated papersP1, .., Pk of the problem in (6), it must satisfy
that

∑k
l=1 fφ∗(Pl) = kφ∗. Hence, we have minl f(P ∗l ) = φ∗

due to (5).

4.2 Collective Biobjective Optimization
In this paper, we propose a novel Collective Biobjective Op-
timization (CBO) approach for k-TPG. We observe that the
reformulated problem (6) can be solved effectively by an itera-
tive multi-step framework. More importantly, we exploit the
submodular optimization technique to design greedy-based ap-
proximation algorithm for enhancing the steps in the proposed
approach. Figure 1 shows the 5 main steps of the CBO ap-
proach: Optimal Fairness Value Estimation, Infeasible Alloca-
tion Detection, Total Quality Maximization, Fairness Quality
Balancing and Local Constraint Improvement.

In the first step, after each feedback loop, CBO either: (1)
reduces half of the search space on φ if Infeasible Allocation
Detection fails or (2) finds a better solution in terms of both of
the objectives. In the remaining 4 steps, CBO will generate k
test papers progressively by using the greedy-based algorithm
for 1-TPG and adjusting the fairness value φ. Due to NP-
hardness of 1-TPG, when φ approaches its optimal value, we
can only achieve a fraction β ≤ 1 of the optimal objective
value of φ, where β is a constant that will be determined in
Section 4.6. As such, our goal is to allocate questions into
k test papers such that for all k papers, we have fφ(Pl) ≥
βφ,∀l = 1..k.

4.3 Optimal Fairness Value Estimation
In each iteration, a new set of k papers will be generated
according to a new fairness value φ. This step aims to find a
new optimal value of φ to continue the co-optimization process.
Generally we do not know the optimal value φ∗. Therefore, we
need to search for it using the binary search strategy, starting
with the interval [φmin, φmax] = [0, N ×max

q∈Q
f(q)]. In each

step, we test the center φ = (φmin + φmax)/2 of the current
interval [φmin, φmax] of possible fairness value.

4.4 Infeasible Allocation Detection
This step aims to detect whether it is possible to generate k
test papers such that fφ(Pl) ≥ βφ,∀l = 1..k. Specifically, it
checks whether the estimated value of φ is appropriate or not.
To overcome this, we propose a greedy-based approximation

Figure 1: Proposed CBO Approach

Algorithm 1: Infeasible Allocation Detection
Process:

1 Pl ← ∅ for all l = 1..k;
2 for i=1 to k*N do

foreach question q ∈ Q \ (P1

⋃
...
⋃
Pk) and

l ∈ {1..k} do
3 if q satisfies the cardinality constraint and

local constraints Pl then
4 Compute the improvement:

Ψl,q ← w(Pl + {q})− w(Pl) ;

5 (l∗, q∗)← argmax(l,q) Ψl,q ;
6 Pl∗ ← Pt∗

⋃
{q∗};

7 ξ =
∑k
l=1 fφ(Pl);

8 if ξ < 1
2kφ then return Yes else return No

algorithm that generalizes the basic greedy-based approxi-
mation algorithm for submodular function. For the sake of
simplicity, we consider only the topic and question type con-
straints. As such, the result obtained is the upper bound of the
actual approximate solution. However, it is sufficient for the
early infeasible allocation detection purpose.

The algorithm is outlined in Algorithm 1. In each iteration,
we first check that whether the question q can be possibly
allocated to a paper Pt. To verify whether q can be possibly al-
located to Pt, we first check whether Pt is full, i.e., |Pt| = N .
Then, we check whether allocating q to Pt will violate the two
constraints. If yes, we then compute the marginal improve-
ment value Ψt,q of allocating question q into Pt. Next, we
greedily choose the best allocation of test paper and question
(Pt∗ , q

∗) with the maximum Ψt,q value.
We provide a theoretical result of this step. For general

cases, i.e., k ≥ 2, we can prove that it achieves a weaker
approximation ratio of 1

2 .
Theorem 2. Consider only the content constraints with k ≥ 2,
Algorithm 1 can obtain a set of generated test papers P1, .., Pk
with the total quality value such that:

k∑
i=1

fφ(Pi) ≥
1

2
max

P ′1,..,P
′
k

k∑
i=1

fφ(P ′i ) =
1

2
OPT
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where OPT refers to the optimal value.

Proof Sketch: Let H be the original problem of allocating
k ∗ N out of n questions to k papers P1, .., Pk such that it
maximizes the total quality objective

∑k
i=1 fφ(Pi). Let H ′

be the problem on the n − 1 remaining questions after the
first question qt is selected for paper Pj . On the problem H ′,
the quality evaluation function fj(Pj) = fφ(Pj) is replaced
by f ′j(Pj) = fj(Pj ∪ {qt}) − fj({qt}). All other quality
evaluation function fi(Pi), i 6= j, are unchanged.

Let V AL(H) be the value of the allocation produced by
Algorithm 1 and OPT (H) be the value of the optimal allo-
cation. Let p = fj({qt}). By definition of H ′, it is clear that
V AL(H) = V AL(H ′) + p. By submodularity, we can show
that OPT (H) ≤ OPT (H ′) + 2p. This proof is completed
by induction on H ′ since H ′ is also a submodular function:

OPT (H) ≤ OPT (H ′)+2p ≤ 2V AL(H ′)+2p = 2V AL(H)

Theorem 2 means that Algorithm 1 can achieve 1/2-
approximation ratio for the total quality maximal objective
based on a given fairness value φ. Based on this, we can de-
cide whether it is feasible to allocate k papers corresponding
to the current fairness φ.

4.5 Total Quality Maximization
It progressively solves k problem instances of 1-TPG to gen-
erate k papers P1, P2, .., Pk. Based on the submodular prop-
erty of fφ(P ), we greedily select questions that maximize
the objective function while paying attention to satisfying the
multiple knapsack constraints. This is motivated by an algo-
rithm that maximizes a submodular function under a knapsack
constraint: max

S
f(S) s.t.

∑
x∈S

c(x) ≤ b

where c(x) ≥ 0 is a cost function and b ∈ R is a budget con-
straint. Sviridenko [Sviridenko, 2004] proposed the greedy-
based algorithm for solving this problem with an approxima-
tion ratio of 1− 1

e . It defines the marginal gain ∆f (x|S)
c(x) when

adding an item x into the current solution S as a ratio between
the discrete derivative ∆f (x|S) and the cost c(x). This algo-
rithm starts with S = ∅, and then iteratively adds the element
x that maximizes the marginal gain ratio among all elements
that satisfy the remaining budget constraint:

Si+1 = Si ∪ { arg max
x∈V \Si:c(x)≤b−c(Si)

∆(x|Si)
c(x)

}

We extend the above algorithm of submodular function max-
imization under a knapsack constraint for solving the case of
multiple knapsack constraints. Algorithm 2 gives the greedy-
based algorithm for this step. This algorithm maintains a set
of weights that are incrementally adjusted in a multiplicative
manner. These weights capture the possibility that each con-
straint is close to be violated when maximizing the objective
function of generating a paper. The algorithm is based on a
main loop in Line 4. In each iteration, the algorithm selects an
available question that maximizes the sum of marginal gain
ratio normalized by the weights as follows:

P i+1
l = P il ∪ {arg max

qj∈Q

m∑
i=1

∆fφ(qj |P il )
Aijhi

}

Algorithm 2: Total Quality Maximization
Process:

1 for l=1 to k do
2 Pl ← ∅ ;
3 for i=1 to m do hi = 1/bi ;
4 while

∑m
i=1 bihi ≤ µ and |Pl| ≤ N do

5 qj ← arg max
qj∈Q

∑m
i=1

∆fφ
(qj |Pl)

Aijhi
;

6 Pl ← Pl ∪ {qj};

7 for i=1 to m do hi ← hiµ
Aij
bi ;

8 Q ← Q \ {qj}

9 return P1, P2, .., Pk

where A is a matrix and b is the vector of multiple knapsack
constraints. Here, ∆fφ(qj |Pl) is the submodular incremental
marginal value of question qj to the paper Pl.

The parameter µ in Algorithm 2 is important as it en-
sures that multiple knapsack constraints will not be violated
while maximizing the submodular objective function. Let
H = min{bi/Aij : Aij > 0} be the width of the knapsack
constraints. By setting the parameter µ = eHm, Algorithm 2
can achieve near-optimal results. [Azar and Gamzu, 2012] has
proved the following theoretical result:

Lemma 2. Algorithm 2 (Line 2-8) attains an approximation
guarantee such that

fφ(Pi) ≥ (1− 1

e
)fφ(P ∗i ) ≈ fφ(P ∗i ) >

1

2
fφ(P ∗i )

where P ∗i refers to the optimal solution of each main loop.

Corollary 2. The total quality objective function of k test
papers P1, .., Pk attained by Algorithm 2 satisfies:

k∑
i=1

fφ(Pi) ≥
1

2
max

P∗1 ,..,P
∗
k

k∑
i=1

fφ(P ∗i ) =
1

2
OPT

Proof Sketch: Let P ∗i be the optimal solution corresponding
to each main loop of Algorithm 2. By using Lemma 2, we can
directly derive the result.

4.6 Fairness Quality Balancing
This step aims to employ a novel fairness balancing strategy to
improve the fairness quality objective. Recall that our goal is
to allocate questions into k test papers such that for all papers,
we have fφ(Pl) ≥ βφ,∀l = 1..k. However, this is not easy to
achieve especially when φ approaches the optimal value. This
is because in the small and less abundant pool of questions,
Algorithm 2 greedily selects all questions with high value
fφ(q) for some of the generated papers P1, P2, .., Ps to satisfy
fφ(Pl) ≥ βφ,∀l = 1..s. As a result, the subsequent papers
Ps+1, .., Pk might not have enough good questions to satisfy
this requirement. We need to swap some of the questions from
the satisfied papers with questions from unsatisfied papers to
achieve a fair allocation.

We will move questions from satisfied papers to unsatisfied
papers and vice versa, until all papers satisfy the requirement
fφ(Pl) ≥ βφ,∀l = 1..k. Let’s define the swapping operation
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Algorithm 3: Fairness Quality Balancing
Process:

while ∃i, j : fφ(Pi) ≥ 3βφ; fφ(Pj) < βφ do
1 foreach qi ∈ Pi do
2 Pj ← {Pj \ {qj}} ∪ {qi};
3 Pi ← {Pi \ {qi}} ∪ {qj};
4 if fφ(Pj) ≥ βφ then break;

5 return P1, P2, .., Pk

as follows. Select a satisfied paper Pi = {qi1, qi2, ...qiN} for
which fφ(Pi) ≥ 3βφ. Such a paper is always ensured through
appropriate choice of α and β as shown in Lemma 3. Then,
we select an unsatisfied paper Pj , i.e., fφ(Pj) ≤ βφ. In the
paper Pi, choose t < N such that fφ({qi1, qi2, ...qit−1}) < βφ,
fφ({qi1, qi2, ...qit}) ≥ βφ, and fφ({qit}) < βφ. Let Λi =
{qi1, qi2, ...qit}. As fφ(∅) = 0, the set Λi is not empty. In
the reversed direction, let Λj = {qj1, q

j
2, ...q

j
t } be a set of

questions in Pj such that each pair of questions qil , l = 1..t,
and qjl , l = 1..t, has the same topic and question type. We
reallocate the questions of papers Pi and Pj by swapping
questions of the two sets Λi and Λj . We note that the swapping
operation does not violate the multiple knapsack constraints.
More importantly, it improves the fairness among all papers.
The swapping operation is given in Algorithm 3.

By some analysis, we can prove that swapping questions
does not decrease the value of fφ(Pi) by more than 2βφ. Thus,
Pi is still satisfied. Moreover, the previously unsatisfied test
paper becomes satisfied by this operation. We can also make
sure that we can always perform this operation until all test
papers are satisfied by choosing β = α/3, where α = 1/2 is
the approximation ratio of Algorithm 1.
Lemma 3. If we choose β = α/3 = 1/6, it is guaranteed
that after at most t swapping operations, all test papers will be
satisfied, i.e., fφ(Pl) ≥ βφ,∀l = 1..k.

Lemma 3 ensures that there always exists a test paper such
that fφ(Pl) ≥ 3βφ. It also ensures that all test papers will be
satisfied after at most t swaps.

4.7 Local Constraint Improvement
So far, we have achieved a set of k test papers, having guar-
antee on the biobjective values and satisfying the multiple
knapsack constraints. However, these test papers have not yet
satisfied the total time and difficulty degree constraints.

Here, we propose an effective method for satisfying
these constraints. Given a test paper P 0 = Pl =
{q1, q2, .., qN}, l = 1..k, let q = {0, 1}n, |q| = N be the
binary representation of the initial solution P . From the previ-
ous step, we have Aq0 ≤ b, which is the 0-1 ILP formulation
of the corresponding 1-TPG problem. This step aims to turn
the existing solution q0 to q1 such that Aq1 = b. This is the
Subset Vector Sum problem, which is NP-hard. Here, we
only need to optimize the total time and difficulty degree con-
straints. Let

∑n
l=1 ailq ≤ bi be the total time constraint and∑n

l=1 ajlq ≤ bj be the difficulty degree constraint. To opti-
mize constraint satisfaction while ensuring the objective value
f(Pl) will not decrease, we reformulate the 1-TPG problem

#Questions #Topics #Question Types Distribution
D1 20000 40 3 uniform
D2 30000 50 3 normal
D3 40000 55 3 uniform
D4 50000 60 3 normal

Table 1: Test Datasets

to unconstrained submodular optimization by introducing two
weighting parameters λ1 and λ2:

fξ(P ) = f(P )− λ1|
n∑
l=1

ailq − bi| − λ2|
n∑
l=1

ajlq − bj |

It is not difficult to show that the problem max fξ(Pl) is
an unconstrained non-monotone submodular maximization,
which can be solved by an effective deterministic approxi-
mation local search proposed by Feige et al. [Feige et al.,
2007].

4.8 Termination
The process is repeated until the termination condition is
reached: φmax−φmin ≤ δ, where δ is a predefined threshold.
An optimal value of δ = 0.05 was found experimentally.

4.9 Theoretical Analysis
We summarize the approximation results of the proposed CBO
approach for biobjective optimization of k-TPG.
Theorem 3. The proposed CBO approach has achieved the
following theoretical biobjective approximation results of the
total quality maximization and fairness quality maximization:

k∑
i=1

f(Pi) ≥
1

2
max

P ′1,..,P
′
k

k∑
i=1

f(P ′i ) =
1

2
OPT

min
l=1..k

f(Pl) ≥
1

6
max
P ′1,..,P

′
k

min
l=1..k

f(P ′l )

5 Performance Evaluation
The performance of CBO is compared with other techniques
including the following 3 re-implemented algorithms for k-
TPG: k-TS [Hwang et al., 2008], k-PSO [Ho et al., 2008] and
k-ACO [Hu et al., 2009] based on the published articles.

As there is no benchmark data available, we generated 4
large-sized synthetic datasets, namelyD1, D2, D3 andD4, for
performance evaluation. In datasets D1 and D3, the value of
each attribute is generated according to a uniform distribution.
On the other hand, in datasets D2 and D4, the value of each
attribute is generated according to a normal distribution. Table
1 summarizes the 4 datasets.

We analyze the quality and runtime efficiency of the CBO
approach for k-TPG based on the 4 large-scale datasets by
using different specifications. Here, we have designed 12 test
specifications in the experiments. We vary the parameters in
order to have different test criteria in the test specifications.
The number of topics is specified between 2 and 40. The
total time is set between 20 and 240 minutes, and it is also
set proportional to the number of selected topics for each
specification. The average difficulty degree is specified ran-
domly between 3 and 9. We have conducted the experiments
according to 5 different values of k, i.e., k = 1, 5, 10, 15, 20.
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(d) Dataset D4

Figure 2: Performance Results Based on Average Runtime

To evaluate the quality for k-TPG, we use the common met-
rics including the Average Discrimination Degree and Average
Constraint Violation for 1-TPG [Nguyen et al., 2013] based
on the same user specification S. From the common metrics,
for a given dataset D and k, we define the following metrics
for k-TPG based on the average and deviation of the quality
of generated test papers: the Average Discrimination Degree
Mk,D

d , the Deviate Discrimination Degree Vk,Dd , the Aver-
age Constraint Violation Mk,D

c and the Deviate Constraint
Violation Vk,Dc . Specifically, given a dataset D and for each
k, we generate 12 test paper sets P1, P2, ..., Pk from the 12
specifications. For each of the 12 test paper sets, we measure
the mean and deviation of quality of k test papers according
to the discrimination degree and constraint violation. Finally,
we obtain the performance results based on the 4 measures by
averaging the means and deviations over the 12 test paper sets.

For high quality parallel test papers, the Average Discrim-
ination Degree should be high and the Average Constraint
Violation should be small. Similarly, the Deviate Discrimina-
tion Degree and the Deviate Constraint Violation should be
small.

5.1 Performance Results based on Runtime
Figure 2 compares the runtime performance of the 4 tech-
niques based on the 4 datasets. The results have clearly shown
that the proposed CBO approach significantly outperforms the
other heuristic techniques in runtime for the different datasets.
CBO generally requires less than 6 minutes to complete the
parallel paper generation process. Moreover, the proposed
CBO approach is quite scalable in runtime on different dataset
sizes and distributions. In contrast, the other techniques are not
efficient to generate high quality parallel test papers. Particu-
larly, the runtime performance of these techniques degrades
quite badly as the dataset size or the number of generated par-
allel test papers gets larger, especially for imbalanced datasets
D2 and D4.

5.2 Performance Results based on Quality
Figure 3 shows the quality performance results of the 4 tech-
niques based on the Mean Discrimination DegreeMk,D

d and
Deviate Discrimination Degree Vk,Dd . As can be seen from
Figure 3, CBO has consistently achieved higher Mean Dis-
crimination DegreeMk,D

d and lower Deviate Discrimination
Degree Vk,Dd than the other heuristic k-TPG techniques for the
generated parallel test papers. Particularly, CBO can generate
high quality test papers withMk,D

d ≈ 7. Note that the lower

Deviate Discrimination Degree Vk,Dd value indicates that the
generated parallel test papers have similar quality in terms of
discrimination degree. Generally, for a specific value of k, we
observe that the quality of the generated parallel test papers
of all 4 techniques based on the Mean Discrimination Degree
Mk,D

d and the Deviate Discrimination Degree Vk,Dd tend to
be improved when the dataset size gets larger.

Figure 4 gives the quality performance results of the 4 tech-
niques based on the Mean Constraint Violation MD,kc and
Deviate Constraint Violation VD,kc . We also observe that CBO
has consistently outperformed the other techniques on Mean
Constraint ViolationMDc and Deviate Constraint Violation
VD,kc based on the 4 datasets. The Mean Constraint Viola-
tion of CBO tends to decrease whereas the Mean Constraint
Violations of the other 3 techniques increase quite fast when
the dataset size or the number of specified constraints gets
larger. In particular, CBO can generate high quality parallel
test papers withMD,kc ≤ 10 for all datasets. Also, CBO is
able to generate higher quality parallel test papers on larger
datasets while the other techniques generally degrade on the
quality of the generated test papers when the dataset size gets
larger. In addition, we find that when k gets larger, the Mean
Constraint ViolationMk,D

c on a specific dataset D tends to
decrease. Similarly, the Deviate Constraint Violation Vk,Dc
quality tends to increase when k gets larger. These results
have shown that the quality based on constraint violation on a
specific dataset D tends to degrade when k gets larger.

The good performance of CBO is due to 2 main reasons.
Firstly, as CBO is an approximation algorithm with constant
performance guarantee, it can find the near-optimal solution
for objective functions of k-TPG effectively and efficiently
while satisfying the multiple constraints without using weight-
ing parameters. As such, CBO can achieve better paper quality
and runtime efficiency as compared with other heuristic-based
k-TPG techniques. Secondly, CBO is a submodular greedy-
based algorithm, which is able to produce good solution in
efficient polynomial runtime. Thus, CBO can also improve its
computational efficiency on large-scale datasets as compared
with the other k-TPG techniques.

6 Conclusion
In this paper, we have proposed an effective and efficient Col-
lective Biobjective Optimization algorithm for solving k-TPG.
The key success of CBO lies in the synergy of the effective
problem reformulation with the exploitation of submodular
property for collective biobjective optimization. CBO incor-
porates submodular optimization mechanism and submodular
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(c) Dataset D3
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Figure 3: Results on Quality based on Mean Discrimination DegreeMk,D
d and Deviate Discrimination Degree Vk,Dd
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Figure 4: Results on Quality based on Mean Constraint ViolationMk,D
c and Deviate Constraint Violation Vk,Dc

fairness balancing to jointly optimize the total quality max-
imization and the fairness quality maximization objectives.
To the best of our knowledge, CBO is a pioneering greedy-
based approximation algorithm, which can achieve provably
near-optimal solutions in polynomial runtime for k-TPG. The
performance results on various datasets have shown that the
CBO approach has achieved generated parallel test papers
with not only high quality, but also runtime efficiency when
compared with other k-TPG techniques.
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