
Fixing Tournaments for Kings, Chokers, and More ∗

Michael P. Kim and Virginia V. Williams
Computer Science Department

Stanford University
{michael.kim,virgi}@cs.stanford.edu

Abstract
We study the tournament fixing problem (TFP),
which asks whether a tournament organizer can
rig a single-elimination (SE) tournament such that
their favorite player wins, simply by adjusting the
initial seeding. Prior results give two perspectives
of TFP: on the one hand, deciding whether an arbi-
trary player can win any SE tournament is known
to be NP-complete; on the other hand, there are a
number of known conditions, under which a player
is guaranteed to win some SE tournament. We ex-
tend and connect both these lines of work. We show
that for a number of structured variants of the prob-
lem, where our player is seemingly strong, decid-
ing whether the player can win any tournament is
still NP-complete. Dual to this hardness result, we
characterize a new set of sufficient conditions for
a player to win a tournament. Further, we give an
improved exact algorithm for deciding whether a
player can win a tournament.

1 Introduction
Consider the following natural problem called tournament
fixing (TFP): Suppose we are given n players V , a favorite
player v ∈ V and for every choice of players x, y ∈ V , re-
liable information about who would win the match between
x and y, were they to play. Then, can we find a seeding of a
balanced single-elimination tournament, so that if all match
outcomes turn out as predicted, player v will win?

Single-elimination tournaments, also called knockout tour-
naments, are prevalent in many diverse scenarios. The most
common occurrence is in sports tournaments such as Wim-
bledon or March Madness, but they are also used in drug
trials, in patent races [Lita, 2008], hiring employees from a
pool of candidates, and also as voting protocols. The lat-
ter application assumes that there are n candidates and the
match outcomes are determined via pairwise majority prefer-
ences of the voter population. The tournament fixing problem
in this case is just a question of whether an election chair-
man can influence the outcome of a binary cup election by
∗This research was supported by a Stanford School of Engineer-

ing Hoover Fellowship, NSF Grant CCF-1417238 and BSF Grant
BSF:2012338.

fixing the order in which candidates are compared. Compu-
tationally, we are interested in whether there is an efficient
algorithm for TFP. This question falls in the general line of
work on the complexity of agenda control for voting intro-
duced by [Bartholdi et al., 1989; 1992].

Over the last decade, there have been many papers studying
the complexity of TFP [Lang et al., 2007; Hazon et al., 2007;
2008; Vu et al., 2009; Vassilevska Williams, 2010; Stanton
and Vassilevska Williams, 2011a; 2011b; Aziz et al., 2014].
There are roughly two approaches to the problem. The first
is to prove worst-case hardness results. This approach cul-
minated in a recent paper by [Aziz et al., 2014] that showed
that determining if there is a winning seeding for the favorite
player is NP-complete 1 even when the match outcome infor-
mation is completely accurate.

The second approach to the problem is to find a general
class of inputs for which an efficient solution exists. This
approach is based on the premise that the instances of TFP
that one sees in practice are not really worst-case, so that the
hardness results may not apply to the real world. This ap-
proach has produced results of the following form: suppose
that the match outcomes are actually produced by a process
that takes the abilities of players into account but adds ran-
dom noise, then for several very interesting models of this
form, in almost all cases one can make any player a win-
ner, i.e. a winning seeding exists with high probability over
the randomness of the noise [Vassilevska Williams, 2010;
Stanton and Vassilevska Williams, 2011a]. In this paper we
extend our knowledge along both approaches.

Results. The input to the problem is an n-node tournament2
graph where the nodes are the players and there is an edge
from i to j if and only if i would beat j in a match. A king
is a player that has distance at most 2 to every other player
in the tournament graph (i.e. for each j, it either beats j or
beats another k that beats j). A result [Vassilevska Williams,
2010] from the second approach to attacking TFP is that if
the favorite player v is a king and it can beat at least half the
players, then there is always a winning seeding for v. Could it

1TFP is clearly in NP; given a seeding, we can compute the win-
ner in n− 1 matches. The challenge was to show NP-hardness.

2A tournament graph is a directed graph for which for every i, j,
exactly one of (i, j) and (j, i) is an edge.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

561

be that there is always an efficient algorithm for determining
that a king player can win, regardless of its outdegree? In
the known NP-hardness result for TFP [Aziz et al., 2014],
the favorite player is far from being a king; moreover, it only
beats log n players – the minimum needed to be able to win.

We resolve the king TFP question as follows. In Theorem 1
we show that TFP is still NP-hard, even when the favorite
player is a king that beats n/4 players. This result is close
to tight, as kings that beat n/2 players always have a win-
ning seeding [Vassilevska Williams, 2010]. In addition, if the
favorite player has distance at most 3 to all other players in
the tournament graph (a “3-king”), then TFP is NP-hard even
if the 3-king can beat half of the players. In all, we prove
NP-hardness for TFP under even slight perturbations of most
known structural results where the favorite player can always
win, showing that there are natural parameters for which the
player can always be made a winner, but if the parameters are
slightly off, it is NP-hard to determine whether she can.

We also address a scenario where the tournament organizer
can bribe some players to intentionally lose a match. It is
clear that with only log n bribes, any player can be made the
winner (just bribe the players he plays against). We show that
it is NP-hard to find a way to bribe (1 − ε) log n players for
any constant ε > 0 in order for the favorite player to win.

For the second type of approach to TFP, we extend the
work of [Stanton and Vassilevska Williams, 2011b; 2011a]
to the case of 3-kings by presenting sufficient conditions un-
der which a winning seeding for a 3-king can always be found
efficiently. We then propose an application of this structural
results to the following scenario.

One setting, in which an organizer might be interested in
manipulating the seeding, arises when a given player is quite
skilled, but tends to “choke under pressure” and lose against
significantly weaker players. The organizer may have in-
centive to allow the player to survive into the later rounds
in order to increase the appeal of final matches (amongst
stronger, more popular players). The notion of “choking” is
a well-known phenomenon in sports and other competitions,
and has been studied as a broader psychological phenomenon
[Baumeister, 1984; Beilock and Carr, 2001].

To model player choking, we introduce a new genera-
tive model for tournaments based on a model proposed by
Condorcet (see e.g. [Braverman and Mossel, 2008; Stanton
and Vassilevska Williams, 2011a]). Just as with Condorcet’s
model, we assume that there is an underlying total ordering
of the player v1, . . . , vn where vi is stronger than vi+1. In
Condorcet’s model, there is a probability p < 1/2 for which
a weaker player vj beats a stronger player vi, i < j, and
stronger players beat weaker players with probability 1 − p.
In the new model, we have two parameters, p ≤ q < 1/2,
and a threshold m. For every i and j, i < j, such that both
i, j < m or i, j ≥ m, vi beats vj with probability 1− p (and
loses with probability p). If however i < m and j ≥ m, then
vj beats vi with probability q ≥ p.

Intuitively, the last n−m players are the weakest, and these
are the ones that stronger players typically choke against.
More complicated models of choking can be defined, and
similar results can be proven for them, but here we opt for
simplicity. We show that our result on 3-kings implies that,

Notation
Nout(v) = {u | (v, u) ∈ E} , Nout,S(v) = Nout(v) ∩ S
Nin(v) = {u | (u, v) ∈ E} , Nin,S(v) = Nin(v) ∩ S

out(v) = |Nout(v)| , outS(v) = |Nout,S(v)|
in(v) = |Nin(v)| , inS(v) = |Nin,S(v)|
G(i) = G after i ∈ [log n] rounds of play

S(i) = {s ∈ S | s is alive after i rounds of play}
Sj:` = {sk | j ≤ k ≤ `}

Table 1: Summary of the notation used in this paper.

for almost all tournament graphs generated by this model, if
Ω(lnn/n) ≤ q < 1/3 − o(1), then even if p is very small
(even 0), any of the top n/3 − o(n) players have a winning
seeding, as long as the players anyone chokes against are
among the last n/3 players. Such a result cannot be obtained
using the previously known structural results.

Finally, [Aziz et al., 2014] also considered computing the
number of winning seedings for a given player. They obtained
a variety of algorithms for the problem, the best runtime of
which was O(2.8285n). We obtain an improved runtime of
O(2npoly n). The number of winning seedings is a natural
notion of player strength – it is proportional to the probability
that the player will win a randomly seeded tournament.

1.1 Preliminaries and Notation
In this paper, we focus on single-elimination (SE) tourna-
ments, which are played as follows. The organizer specifies
a permutation of the players, which corresponds to a seeding
or bracket. Then, players are matched according to this seed-
ing, in disjoint pairs of consecutive players, advancing to the
next round if and only if they win their match. Matches in
subsequent rounds are predetermined by the original seeding,
and play continues until only one player remains. This player
wins the SE tournament.

We will call v an SE winner over G if one can efficiently, in
polynomial time, construct a seeding to a balanced SE tour-
nament where v wins. Showing that v is an SE winner over
G is equivalent to finding a subgraph of G which is a span-
ning binomial arborescence rooted at v, which is defined re-
cursively as follows: a single node a is an order 0 binomial
arborescence rooted at a; a is the root of an order i binomial
arborescence over S where |S| = 2i if a is the root of an
order i − 1 binomial arborescence over Sa and has a child b
who is also the root of an order i − 1 binomial arborescence
over Sb, where Sa ∩ Sb = ∅ and |Sa| = |Sb| = 2i−1. In an
arborescence, all edges point away from the root. We say v a
Condorcet winner over S if v wins against all players in S.

In Table 1, we give a summary of the notation that will
be used throughout this paper. We let v, u be any nodes in
V and let S ⊆ V . We will abuse notation and use N (S)
to be

⋃
s∈S N (s), for in and out neighbors. In some subsets

S ⊆ V , it will be useful to define a total order over the players
in S, and to refer to groups of players by their indices; thus,
for Sj:`, we require j ≥ 1 and ` ≤ |S|. All graphs will be
tournament graphs over n = 2k players for some k ∈ N,
unless explicitly stated otherwise. This ensures that the SE
tournament will be balanced.

562

G

v

v′

Anew

Bnew

a∗

(a) TFP ≤p KING-TFP

W

v

v′

G

(b)
KING-TFP ≤p 3KING-TFP

q∗

Q \ {q∗}

G

v

(c) TFP[out(v) = logn] ≤p

NEARLY-AS-STRONG-TFP

s1 sk

R
G

v
S

(d) TFP ≤p BRIBERY-TFP

Figure 1: A visual summary of our reductions. We label the original (G, v) as well as the sets of nodes added by the reductions.

2 Hardness Results
Restrictions of TFP are NP-hard. Here, we extend the
work of [Aziz et al., 2014] to show, somewhat surprisingly,
that many natural restrictions of TFP are still NP-hard by re-
ducing TFP to the restricted versions. In particular, we show
that a number of sufficient conditions for a player v to be an
SE winner are fairly tight, in the sense that relaxing the condi-
tions results in problem instances that are NP-hard to decide.

At a high-level, our reductions proceed according to the
following framework. We start with an instance of TFP,
(G, v) where G = (V,E), and create a new graph over
G′ = (V ′, E′), which contains G as a subgraph. Then, we
designate a desired winner v′ and add a set of dummy play-
ers S. The players in S will play similarly against players
outside of S (for instance, ∀s ∈ S, ∀u ∈ V, (s, u) ∈ E′).
The additional players serve two purposes: they add structure
to the instance (G′, v′) (for instance, making v′ a king) and
importantly, they enforce the property that v′ can win in our
new tournament if and only if v plays exclusively within G
and wins the subtournament.

First, we show that, unless P = NP, any algorithm for
deciding whether a king can win a tournament would not be
efficient, even if the king wins against a quarter of the players.
Theorem 1. TFP is NP-hard even when the player of interest
v is a king with out(v) = |V | /4.

Proof. Consider some instance of TFP, (G, v) on n nodes.
From G = (V,E), we construct G′ = (V ′, E′) as follows:
include all nodes and edges from G in G′, and add a node v′

with (v′, v) ∈ E′. Add the following 3n− 1 new players:
• n − 1 players called Anew, where ∀a ∈ Anew,

(v′, a), (a, v) ∈ E′ and ∀u ∈ V \ {v}, (u, a) ∈ E′

• 2n − 1 players called Bnew, where every player b ∈
Bnew wins against all players in V ∪Anew ∪ {v′}
• a player called a∗ who only loses to v′.

Let all unspecified edges point towards v′ and be directed ar-
bitrarily within Anew and Bnew. Note that this makes G′

a tournament graph over 4n players, where v′ is a king with
out(v′) = n. We claim (G′, v′) ∈ TFP ⇐⇒ (G, v) ∈ TFP.

Note that all b ∈ Bnew are Condorcet winners over ev-
eryone except a∗. Thus, each b ∈ Bnew must be eliminated
either by another node in Bnew, or by a∗. This means that
a∗ must be the winner of some subtournament containing all
of Bnew. Because |Bnew ∪ {a∗}| = 2n, this subtournament
will take log n + 1 rounds, and v′ must not play against a∗

until the final round. Next, note that if v′ played v before the
penultimate round, then some other u∗ ∈ V \ {v} would sur-
vive to play against v′, because all u ∈ V \{v} are Condorcet
winners over Anew, and v′ would lose. Thus, for v′ to win,
v′ must win over the n players in Anew ∪ {v′}, while v must
survive for log n rounds and win over G.

We can use the fact that TFP is hard even when the player
of interest is a king to show that it is hard even when the
player of interest is a 3-king with out-degree at least n/2.
Theorem 2. TFP is NP-hard, even when the player of inter-
est v is a 3-king with out(v) = |V | /2.

Proof. Consider some instance of TFP, (G, v), where v is a
king on n nodes. Construct G′ by adding v′ with (v′, v) ∈ E′

and ∀u ∈ V \ {v} , (u, v′) ∈ E′. Also, add n − 1 other
players, which we call W . All w ∈ W will lose to every
player in V ∪{v′} (and play arbitrarily amongst themselves).
We claim that (G′, v′) ∈ TFP ⇐⇒ (G, v) ∈ TFP.

Note that v′ is a 3-king in G′ because v′ wins over v who
was a king over the original graph, and wins over all w ∈W .
Also note that if v′ plays any u ∈ V before playing v in the
final round, then v′ will lose the tournament. Thus, for v′

to win, v′ must survive through W ∪ {v′}, while v survives
through V . In other words, v must win over G.

Another result from [Vassilevska Williams, 2010] shows
that players who are stronger than the players who beat them
are SE winners. It is natural to wonder what happens when
we relax this condition, requiring that v be “nearly as strong”
as the players who beat v. In the following theorem, we for-
malize this notion and give a corresponding hardness result.
Theorem 3. For all constant ε > 0, TFP is NP-hard even
when ∀u ∈ Nin(v), out(u) ≤ (1 + ε)out(v).

Proof. Consider some instance of TFP (G, v) on n nodes,
where we require v to have low out-degree3, out(v) = log n.
From G = (V,E), we will construct G′ = (V ′, E′) as fol-
lows. We add N ≥ n nodes, called Q, where ∀q ∈ Q,
(q, v) ∈ E′ and ∀u ∈ V \ {v}, (u, q) ∈ E′. We choose
one q∗ ∈ Q and ∀q ∈ Q \ {q∗}, we add (q∗, q) ∈ E′. The
rest of Q may play arbitrarily. Note that out(q∗) = N and
∀u ∈ Nin(q∗), out(u) < N + n. Thus, for N ≥ n/ε, then
for all u ∈ Nin(q∗), out(u) ≤ (1 + ε)out(v). We claim
(G′, q∗) ∈ TFP ⇐⇒ (G, v) ∈ TFP.

3By Aziz et al.’s original reduction, TFP on instances with
out(v) = logn is known to be NP-hard.

563

Note that all players u ∈ V \ {v} are Condorcet winners
over Q. If any such u survives beyond v, then some player
from V will win the tournament. This means, for q∗ to win, v
must win a subtournament over the players in V and possibly
some from Q. But by our assumption, out(v) = log n, so v
can win a subtournament of at most n players – the number of
players in V . It is easy to see that if v survives log n rounds,
then q∗ is a Condorcet winner over the remaining players.
Thus, q∗ wins over G′ if and only if v wins over G.

Limited bribery doesn’t help. Beyond considering in-
stances where our player is strong, we might be equally in-
terested in studying what happens if we give the organizer
more power, such as the ability to bribe players to throw a
match. We define BRIBERY-TFP as follows: given a tourna-
ment G = (V,E), a desired winner v, and a natural number
k, decide whether v can win an SE tournament in G when we
allow the organizer to bribe up to k players to throw a match
that they would otherwise win. Clearly, if k = 0, the problem
is equivalent to TFP. If k ≥ log n, then the tournament can
certainly be fixed 4. The question is what happens in between.

Theorem 4. For all constant ε > 0, BRIBERY-TFP is NP-
hard, when k ≤ (1− ε) log n.

Proof. Consider some instance of TFP, (G, v) on n nodes.
We construct Gk as follows: add a set of n(2k−1)−k players
called R who are Condorcet winners over V , and add a set of
k players called S who are Condorcet winners over V ∪R.

Suppose some player t ∈ S∪R was seeded to play against
v in the first log n rounds. If (t, v) ∈ E, then v would lose.
If t was bribed to lose, so that (v, t) ∈ E, and v survives past
the first log n rounds, then out(v) ≤ k − 1, with k rounds
remaining. To see this, note that the only players who remain
after log n rounds inNout(v) are those from R∪S who were
bribed to lose against v and any other surviving players u ∈
V ∩ Nout(v). But in order for any such u to survive log n
rounds, some t ∈ R∪S must have been bribed to lose against
u. Thus, because one bribed player t, has already lost, there
are at most k − 1 remaining. This means, to win over Gk, v
must first win over G, then win against the k bribed players
⊆ S∪R. Thus, v can win over Gk with k bribes if and only if
v can win over G. Thus, for any constant ε > 0, we can obtain
a polynomial time reduction to a BRIBERY-TFP instance of
size N = n1/ε and with k = (1− ε) logN bribes.

3 Structural Results
Previous work characterizes a variety of sufficient conditions
for a player to win an SE tournament [Vassilevska Williams,
2010; Stanton and Vassilevska Williams, 2011b]. Many of
these results are about players who are kings. In this section,
we extend the notion of a king and describe a new set of suf-
ficient conditions for a 3-king to be an SE winner. We start
with a set of motivating examples, where v is a 3-king but

4In fact, v can win for any k ≥ logn − blog dc where d =
out(v). To see this, consider matching players inNout(v)∪{v} un-
til v is the sole survivor. v can last blog dc rounds playing Nout(v)
and thus needs only logn− blog dc more wins to win out.

v

a

b

c

A

(a) Nout(a) = {b}, Nin(b) =
{a}, Nin(c) = {b}. No matter
how big |A| is, v cannot win, as
there are not enough edges into
b and c to defeat both players.

A

B

C

v

(b) Without a perfect matching
onto C, even for large A, the
players in A with edges into B
may be eliminated before B is
able to defeat C.

Figure 2: Examples of tournaments where v is a 3-king, but
cannot win an SE tournament under any seeding.

cannot win, justifying that, in some sense, our conditions are
necessary. When discussing 3-kings, we will generally let v
be our 3-king and player of interest, and define the following
disjoint subsets of the other players by their distance from v as
A = Nout(v), B = Nout(A)∩Nin(v), and C = Nin(v)\B.
Thus, V = {v} ∪A ∪B ∪ C.

Motivating Examples. To start, we might hope to borrow
techniques from [Vassilevska Williams, 2010; Stanton and
Vassilevska Williams, 2011b] and try to construct a seeding
based on the out-degree of v or a matching into the players
who win against v. In particular, perhaps for sufficiently large
A, if there is a perfect matching5 from B onto C, then v will
win some SE tournament. This intuition turns out to be false.
To see this, consider Figure 2a. In this simple example, v
wins against all but two players, and there is a perfect match-
ing from B onto C. Nevertheless, v still cannot win any SE
tournament – either b will advance beyond a, or c advances
beyond b. In either case, b or c will win every SE tournament.

Another idea from [Vassilevska Williams, 2010] would be
to argue that if the players in B are no stronger than v (i.e.
∀b ∈ B, out(b) ≤ out(v)), then if |C| is sufficiently small,
we can find a seeding where v will win. In Figure 2b, we
show that without additional assumptions, this condition is
not sufficient. Even for large A and small C, there are tour-
naments where the players in B are no stronger than v, but
v cannot win any SE tournament. We will see that, while
these conditions fail independently, in combination, they are
sufficient for v to be made a winner.

3.1 Main Result
Theorem 5. Consider a tournament G = (V,E) where v ∈
V is a 3-king. Let A = Nout(v), B = Nout(A) ∩ Nin(v),
and C = Nin(v) \ B. v is guaranteed to be an SE winner if
the following conditions hold.

1. |A| ≥ |V |3
2. ∀b ∈ B, out(b) ≤ out(v)

3. There is a perfect matching from B onto C

5We say there is a perfect matching M from S onto T if M is
a node-disjoint subset of edges (s, t) ∈ S′ × T for some S′ ⊆ S
where |S′| = |T | = |M |.

564

Our proof of Theorem 5 involves many technical pieces.
For a detailed account of all of these pieces, please refer to
the full version of this section. We start by outlining the al-
gorithm we use to construct the initial matchups and give an
intuition for why it works.

In the first round, we will match B(0) onto C(0) using the
perfect matching (see Table 1 for the notation used here).
While these players are playing, we will match A(0) against
itself in a manner that ensures v will be a king over V (1). In
particular, we will find a matching in A(0) such that for ev-
ery player b ∈ B(0), there will be some surviving a ∈ A(1),
where (a, b) ∈ E. Separately, we can then argue that for suf-
ficiently large A(0), the resulting A(1) will be large enough
for v to be a guaranteed SE winner.

We will say that a ∈ A covers b ∈ B if we select (a, a′)
in our matching, such that a survives to A(1), and (a, b) ∈ E.
We assume all b ∈ B participate in the perfect matching onto
C. (If there is some extra b′ ∈ B, we can match these players
in the first round to some a′ ∈ A and remove the covered
players from consideration.) Note that this means our bound
on the out-degree of b ∈ B by out(v) = |A| implies ∀b ∈
B, outB(b) + 2 ≤ inA(b). If we rank the players b ∈ B in
ascending order by inA(b), we can see that our assumption
implies the following condition.∑

b∈B1:i

inA(b) ≥
(
i

2

)
+ 2i ∀i ∈ {1, . . . , |B|} (1)

Note that (1) implies every node in B starts with at least
two in-edges from A. We claim that if (1) holds, we can cover
the nodes in B. Intuitively, to cover some b ∈ B, we want to
find an edge (a, a′) where a beats b and a′ doesn’t have too
many edges into other players in B. To accomplish this, we
might start with the player bmin ∈ B who has the minimum
in-degree from A, and match two players a, a′ who each beat
bmin, repeating this for each b ∈ B until all of B is covered.

b1b2b3b4

a1a2a3a4a5

b2b3b4

a3a4a5

Figure 3: If (a2, a1) covers b1, the invariant (1) is broken.

This intuition is born out precisely in our covering algo-
rithm when there is a unique player with in-degree from A of
2; however, when the player of minimum in-degree has more
than 2 in-edges, we need to be careful about which edge we
use to cover bmin. Consider Figure 3, which depicts a possi-
ble subset of the players in A and B. In particular, note that
the in-degree from A of b1, b2, b3 all equal 3, and thus, sat-
isfy (1). Nevertheless, if we choose an arbitrary edge to cover
b1, then in the resultant graph, we may not be able to cover
both b2 and b3. For instance, suppose A is transitive (that is,
∀j > i, (aj , ai) ∈ E). Then if (a2, a1) is selected to cover
b1, v cannot be a king at the start of round 2 because either b2
or b3 will not be covered. Algorithm 1 handles cases like this
by noting that if the minimum in-degree from A in B is d,

Algorithm 1 COVERB(A,B,E)

1: MA ← ∅
2: while B 6= ∅ do
3: Sort the players b ∈ B by inA(b) (ascending)
4: Let d← inA(b1)
5: if ∃(a, a′) ∈ E s.t. a, a′ ∈ Nin(b1)

and Nout({a, a′}) ∩B1:2d−3 = {b1} then
6: e← (a, a′)
7: else {∃ a, a′, bj s.t. (a, a′), (a, b1), (a, bj) ∈ E where

j ≤ 2d− 3}
8: e← (a, a′)
9: end if

10: MA ←MA ∪ {e}
11: A← A \ {a, a′}
12: B ← B \ Nout,B(a)
13: end while

then there are at most 2d−3 nodes b ∈ B where inA(b) = d.
This follows directly from (1). Our key insight is to look for
a way to cover multiple nodes amongst these 2d− 3 possible
“minima”. We argue that if some a ∈ A covers at least two
of the first 2d − 3 nodes, then (1) is maintained. If not, then
there is a matching that does not affect the in-degrees of other
minimal nodes and maintains the invariant.

We break the analysis of Algorithm 1 into two cases. First,
we check if there is a pair of players in A who beat b1 and
beat none of the other 2d − 3 lowest-ranked players. When
inA(b1) = 2, we always fall into this case, and match the
two players who win against b1. Otherwise, we know that
inA(b1) ≥ 3 and there is some edge (a, a′) we can choose
where a ∈ inA(b1) covers b1 and another bj ∈ B for some
j ≤ 2d − 3. It should be clear these cases are exhaustive;
moreover, we claim that in either case, (1) is maintained as
a loop invariant. Proving this fact requires carefully account-
ing for the edges that could be lost by the covering in each
iteration. A detailed analysis is provided in the full version.

To prove the full theorem, we need an additional lemma.
The lemma is a strengthened version of a theorem from [Vas-
silevska Williams, 2010] about kings with large out-degrees.
Lemma 1. Assume v is a king, where A = Nout(v) and B =
Nin(v). Let k be the cardinality of the maximum matching
from A to B. If |A| > n

2 − k, then one can efficiently rig an
SE tournament such that v wins.

The proof of the lemma is straightforward and simply in-
volves using the perfect matching in the first round to result
in a king who wins against at least half the remaining players.

To complete the proof, we argue that in G(1), out(v) and
the size of the matching from A(1) to B(1) will be sufficiently
large. In order to ensure a large matching, we introduce the
notion of assignment. We will say that b ∈ B is assigned, if
some a ∈ A covered b when b was the minimum element (i.e.
not coincidentally). Then, we will run Algorithm 1 repeat-
edly on the unassigned players in B, until we have a max-
imal matching. By bounding the number of edges from A
to B lost per assignment, we can show that if |A| is initially
|V | /3, then the resultant graph will satisfy the conditions for
Lemma 1.

565

3.2 Choking Under Pressure in Random Graphs
We can reasonably model the phenomenon of choking under
pressure using the generative model proposed in the introduc-
tion. Recall, the model assumes that, in general, upsets are
rare occuring with probability p, but when a player vi plays
against another player vj weaker than some threshold m < j,
vi may be prone to choke against vj with a greater probability
q in a match up vi should have otherwise won.

Under this model, we can argue that with high probabil-
ity nearly a third of the players will be 3-kings satisfying the
conditions in Theorem 5, and thus will be SE winners.
Theorem 6. Let ∆ =

√
n lnn. There exists an n0 such that

for all n > n0 if p ≤ Θ(lnn/n) ≤ q ≤ (m− i−Θ(∆))/n, a
player vi will be an SE winner for any i ≤ n/3−Θ(∆) with
high probability when m ≥ i + n/3 + Θ(∆).
Corollary 1. For any v in the top n/3−o(n) players, v is an
SE winner with high probability over a tournament generated
by our model even when the top players choke against the bot-
tom third of players with constant probability q < 1/3− o(1).

The proof of Theorem 6 uses familiar concentration
bounds and properties of random graphs as in [Stanton and
Vassilevska Williams, 2011a] to show that the following three
claims hold with high probability.

First, because p ≤ Θ(lnn/n), we know there will be at
most i+ Θ(∆) < n/3 strong players who beat vi. Second, if
m > i + n/3 + Θ(∆), then vi will win against at least n/3
strong players. Third, if q ≤ (m − i − Θ(∆))/n, then for
every weak player w, out(w) ≤ out(vi); moreover, because
q ≥ Ω(lnn/n), there will be a perfect matching from these
weak players onto the strongest players who beat vi. In com-
bination, these properties, which hold with high probability,
correspond directly to the required conditions on our 3-king
in Theorem 5. It follows that any such vi will be an SE winner
with high probability.

4 Exact Algorithm
We consider computing the number of seedings for which a
particular player can win a balanced SE tournament in the
more general case of incomplete information in which the in-
put tournament graph may be missing some edges. This num-
ber is proportional to the probability that the player can win
the tournament under a random seeding, and is of indepen-
dent interest. We will prove two statements. The first is that
if the given tournament graph is allowed to be missing some
edges, then computing the number of winning seedings for
a given player is #P -hard. The second result is a 2npoly n
time algorithm for exactly solving this problem. We begin
with the hardness result.
Proposition 1. Given a directed graph G = (V,E) such that
for any x, y ∈ V , at most one of {(x, y), (y, x)} is in E, and
given a node v ∈ V , counting the number of spanning bino-
mial arborescences of G rooted at v is #P -complete. That is,
given only partial information about match outcomes, deter-
mining the probability that a given player can win a random
single-elimination tournament is #P -hard.

The proof proceeds via a reduction from bipartite perfect
matching: given a bipartite graph on partitions S and T , direct

the edges from S to T , and then add extra edges between
the nodes of S to make a binomial arborescence spanning S
rooted at some node v ∈ S. Then the number of tournaments
that v can win is exactly the number of perfect matchings in
the original graph.

Because of the above proposition, we do not expect a
subexponential time algorithm for the problem. We now
present a 2npoly n time algorithm, improving on a result
from [Aziz et al., 2014]. We begin with the following fact.

Fact 1. Let fv(S) be the number of spanning binomial ar-
borescences rooted at node v in the subgraph of G induced
by S ⊂ V . Then

fv(S) =
∑

u∈Nout(v)

∑
T⊆S\{v}
|T |=|S|/2

u∈T

fu(T) · fv(S \ T).

We will use the following lemma, the proof of which fol-
lows [Björklund et al., 2007] closely and will appear in the
full version of the paper.

Lemma 2. Let k = 2i for some i ≥ 1. Let f and g be
functions taking k/2-sized subsets of [n] to the integers. Let
h be a function taking k-sized subsets of [n] to the integers
defined as follows.

h(S) =
∑
T⊆S
|T |=k/2

f(T) · g(S \ T)

Then, if given O(1) time access to evaluating f and g, one
can compute f(S) for all S ⊆ [n], |S| = k in time O(k · 2n).

Theorem 7. There is an O(2npoly n) time algorithm that
computes for any given directed graph G = (V,E) for which
(u, v) ∈ E implies (v, u) /∈ E, and any a ∈ V , the number
of spanning binomial arborescences of G rooted at a.

Proof. Based on Fact 1, we define for each i = 1, . . . , log n,
j = 1, . . . , n, functions fij , gij that take as input a subset
S ⊆ [n] and return an integer. If |S| 6= 2i, then fij(S) =
gij(S) = 0. If |S| = 2i:

fij(S) =
∑

k∈Nout(j)

∑
U⊆S

f(i−1)j(U) · f(i−1)k(S \ U).

f0v({v}) = 1 and f0v(S) = 0 if S 6= {v}.
Intuitively, fiv(S) represents the number of spanning bi-

nomial arborescences rooted at v in the graph induced by S
when |S| = 2i, and where V is identified with [n].

Define gij as follows. If |S| 6= 2i or if j ∈ S, gij(S) =
0. Otherwise, gij(S) =

∑
k∈Nout(j)

fik(S). That is, gij(S)

computes the number of binomial arborescences spanning S
rooted at a neighbor of j /∈ S. Thus, for any S with |S| = 2i,
we can write

fij(S) =
∑
U⊆S

|U |=|S|/2

f(i−1)j(U) · g(i−1)j(S \ U).

The quantity we want to compute is f(logn)a(V).

566

Fix i. Given fik(S) for all S of size 2i, one can compute all
gij(S) (for sets S of size 2i and nodes j) in time O(n2i2n):
go through all O(n2n) pairs (S, j) and add fik(S) to gij(S)
for all of the ≤ |S| ≤ 2i nodes k ∈ S for which (j, k) ∈ E.

By Lemma 2, for each fixed i, j, if we are given f(i−1)j(S
′)

and g(i−1)j(S
′) for all sets S′ of size 2i−1, we can compute

fij(S) on all sets S of size 2i in O(2i2n) operations.
To summarize, the algorithm goes through all i from 1

to log n, and through j from 1 to n. For each fixed i, j,
it computes fij(S) and gij(S) for all sets S of size 2i,
given the values of f(i−1)j(S

′) and g(i−1)j(S
′) for all sets

S′ of size 2i−1, in time O(2i2n), using Lemma 2. Then
the output is f(logn)a(V). The runtime is asymptotically
n2n

∑logn
i=1 2i ≤ O(n22n). The integers that the algorithm

computes with, however, can be as big as n! – the number of
binomial arborescences there can be in a graph. This adds an
extra poly log(n!) ≤ poly n factor to the running time, as op-
erations on B bit integers take no more than poly B time.

5 Conclusion and Future Work
In this work, we answer a number of open questions related to
the complexity of TFP. We exhibit a new set of conditions that
are sufficient to guarantee a player is an SE winner; moreover,
we give an improvement to the best-known algorithm for cal-
culating the number of seedings that a given player wins in an
arbitrary tournament.

We also introduce two previously-unstudied variants of
TFP – where the organizer is allowed to bribe players to throw
their matches and where strong players may tend to choke
against weaker players. While our results provide an initial
understanding of these variants, the models open the door for
interesting future work. In particular, studying both of these
variants in probabilistic versions of TFP might provide fur-
ther insight into how bribery and choking affect the manipu-
lation of real-world tournaments.

Acknowledgments
We thank the anonymous reviewers for their comments.

References
[Aziz et al., 2014] Haris Aziz, Serge Gaspers, Simon

Mackenzie, and Nicholas Mattei. Fixing a balanced
knockout tournament. In Proc. AAAI, pages 552–558,
2014.

[Bartholdi et al., 1989] J. Bartholdi, C. Tovey, and M. Trick.
The computational difficulty of manipulating an election.
Social Choice Welfare, 6:227–241, 1989.

[Bartholdi et al., 1992] J. Bartholdi, C. Tovey, and M. Trick.
How hard is it to control an election? Mathematical and
Computer Modeling, 16(8/9):27–40, 1992.

[Baumeister, 1984] Roy F Baumeister. Choking under pres-
sure: self-consciousness and paradoxical effects of incen-
tives on skillful performance. Journal of personality and
social psychology, 46(3):610, 1984.

[Beilock and Carr, 2001] Sian L Beilock and Thomas H
Carr. On the fragility of skilled performance: What gov-
erns choking under pressure? Journal of experimental psy-
chology: General, 130(4):701, 2001.

[Björklund et al., 2007] A. Björklund, T. Husfeldt, P. Kaski,
and M. Koivisto. Fourier meets Möbius: fast subset con-
volution. In Proc. STOC, pages 67–74, 2007.

[Braverman and Mossel, 2008] M. Braverman and E. Mos-
sel. Noisy sorting without resampling. In Proc. SODA,
2008.

[Hazon et al., 2007] N. Hazon, P. E. Dunne, and
M. Wooldridge. How to rig an election. In Proc.
BISFAI, 2007.

[Hazon et al., 2008] N. Hazon, P.E. Dunne, S. Kraus, and
M. Wooldridge. How to rig elections and competitions.
In Proc. COMSOC, 2008.

[Lang et al., 2007] J. Lang, M. S. Pini, F. Rossi, K. B. Ven-
able, and T. Walsh. Winner determination in sequential
majority voting. In Proc. IJCAI, pages 1372–1377, 2007.

[Lita, 2008] D. Lita. Method and apparatus for managing
billiard tournaments. US Patent App., 20080269925, Oct
2008.

[Stanton and Vassilevska Williams, 2011a] I. Stanton and
V. Vassilevska Williams. Manipulating stochastically gen-
erated single-elimination tournaments for nearly all play-
ers. In Proc. WINE, pages 326–337, 2011.

[Stanton and Vassilevska Williams, 2011b] I. Stanton and
V. Vassilevska Williams. Rigging tournament brackets for
weaker players. In Proc. IJCAI, pages 357–364, 2011.

[Vassilevska Williams, 2010] V. Vassilevska Williams. Fix-
ing a tournament. In Proc. AAAI, pages 895–900, 2010.

[Vu et al., 2009] T. Vu, A. Altman, and Y. Shoham. On
the complexity of schedule control problems for knockout
tournaments. In Proc. AAMAS, pages 225–232, 2009.

567

