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Abstract
Active learning reduces the labeling cost by selec-
tively querying the most valuable information from
the annotator. It is essentially important for multi-
label learning, where the labeling cost is rather high
because each object may be associated with mul-
tiple labels. Existing multi-label active learning
(MLAL) research mainly focuses on the task of se-
lecting instances to be queried. In this paper, we
disclose for the first time that the query type, which
decides what information to query for the selected
instance, is more important. Based on this obser-
vation, we propose a novel MLAL framework to
query the relevance ordering of label pairs, which
gets richer information from each query and re-
quires less expertise of the annotator. By incorpo-
rating a simple selection strategy and a label rank-
ing model into our framework, the proposed ap-
proach can reduce the labeling effort of annota-
tors significantly. Experiments on 20 benchmark
datasets and a manually labeled real data validate
that our approach not only achieves superior perfor-
mance on classification, but also provides accurate
ranking for relevant labels.

1 Introduction
In many real world applications, there are plentiful unlabeled
data but limited labeled data, and the acquisition of class la-
bels is usually costly and difficult. By actively and iteratively
selecting the most valuable data to query their supervised in-
formation, active learning tries to train an effective model
with least labeling cost [Settles, 2009].

Multi-label learning deals with objects that are simulta-
neously associated with multiple labels [Zhang and Zhou,
2014], and has been successfully applied to various tasks,
e.g., image classification [Bi and Kwok, 2013; Boutell et
al., 2004], text categorization [Schapire and Singer, 2000;
Mencia and Furnkranz, 2008] and gene function prediction
[Elisseeff and Weston, 2002]. To label a multi-label object,
the human annotator needs to identify its relevance to every
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possible label, which leads to even higher cost than in single-
label learning. Thus active learning for multi-label tasks has
attracted more and more research interests in recent years.

Under the traditional single-label setting, active learning
methods select the most valuable instances and then query
their labels from the annotator (oracle). The key task is to de-
sign the criterion for instance selection [Settles, 2009]. Most
research on multi-label active learning follows this principle,
and focuses on selection criterion design [Esuli and Sebas-
tiani, 2009; Singh et al., 2010; Wang et al., 2012]. For ex-
ample, Vasisht et. al. [2014] proposed a mutual information
based criterion for sparse Bayesian multi-label active learn-
ing; Brinker [2006] proposed to select instances according to
the reduction of the version space volume; In both [Yang et
al., 2009] and [Hung and Lin, 2011], instances with maxi-
mum loss reduction are selected for query; while in [Singh et
al., 2008], the average uncertainty over all labels is used as
the selection criterion. Besides, there are some works trying
to combine multiple criteria for better selection [Li and Guo,
2013; Tang et al., 2012; Huang et al., 2014].

However, we observe that the query type, which decides
what kind of supervised information to query for the se-
lected instance, matters more than the selection criterion to
the performance of multi-label active learning (MLAL). In
fact, the expansion of label space in multi-label learning of-
fers more potential options for the design of query types
in MLAL. Given a selected instance, most existing meth-
ods query all the labels for the instance [Li et al., 2004;
Brinker, 2006; Chakraborty et al., 2011; Hung and Lin, 2011;
Li and Guo, 2013]. Recently, there are a few works trying to
query the relevance of a instance-label pair, i.e., ask the ora-
cle whether a specific label is relevant to the selected instance
at each iteration [Qi et al., 2008; Huang and Zhou, 2013;
Huang et al., 2014]. These simple query types suffers from
the following shortcomings. First, querying all labels of an
instance may lead to information redundancy and wasting of
annotators’ effort. It is well known that different labels are
usually correlated in multi-label learning [Zhang and Zhou,
2014]. Thus only a part of labels need to be queried, while
the rest can be inferred by exploiting the correlation among
labels. Besides, in some real problems with a large number of
candidate labels, annotators may hardly identify all relevant
labels at a time. Querying a label-instance pair avoids in-
formation redundancy, but usually ignores the interaction be-
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tween labels, and gets limited supervision from each query.
Moreover, both these two query types require the annotator
to precisely decide the relevance of labels to instances, which
may lead to high cost in complicated tasks. For example, in
medical image analysis, only experts with rich experiences
can accurately identify the disease of a patient based on the
medical image. In contrast, if the question is to decide which
of two given diseases is more likely suffered by the patient,
then even medical students with basic knowledge may easily
give the answer. So different query types may bring different
information and cause different cost.

In this paper, we propose a multi-label active learning
framework with a novel query type. Under this framework,
we iteratively select one instance along with a pair of labels,
and then query their relevance ordering, i.e., ask the oracle
which of the two labels is more relevant to the instance. The
proposed query type, on one hand reduces the requirements
of annotators’ expertise, and on the other hand, provides more
useful information to improve the classification model. After
each query, we employ a label ranking model with thresh-
old learning for multi-label classification. The queried infor-
mation is fully utilized to improve the classification model.
With the proposed framework, we can incorporate with dif-
ferent selection criteria to implement different multi-label ac-
tive learning algorithms. In this paper, we propose to select
the least queried instance and most valuable label pairs for
query. Our empirical study on 21 datasets demonstrates the
advantage of the proposed query type as well as the efficacy
of the implemented algorithm.

Our main contributions are summarized as follows.

• For the first time, we disclose that query type matters
more to the performance of multi-label active learning
than selection criterion.

• We propose a novel query type to ask for the relevance
ordering of two labels on a specific instance, and further
incorporate it with a new selection strategy to implement
an effective multi-label active learning algorithm.

• In addition to superiority on classification performance,
the proposed algorithm provides accurate ranking of rel-
evant labels for unseen instances.

The rest of this paper is organized as follows. In Section 2,
the proposed approach is introduced. Section 3 presents the
experiments, followed by the conclusion in Section 4.

2 The Approach
In this section, we first present a multi-label active learning
framework with the proposed query type, and then introduce
the label ranking model for multi-label classification. After
that, a matching criterion is proposed to select the labels and
instances for query.

2.1 The framework
At each iteration, we query the relevance ordering of two la-
bels to the selected instance. Denoting by x, y1 and y2 the
selected instance and two labels, respectively, the annotator
needs to decide which of y1 and y2 is more relevant to x. We
offer three options: a) y1 is more relevant than y2; b) y1 is

The image is relevant to lion 
 

The image is irrelevant to lion 

• 

(a) an existing query type

lion is more relevant than tree 
 

lion is less relevant than tree 
 

lion and tree are both irrelevant 

• 

(b) the proposed query type

Figure 1: The interface of two query types for image annota-
tion. (a) querying whether a label is relevant to the image; (b)
querying which of two labels is more relevant to the image.

less relevant than y2; and c) both y1 and y2 are irrelevant to
x. From the answer a), we can know that y1 is a relevant la-
bel of x, while y2 can be either an irrelevant label or a less
relevant label. Similarly, we cannot directly know whether
y1 is a relevant label or not from the answer b). While for
the answer c), both of the two labels are explicitly labeled
as irrelevant. We will discuss how to utilize such supervised
information for model training in the next subsection. Note
here we assume that annotators always give a relative order
for two relevant labels, and thus do not provide the option for
the case that two labels are equally relevant. One can design
more options to obtain more detailed information.

Figure 1 shows a comparison of two query types: (a) for
the existing query type, i.e., querying the relevance of an
instance-label pair, and (b) for the proposed type, i.e., query-
ing the relevance ordering of two labels on an instance. To
examine the efficiency of these two interfaces, we conduct a
user study for the image annotation task. Each of three users
is asked to answer 1000 queries via the two interfaces, respec-
tively. Before the study, all the users are well trained to get
familiar with the interface. Images and labels are randomly
drawn from the image dataset [Zhang and Zhou, 2007]. Two
of the three annotators finish the 1000 queries more quickly
with the interface (b), and the average response time for each
query with the two interfaces are very close, 1.38 seconds for
the interface (a) and 1.43 seconds for the interface (b).

The proposed query type has two significant advantages.
First, it does not require the annotator to provide exact labels
for the selected instance. In some complicated applications
such as medical image analysis, only experts with rich ex-
perience can give exact labels, while normal annotators can
easily judge the relative order of the relevance of two labels.
Even in common tasks such as image classification, the pro-
posed query type still show its superiority. For example, for
the image in Figure 1, people may overlook the lion in the
tree, and mistakenly decide that lion is not a relevant label of
the image. Instead, with the interface of our proposed query
type, people can confidently identify that the image is more
relevant to tree than lion. Another advantage of the proposed
query type is that the supervised information obtained from
each query explicitly contains the correlation between differ-
ent labels, which has been shown to be crucial for multi-label
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learning [Zhang and Zhou, 2014].
A framework of multi-label active learning with the pro-

posed query type, termed as AURO (Active qUery on Rel-
evance Ordering), can be summarized as follows. First, we
select a triplet consisting of one instance x and two labels
y1 and y2. Then, the relative order of y1 and y2 based on
their relevance to the instance x is queried. After that, the
queried information is utilized to update the classification
model. This process is repeated until enough information is
queried or the query cost reaches a specific threshold. In the
following subsections, we will introduce the updating rules
for the classification model and the selection strategy for the
instances and labels to be queried.

2.2 Classification model
The algorithm recently proposed in [Huang and Zhou, 2013]
is employed for multi-label classification in our AURO
framework. In this section, we will first introduce this algo-
rithm in detail. The basic idea is to rank relevant labels before
all irrelevant ones by minimizing an approximated rank loss
[Weston et al., 2011]. Meanwhile, a dummy label is trained
to separate relevant and irrelevant labels from the ranked label
list. We denote by Yi and Ȳi the sets of relevant and irrelevant
labels of the instance xi, respectively. The dummy label is
denoted by y0. A two-level model on label y is defined as

fy(x) = w>y W0x,

where W0 maps the original feature vectors to a shared sub-
space, and then wy builds a linear classifier on the subspace.

For an instance x and one of its relevant labels y, the rank-
ing error can be defined as:

ε(x, y) =

R(x,y)∑
i=1

1

i
, (1)

where
R(x, y) =

∑
ȳ∈Ȳ

I[fȳ(x) > fy(x)] (2)

counts the number of irrelevant labels that are ranked before
y. Obviously, the ranking error ε would be larger if y is lower
ranked. Our target is to rank all labels correctly by minimiz-
ing the ranking error on all instances. Directly optimizing the
non-convex error in Eq. 1 is a NP-hard problem. We thus in-
troduce the hinge loss as a convex surrogate loss. By further
decomposing the loss into all irrelevant labels, we can have
Eq. 3 to define the loss induced by a relevant label y and an
irrelevant label ȳ on x.

L(x, y, ȳ) = ε(x, y)|1 + fȳ(x)− fy(x)|+, (3)

where |q|+ = max(q, 0). Then the target is to minimize the
ranking error on the training set:

n∑
i=1

∑
y∈Yi

∑
ȳ∈Ȳi

L(xi, y, ȳ). (4)

The algorithm iteratively samples data and employs stochas-
tic gradient descent (SGD) to minimize the ranking error. At

the t-th iteration of SGD, assuming the sampled triplet is
(x, y, ȳ), the model parameters can be updated according to:

W t+1
0 = W t

0 − γt
R(x,y)∑
i=1

1

i
(wt

ȳx
> −wt

yx
>) (5)

wt+1
y = wt

y + γt

R(x,y)∑
i=1

1

i
W t

0x (6)

wt+1
ȳ = wt

ȳ − γt
R(x,y)∑
i=1

1

i
W t

0x (7)

where γt is the step size.
Note that the above introduced algorithm is designed for

data with exact labels, and should be adapted to fully uti-
lize the relevance ordering information queried in our AURO
framework. Assume that in the current iteration of active
learning, the relevance ordering of y1 and y2 to x is queried
from the annotator. The sets of relevant and irrelevant labels
of x known from previous queries are denoted as Y + and
Y −, respectively. Then with different answers from the an-
notator, we have different objective functions accordingly. If
the answer is that y1 is more relevant to x than y2, then y1 is
added into Y + as a relevant label of x, and the model should
be trained with the following objectives. First, y1 should be
ranked before y2. Second, y1 should be ranked before all ir-
relevant labels in Y − as well as the dummy label y0. The
objective function can be written as:

minL(x, y1, y2) +
∑

ȳ∈Y −∪{y0}

L(x, y1, ȳ). (8)

If the answer is that y1 is less relevant to x than y2, then y2 is
added into Y +. We can have a similar objective function just
by switching y1 and y2 in Eq. 8.

At last, if the answer is that both y1 and y2 are irrelevant
to x, then y1 and y2 are added into Y −. We expect the model
to rank both y1 and y2 behind the dummy label y0 as well as
all relevant labels in Y +, leading to the following objective
function:

min
∑

y∈Y +∪{y0}

∑
ȳ∈{y1,y2}

L(x, y, ȳ). (9)

The above optimization problems can be efficiently solved
via stochastic gradient descent.

2.3 Selection strategy
In this subsection, we show how the instance and labels are
selected for query, respectively. First, the instance is selected
based on uncertainty, which is a commonly used criterion.
In this paper, we simply measure the uncertainty of an in-
stance with the number of queries performed on it. The less
queries have been performed, the more uncertain the instance
is. Thus at each iteration of active learning, the least queried
instance is selected. In case there are multiple instances with
the same number of queries, we randomly pick one of them.

Then for the selected instance x, we need further select two
labels, denoted by y1 and y2, to query their relevance order-
ing. The two labels are expected to have the following proper-
ties. First, the current model should be less confident on the
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Figure 2: The selection strategy of labels y1 and y2. Labels
are ranked based on the prediction values on instance x. The
black and white boxes indicate queried and not queried labels,
respectively, while the red box represents the dummy label y0,
which separates relevant and irrelevant labels. y1 and y2 are
the two labels selected according to Eq. 10 and Eq. 11

relevance ordering between y1 and y2. Otherwise querying
some information that is already known by the model is use-
less for further improving it. Second, there should be a sig-
nificant difference between the relevance of y1 and y2 to x.
Otherwise the queried information will induce only a slight
change to the classification model. This suggests that the pre-
diction on the two labels, i.e., fy1(x) and fy2(x), should not
be too close. At last, relevant labels are preferred. Multi-
label learning usually suffers from class-imbalance problem
because each instance is relevant to only a small subset of all
labels. Thus information on relevant labels is more valuable
for improving the model, as suggested in [Huang and Zhou,
2013]. Taking all these factors into account, without loss of
generality, y1 and y2 can be selected as:

y1 = argmax
y∈U(x)

fy(x), (10)

y2 = argmin
y∈U(x)

|fy0(x)− fy(x)|, (11)

where U(x) denotes the set of labels not queried yet for x.
Note that Eq. 11 was firstly introduced in [Huang and Zhou,
2013]. The selection strategy is summarized in Figure 2.
Note that the dummy label y0 represents the boundary of the
current model for separating relevant and irrelevant labels. y2

is ranked after y0, and thus is predicted as an irrelevant label.
Based on the current model, y1 is the most relevant label, and
is expected to have a significant difference in relevance with
the irrelevant label y2. On the other hand, y2 is the irrelevant
label closest to the dummy label (the decision boundary), and
thus its prediction is less confident.

It is worth noticing that the main contribution of this work
is proposing AURO framework with the new query type.
Within this framework, one can design various selection cri-
teria to implement different algorithms. In this paper, we only
present a simple strategy to select instances and labels. It is
shown in the experiments that even with this simple strategy,
our algorithm can achieve excellent performance owing to the
superiority of the proposed query type.

3 Experiments
3.1 Settings
To evaluate the proposed approach, we compare the following
six multi-label active learning algorithms in our experiments:

Table 1: Statistics on data sets. LC (label cardinality) is the
average number of relevant labels per instance.

Data # instance # label # feature LC
Corel5K 5,000 374 499 3.52
Emotions 593 6 72 1.87
Enron 1,702 53 1,001 3.38
Genebase 662 27 1,185 1.25
Image 2,000 5 294 1.24
Medical 978 45 1,449 1.25
Reuters 2,000 7 243 1.15
Scene 2,407 6 294 1.07
Yeast 2,417 14 103 4.24
Arts 5,000 26 462 1.64
Business 5,000 30 438 1.59
Computers 5,000 33 681 1.51
Education 5,000 33 550 1.46
Entertainment 5,000 21 640 1.42
Health 5,000 32 612 1.66
Recreation 5,000 22 606 1.42
Reference 5,000 33 793 1.17
Science 5,000 40 743 1.45
Social 5,000 39 1,047 1.28
Society 5,000 27 636 1.69

• MMC: the algorithm proposed in [Yang et al., 2009],
which selects instances based on the loss reduction cri-
terion.

• Adaptive: the adaptive method proposed in [Li and Guo,
2013], which selects instances based on both the max-
margin prediction uncertainty and the label cardinality
inconsistency.

• AUDI: the algorithm proposed in [Huang and Zhou,
2013], which selects instance-label pairs based on un-
certainty and diversity.

• QUIRE: the algorithm proposed in [Huang et al., 2014],
which selects instance-label pairs by simultaneously
considering informativeness and representativeness.

• AURO-r: a baseline implementation of our AURO
framework, which queries the relevance ordering of ran-
domly selected labels and instances.

• AURO: the algorithm developed in this paper, which in-
corporates the proposed query type and selection strat-
egy.

These approaches employ different query types. At each iter-
ation, MMC and Adaptive query all labels for one instance;
AUDI and QUIRE query the relevance of an instance-label
pair; while AURO-r and AURO query the relevance order-
ing of two labels. As stated in the last section, querying an
instance-label pair and querying the relevance ordering of two
labels cost almost the same time according to our user study.
Although the proposed query type requires less expertise of
annotators, we simply use the number of queries as the mea-
surement of query cost for convenience. It is worth noticing
that querying all labels for one instance is the equivalent of
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Figure 3: The average and standard deviation results in terms of Micro-F1 on 20 datasets.

queryingm instance-label pairs, because it requires the anno-
tator to identify the relevance of the instance to every possible
labels. Here m denotes the number of all candidate labels.

We use the multi-label learning algorithm proposed in the
AUDI work [Huang and Zhou, 2013] as the classification

model for all compared approaches. For each experiment,
we randomly divide the dataset into three parts: the test set
with 50% examples, the initial labeled set with 5% examples
and the unlabeled pool with the rest instances. Parameters
are selected via leave-one-out cross validation on the initial
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set. After every 5 ×m queries, we evaluate the performance
of the classification model on the test set. The querying pro-
cess is stopped if all data are labeled or the number of queries
reaches 20,000. We repeat the each experiment for 10 times
and report the average results.

3.2 Results on benchmark datasets

We first perform the experiments on 20 benchmark datasets.
The statistical information of these datasets are summarized
in Table 1. The data size varies from 593 to 5,000, while the
number of labels varies from 5 to 499. Note that we are using
the original corel5K dataset, and thus the results may be in-
consistent with those reported in other literatures, where sub-
set of corel5K was used. We evaluate the performance with
micro-F1, which is a commonly used performance measure
in multi-label learning. The comparison results are shown in
Figure 3. We use different line styles to represent different
query types in the figures: dotted line for querying all labels
of one instance, dashed line for querying instance-label pairs,
and solid line for querying relevance ordering of label pairs.

As observed from Figure 3, our approach AURO achieves
the best performance on all datasets. In general, AUDI
and QUIRE are superior to MMC and Adaptive. This indi-
cates that querying instance-label pairs is more effective than
querying all labels for one instance. While compared to our
approach, both of these two query types are outperformed by
the proposed query type. It is worthy to note that AURO-r,
which combines our query type with random selection, sur-
prisingly achieves comparable performance to state-of-the-art
methods, or even outperforms MMC and Adaptive in most
cases. These results demonstrate that an effective query type
with simple or even random selection strategy can achieve
excellent performance, and validate our conclusion that the
query type matters more to the performance of multi-label
active learning than selection criterion. For the two meth-
ods querying all labels of an instance, Adaptive is more ef-
fective than MMC, probably because it adaptively uses mul-
tiple criteria to select instances. The results of AUDI and
QUIRE are comparable, while AUDI tends to be superior on
more datasets. At last, when comparing AURO with AURO-
r, it can be found that they achieve comparable results on im-
age and reuters; while on the other datasets, AURO outper-
forms AURO-r in most cases. In general, the performances of
AURO-r and AURO are close on datasets with fewer labels,
possibly because the selection criterion in Eq. 11 is more dis-
tinguishable when there are more labels.

To examine the significance of the results, we compare
AURO with each competing method after each query, and
then count the times of our win/tie/loss based on t-test at
95% confidence level. Due to space limitation, here we re-
port only the average counts (in percentage) on all the data
sets. The win/tie/loss counts (%) of AURO are 98/2/0 ver-
sus MMC, 97/3/0 versus Adaptive, 90/10/0 versus AUDI,
87/13/0 versus QUIRE and 83/14/3 versus AURO-r. These
results show that the proposed AURO approach has signifi-
cant advantage over the compared methods.
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Figure 4: Comparison results on MSRA in terms of micro-F1
and ProLoss.

3.3 Results on MSRA

Experiments on benchmark datasets have validated the su-
periority of the proposed approach on classification perfor-
mance. In this subsection, we further study the effectiveness
of our approach on ranking relevant labels. As proposed in
Xu and Zhou’s work [2013], in addition to differentiating rel-
evant labels from irrelevant ones, ranking the relevant labels
is desired in many tasks. MSRA is a multi-label dataset for
image classification, and consists of 1868 images with 19
candidate labels. The ordering of relevant labels has been
manually provided for each instance. Thus we can evaluate
the ranking quality of different algorithms by comparing their
predicted ranking with the groundtruth ranking. In addition
to micro-F1, ProLoss [Xu et al., 2013], which measures both
the prediction accuracy and the ranking quality of relevant la-
bels, is employed as the performance measure. Note that for
ProLoss, a smaller value indicates a better performance.

The comparison results are presented in Figure 4. As we
can see, our approach AURO achieves the best performance
on both micro-F1 and ProLoss, while the advantage on Pro-
Loss is rather significant. Especially, AURO-r outperforms
all the other methods on ProLoss. These results validated that
our approach not only well separates relevant and irrelevant
labels, but also provides accurate ranking of relevant labels.

4 Conclusion

Existing research on multi-label active learning research
mainly focuses on designing criteria for selecting instances
to be queried. In this paper, for the first time, we disclose that
the query type matters more than the selection criterion to
the performance of MLAL. We propose a novel framework
to query the relevance ordering of two labels on a specific
instance, and further incorporate it with a new selection strat-
egy to implement an effective MLAL algorithm. The pro-
posed approach, on one hand reduces the labeling efforts of
annotators and achieves superior classification performance
to state-of-the-art methods; and on the other hand, can rank
the relevant labels accurately for unseen instances. Exten-
sive study on more than 20 datasets validated the effective-
ness of our approach. In the future, we plan to design other
selection strategies to further improve our approach. In ad-
dition, novel query types, e.g., querying relative relevance of
instances pairs, will be studied.
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