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Abstract

In recommendation systems, probabilistic matrix
factorization (PMF) is a state-of-the-art collabora-
tive filtering method by determining the latent fea-
tures to represent users and items. However, two
major issues limiting the usefulness of PMF are the
sparsity problem and long-tail distribution. Spar-
sity refers to the situation that the observed rating
data are sparse, which results in that only part of
latent features are informative for describing each
item/user. Long tail distribution implies that a large
fraction of items have few ratings. In this work, we
propose a sparse probabilistic matrix factorization
method (SPMF) by utilizing a Laplacian distribu-
tion to model the item/user factor vector. Laplacian
distribution has ability to generate sparse coding,
which is beneficial for SPMF to distinguish the rel-
evant and irrelevant latent features with respect to
each item/user. Meanwhile, the tails in Laplacian
distribution are comparatively heavy, which is re-
warding for SPMF to recommend the tail items.
Furthermore, a distributed Gibbs sampling algo-
rithm is developed to efficiently train the proposed
sparse probabilistic model. A series of experiments
on Netflix and Movielens datasets have been con-
ducted to demonstrate that SPMF outperforms the
existing PMF and its extended version Bayesian
PMF (BPMF), especially for the recommendation
of tail items.

1 Introduction
With the emerging of big data, recommender systems play
a more and more important role to provide personalized rec-
ommendation and improve the user experience [Adomavicius
and Tuzhilin, 2005]. In the last decade, the collaborative fil-
tering (CF) methods based on matrix factorization (MF) [Ko-
ren et al., 2009] have shown their ability to build accurate pre-
diction models and are widely adopted in commercial world
such as Amazon, Google and Netflix [Dror et al., 2012]. MF
methods predict the user preference by determining the latent
features of users and items. More precisely, MF method fac-
torizes the rating matrix into two low-rank matrices, one for

latent user factor and the other for latent item factor. By mul-
tiplying these two latent factors, we can complete the original
incomplete rating matrix and do recommendation.

Even though a variety of MF methods [Berry et al., 1999;
Salakhutdinov and Mnih, 2007; 2008; Chen et al., 2011;
Shi et al., 2013; Bauer and Nanopoulos, 2014] have been pro-
posed and lead to promising recommendation results, they are
limited in modern recommendation systems due to the sparse
and large-scale rating data. The sparsity of data refers to the
lack of observed rating data that makes it difficult and unreli-
able to predict the user preference. One accompanying phe-
nomenon is long-tail effect where a large fraction of items
have few ratings [Anderson, 2006]. Although the amount of
users relating to each individual tail item is small in absolute
numbers, collectively they cover a substantial fraction of all
users. Additionally, a user’s rarer purchases in e-commerce
are also more informative of their tastes than their purchases
of popular items. Hence, making use of the tail items is im-
portant to predict the user preference in modern recommenda-
tion systems. In such sparse observed rating data, the number
of items that each user are interested in is very small. Recall
the principle of MF methods, each user factor measures how
much the user likes items that score high on the correspond-
ing item factor [Koren et al., 2009]. Thus, each user can be
characterized well by a few latent features, i.e., the user fac-
tor vector in latent feature space should be sparse. This is the
main motivation of our work.

For the sake of dealing with sparse rating data, probabilistic
matrix factorization (PMF) [Salakhutdinov and Mnih, 2007]
was proposed based on the assumption that the latent fac-
tors follow Gaussian distribution. This assumption makes
sense when the observations are continuous, however it is
less justified when the data are on an ordinal scale [Laksh-
minarayananw et al., 2011]. Later, Bayesian matrix factor-
ization (BPMF) [Salakhutdinov and Mnih, 2008] is estimated
by imposing Gaussian-Wishart priors over the factor vectors
and tries to generate a non-Gaussian distribution via a product
of two multivariate Gaussians. Recently, a sparse covariance
prior is adopted in [Shi et al., 2013] to enforce the user and
item factors and make each latent feature reflect the seman-
tics more properly. To date, PMF and its variants become the
arguably representative CF methods, but they can not guaran-
tee that each user is effectively represented by the most infor-
mative latent features. In real applications, obtaining proper
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(a) PMF (b) BPMF (c) SPMF

Figure 1: Graphical models for PMF, BPMF and SPMF.

user/item representation is crucial to complete the sparse rat-
ing matrix especially for the cell values corresponding to the
tail items.

We therefore present a sparse probabilistic matrix factor-
ization method (SPMF) by utilizing Laplace distribution to
model the item/user factor vector. Laplace distribution [Mo-
hamed et al., 2011] makes the most elements of each factor
vector close to zero, which on the one hand is beneficial for
SPMF to distinguish the relevant and irrelevant latent features
for each user/item. Meanwhile, the tails in Laplace distribu-
tion are comparatively heavy, which on the other hand is re-
warding to identify the tail items and partially solve the long-
tail problem. Because Laplace distribution is non-smooth,
the Bayesian inference of SPMF is not analytically tractable.
In this paper, we express it as a scale-mixture of Gaussian
distribution and exponential density, and employ the Markov
chain Monte Carlo technique to perform the Bayesian infer-
ence. The second distinguishing feature of our work is the
distributed Gibbs sampling algorithm for training the SPMF
model, which can efficiently deal with large-scale, sparse and
very imbalanced dataset such as 1M MovieLens and 100M
Netflix data.

The rest of the paper is organized as follows. The related
work is described in Section 2. Section 3 gives the proposed
sparse probabilistic matrix factorization model and the dis-
tributed Gibbs sampling algorithm for model inference. A
series of experimental results on real world datasets are listed
and discussed in Section 4. A brief conclusion and future
work are shown in Section 5.

2 Related Work
Our proposed model can be taken as a variant of Probabilis-
tic Matrix Factorization. Let us briefly review PMF and
Bayesian PMF.

2.1 Probabilistic Matrix Factorization
Probabilistic Matrix Factorization (PMF) is a probabilistic
linear model with Gaussian observation noise [Salakhutdinov

and Mnih, 2007] . Figure 1(a) shows the graphical model of
PMF using the plate convention. The conditional distribution
of observed rating data R ∈ <M×N on the latent user factor
U ∈ <D×M and item factor V ∈ <D×N is modeled via

p(R|U,V, σ2) =
M∏
i=1

N∏
j=1

[N(Rij |UTi Vj , σ2)]Iij (1)

whereM is the number of users,N is the number of items,D
is the number of latent features. N(x|µ, σ2) denotes Gaussian
distribution with mean µ and variance σ2. Iij is an indicator
function, Iij = 1 if the ith user is associated with the jth
item, otherwise Iij = 0. The user factor and item factor are
assumed to follow Normal distribution, i.e.,

p(U|σ2
U

) =
M∏
i=1

N(Ui|0, σ2
U

I) (2)

p(V|σ2
V

) =
N∏
j=1

N(Vj |0, σ2
V

I) (3)

In [Salakhutdinov and Mnih, 2007], maximizing the log-
posterior of (1) is implemented by minimizing the sum-of-
squares error function with quadratic regularization terms.
However, restricting all features to the same regularization
level limits the flexibility of the model. Moreover, it is com-
putationally very expensive to search for appropriate values
of the regularization parameters.

2.2 Bayesian Probabilistic Matrix Factorization
Bayesian probabilistic matrix factorization (BPMF)
[Salakhutdinov and Mnih, 2008] introduces Gaussian-
Wishart priors for the hyperparameters, as shown in
Figure 1(b). Among them, the prior distributions over U and
V are assumed to be Gaussian:

p(U|µ
U
,Λ

U
) =

M∏
i=1

N(Ui|µU
,Λ−1

U
) (4)
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p(V|µ
V
,Λ

V
) =

N∏
j=1

N(Vj |µV
,Λ−1

V
) (5)

The hyperparameters Θ
U

= {µ
U
,Λ

U
}, Θ

V
= {µ

V
,Λ

V
} are

assumed to be Gaussian-Wishart distribution. By maximiz-
ing the log-posterior of the model over both parameters and
hyper parameters, BPMF can automatically control the model
complexity. Later, Shi et al. [Shi et al., 2013] proposed sparse
covariance matrix factorization (SCMF) by imposing Laplace
prior on the covariance matrices of U and V to consider the
feature correlations and prevent overfitting. Although BPMF
and SCMF obtain promising results, they, like PMF, assume
that the factors follow Gaussian distribution, which is not jus-
tified especially when the data are extremely sparse.

In the next section, we will give a sparse probabilistic
matrix factorization model and a distributed inference algo-
rithms based on Gibbs sampling technique.

3 Sparse Probabilistic Matrix Factorization
To achieve sparsity, the sparsity-favoring distributions can
be employed which prefer a high excess kurtosis, i.e., a
high peak with heavy tails. The set of sparsity-favoring dis-
tributions includes spike-and-slab, Student-t, Laplace, and
Gamma distribution [Polson and Scott, 2010]. Among them,
Laplace distribution is log-concave, leading to a posterior
whose log density is a concave function and has a single local
maximum, which is essential to design robust and easy-to-use
algorithm [Paninski, 2005]. The probability density function
(P.D.F.) of Laplace distribution is defined as:

L(x|µ, ρ) =
1

2ρ
exp (−|x− µ|

ρ
). (6)

Figure 2: The P.D.F of Gaussian distribution with (µ = 0,
σ = 1) and Laplace distribution with (µ = 0, ρ = 1).

As shown in Figure 2, Laplace distribution has higher ex-
cess kurtosis than Gaussian distribution at the mean point,
which means that the variable x has greater chance to con-
centrate close to zero. Meanwhile, Laplace distribution has
two comparative heavy tails allowing for occasional large val-
ues, which is beneficial for model the tail items in MF-based
collaborative filtering methods.

3.1 SPMF Model
In SPMF, the conditional distribution of the observed ratings
Rij is still i.i.d. normal distribution with mean UTi Vj and

variance σ2, as shown in (1). To get a full Bayesian approach,
we introduce an inverse Gamma distribution (Γ−1(α, β))
with shape α and rate β to model the Gaussian noise vari-
ance σ2:

p(σ2|α, β) =
βα

Γ(α)
(σ2)−(α+1) exp(− β

σ2
) (7)

The inverse Gamma distribution is already proved to be ef-
fective in modeling the unknown variance of a normal distri-
bution [Witkovsky, 2001].

In order to effectively characterize each user and item, we
try to select the most informative latent features to represent
them. Thus, we employ Laplace distribution to model the
latent user factor U with zero mean and η

U
scale, and model

the latent item factor V with zero mean and η
V

scale.

p(U|η
U

) =
M∏
i=1

L(Ui|0, ηU
)

p(V|η
V

) =
N∏
j=1

L(Vi|0, ηV
)

(8)

Here, we introduce the Generalized Inverse Gaussian (GIG)
distribution to model the scales (η

U
and η

V
) of Laplace dis-

tribution for obtaining a fully Bayesian treatment of SPMF
and enhancing the model robustness. In [Zhang et al., 2012],
it has been demonstrated that Laplace mixture with GIG is
beneficial to define a regularizer for variable selection, which
is useful for our SPMF model to select the most informative
latent features for each item or user. Let x = (η

U
)ki, then

GIG(x|γ, a, b) =
(a/b)γ/2

2Kγ(
√
ab)

xγ−1 exp

(
− (ax+ b/x)/2

)
(9)

where Kγ(·) is a modified Bessel function of the second kind
with the index γ. The distribution of (η

V
)kj has the similar

form.
According to the Bayesian theory, the posterior distribution

over latent factors U and V can be modeled as

p(U,V|R, σ2, η
U
, η

V
) =

p(R|U,V, σ2)p(U|η
U

)p(V|η
V

)

p(R|σ2)

∝ p(R|U,V, σ2)p(U|η
U

)p(V|η
V

).
(10)

Then, the overall generative process can be summarized as
follows.
• Draw scales (η

U
)ki and (η

V
)kj from GIG(γ, a, b).

• Draw each user factor vector Ui from L(0, (η
U

)i) and
each item factor vector Vj from L(0, (η

V
)j).

• Draw σ2 from Γ−1(α, β)

• Draw each observed rating Rij from N(UTi Vj , σ2).
and the graphical model of SPMF is shown in Figure 1(c).

3.2 Inference
Markov chain Monte Carlo (MCMC)-based methods are
widely applied to approximate the predictive distribution (like
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(10)) [Neal, 1993]. Its key idea is to construct a Markov
chain that will evenly converge to the posterior distribution
of the model with the given data. Each state of the Markov
chain is used as sample of the desired distribution. When the
conditional distributions can be sampled easily, Gibbs sam-
pling is the simplest but efficient algorithm. In SPMF model,
however, it is not easy to sample from a non-smooth Laplace
distribution. Fortunately, Laplace distribution can be equiva-
lently expressed as a scaled mixture of Gaussians [Andrews
and Mallows, 1974], i.e., an infinite Gaussian mixture with
an exponential distribution like

L(x|µ, ρ) =

∫ ∞
0

N(x|µ, ε) exp(ε|ρ
2

)dε. (11)

Obviously, all priors on the parameters and hyperparame-
ters in SPMF are conjugate, thus, we can develop an efficient
Gibbs sampling algorithm to infer SPMF model. Gibbs sam-
pling sample each variable from its distribution conditional
on the current values of all other variables, i.e., it samples
each variable by fixing all others.

Sample parameters Ui :
For Ui, we can extract all terms related to Ui and use

Bayes’ rule to obtain

p
(
Ui|R,V, σ2, (η

U
)i
)
∝

N∏
j=1

[N(Rij |UTi Vj , σ2)]Iij L(Ui|0, (ηU
)i).

(12)

In order to incorporate the alternative expression of Laplace
distribution, infinite Gaussian distribution as shown in (11),
we introduce a vector (λ

U
)i ∈ RD, where each element

(λ
U

)ki is a latent variable with exponential prior, i.e.,

p
(
(λ

U
)ki|(ηU

)ki
)

= exp((λ
U

)ki|(ηU
)ki)

for the corresponding Uki. In this case, we can further express
(12) as

p(Ui|R,V, σ2, (λ
U

)i) = N(Ui|µ∗i ,Λ
∗
i
) (13)

where

Λ∗
i

= (λ
U

)−1
i +

N∑
j=1

[VjVTj ]Iij

σ2

µ∗
i

= [Λ∗
i
]−1

( N∑
j=1

[RijVTj ]Iij

σ2

) (14)

Sample hyperparameters (λ
U

)i and (η
U

)i :
When introducing the vector λ

U
, we have

p
(
(λ

U
)i|Ui, (ηU

)i
)
∝ p(Ui|(λU

)i, (ηU
)i)p((λU

)i) and
each element (λ

U
)ki has an exponential prior. According to

the property of exponential distribution, (λ
U

)−1
ki follows an

inverse Gaussian distribution (denoted as G−1) [Zhang et al.,
2012]. Then, we can get the conditional distributions of the
hyperparameters (λ

U
)i as follows.

p

(
1

(λ
U

)i
|Ui, (ηU

)i

)
= G−1

(√
(η

U
)i

|Ui|
, (η

U
)i

)
(15)

For the scale of Laplace distribution, (η
U

)i, it follows GIG
distribution as shown in (9), i.e.,

p
(
(η

U
)i|(λU

)i, p, a, b
)

= GIG(γ + 1, (λ
U

)i + a, b)

Since it is inefficient to do sampling directly from GIG distri-
bution, we convert the posterior distribution to a special case
of GIG distribution by setting γ = −1/2. In this case, GIG
distribution becomes an inverse Gaussian distribution, thus
we can sampling (η

U
)i with

p((η
U

)i|(λU
)i, γ, a, b) = G−1

(√
(λ

U
)i + a

b
, (λ

U
)i + a

)
(16)

Sample parameters σ2 :
Based on (17), the posterior distribution of σ2 by fixing

other variables can be written as

p(σ2|R,U,V) = Γ−1(ασ2 , βσ2)

ασ2 =
M ×N

2
+ 1 + α

βσ2 =
1

2

∑
ij

(Rij − UTi Vj)2 + β

(17)

The sampling scheme about parameters Vj and hyperpa-
rameters (λ

V
)j and (η

V
)j is similar to Ui, (λ

U
)i and (η

U
)i

respectively.

3.3 Distributed Sampling
Note that the columns of U and V are independent, we can
sample them in parallel. More precisely, when sampling U,
the i-th column of U, can be obtained by using only the i-th
column of rating matrix R, which holds the i-th user’s prefer-
ence, and all the columns of V. In such a setting, we can use
a parallel broadcast-join [Blanas et al., 2010] to efficiently
infer SPMF model.

Figure 3: Parallel sampling of factor U by broadcast-join.

As shown in Figure 3,we broadcast the factor V to all par-
ticipating machines (there are total C machines), which cre-
ate a hashtable for its contents. The rating data R are stored in
the distributed filesystem (DFS) partitioned by its rows (cor-
responding to users) and forms the input for the map operator.
Here R(1) refers to partition 1 of R. The map operator reads
the i-th row of R and selects all columns of V from the cor-
responding hashtable. Next, the map operator can sample Ui
via (13), (λ

U
)i via (15), (η

U
)i via (16), σ2 via (17), and write
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back its result. This strategy contains multithreaded mappers
that leverage all cores of the worker machines for sampling
U.

The computational complexity of inferring the parameter
U and its corresponding hyperparameters is O(T (M̂D3 +

ĈD2)), where T is the number of iterations, D is the num-
ber of latent features, M̂ and Ĉ are the maximum number
of users and the maximum observed ratings in all machines.
The sampling process for V works analogously and its com-
putational complexity is O(T (N̂D3 + ĈD2)), here N̂ is the
maximum number of items in all machines. Thus, the total
cost of inferring process is O

(
T (M̂D3 + N̂D3 + ĈD2)

)
.

Obviously, the computational complexity of our algorithm is
linearly scalable to the size of rating data matrix, thus, it is
practical for handling large-scale dataset.

4 Experimental Results and Discussions
In this section, we compare SPMF with other baseline
methods PMF and BPMF using the MovieLens and Netflix
datasets.

4.1 Methodology
Datasets: In our experiment, we use MovieLens1 data with
1M ratings and Netflix2 data with 100M ratings, where the
ratings are ordinal values on the scale 1 to 5. These two
datasets are extensively used in the literature to test the perfor-
mance of recommendation systems. The statistical properties
of the datasets are summarized in Table 1. Density indicates
the percentage of non-zero cells in rating matrix. Netflix is
more challenging than MovieLens. In Netflix, there are over
30% of the items having less than 10 ratings.

Table 1: Summary of Datasets.
Dataset Users Items Ratings Density

Movielens 6,040 3,952 1M 4.26%
Netflix 480,198 17,770 100M 1.18%

Parameter setting: In PMF, the regulariza-
tion parameters are tuned from the candidate set
{10−3, 10−2, 10−1, 1, 101, 102, 103}. Following [Salakhut-
dinov and Mnih, 2008], we set µ0 = 1, v0 = D,
W0 = ID×D, and variance σ2 = 1/2 for BPMF. We employ
the code3 given by the authors .

In the proposed SPMF, we adopt an uninformative prior
for the noise variance, i.e., initializing the shape and rate of
inverse Gamma distribution via α = β = 0. Meanwhile, the
prior of inverse Gaussian distribution on hyperparameters η

U

is initialized by setting a = 1/D and b = D, here a is a
part of scale in (16) which plays an important role to control
the sparsity. Smaller a leads to more sparse factor vector. The
reason that we use this setting is that the size of latent features
(D) in SPMF may affect the sparsity of latent factor vectors.
For example, when D is small, i.e., there are few features,

1http://www.grouplens.org/node/73
2www.netflixprize.com
3http://www.cs.toronto.edu/ rsalakhu/BPMF.html

then each latent factor vector may be related to most features,
which means that the factor vector will be dense. Otherwise,
larger D may lead to sparse factor vector. Thus, we can say
D is inverse proportional to the sparsity of factor vector.

Evaluation: The Root Mean Square Error (RMSE) is used
to measure the performance of our proposed SPMF and the
baselines (PMF and BPMF).

RMSE =

√√√√ 1

|Ω|
∑

(i,j)∈Ω

(Rij − R̂ij)2 (18)

where |Ω| is the number of observed ratings in testing data,
R̂ij is the predicated rating value of the i-th user for the j-th
item. Smaller RMSE indicates better recommendation.

4.2 Results and Discussions
In experiments, we randomly select 90% data as training data
and the remaining ratings as testing data for ten times, and the
average results on testing data are recorded. When selecting
training data, every item and user appears at least once.

Effect of latent feature size
We are firstly interested in evaluating the effect of the number
of latent features (D) on the proposed SPMF and baselines
(PMF and BPMF). Table 2 shows the performance of these
models with different latent feature sizes on two datasets.

Figure 4: Demonstration of convergence on Netflix data with
D = 50.

It can be seen that SPMF and BPMF outperforms PMF,
which indicates that automatically learning the regulariza-
tion parameters is beneficial to enhance the model robustness,
esp., avoid overfitting problem. With the increase of D, the
performances of both SPMF and BPMF steadily improve. To
be excited, SPMF consistently performs better than BPMF
on all latent feature sizes, and larger D leads to bigger im-
provement (e.g., SPMF outperforms BPMF by over 1.09% to
1.54% on MovieLens data, 2.73% to 3.46% on Netflix from
D = 10 to 150). Furthermore, we show the convergence pro-
cess along iterations (taking Netflix as an example) in Fig-
ure 4, which verifies that SPMF like BPMF does not overfit.
The factors of PMF are randomly initialized. The factors in
BPMF and SPMF are initialized with the MAP estimations
obtained by PMF. Since BPMF and PMF assume that the fac-
tors follow Gaussian distribution, so that BPMF starts better
than SPMF. The main difference between SPMF and BPMF
is the prior over the latent factors, which demonstrates that

1775



Table 2: Comparison of RSME under varying latent feature size (D) on MovieLens and Netflix.
MovieLens Netflix

D PMF BPMF SPMF PMF BPMF SPMF
10 0.8788±0.0019 0.8404±0.0024 0.8312±0.0021 0.9367±0.0019 0.9208±0.0015 0.8957±0.0012
30 0.8605±0.0021 0.8346±0.0021 0.8256±0.0025 0.9319±0.0015 0.9156±0.0023 0.8890±0.0009
50 0.8855±0.0024 0.8320±0.0022 0.8233±0.0022 0.9339±0.0025 0.9143±0.0031 0.8852±0.0015
70 0.8896±0.0016 0.8313±0.0024 0.8207±0.0008 0.9343±0.0038 0.9133±0.0025 0.8833±0.0017

100 0.8896±0.0010 0.8312±0.0007 0.8192±0.0011 0.9389±0.0014 0.9128±0.0013 0.8821±0.0016
150 0.8894±0.0011 0.8310±0.0010 0.8182±0.0012 0.9443±0.0010 0.9125±0.0013 0.8809±0.0009

imposing a sparse-favoring distribution on latent factors does
bring performance gain especially on sparse Netflix data.

Table 3: Comparison of running time (seconds) under varying
latent feature size (D) on MovieLens dataset.

D 10 30 50 70 100 150
BPMF 364 950 2395 4111 7231 13127

SPMF-1 581 1403 2548 7051 11455 19305
SPMF-4 276 618 1017 2950 5018 7435
SPMF-8 225 495 761 2171 3524 5223

Even though larger D can lead to better performance for
SPMF and BPMF, it also increases the model complexity
because running the Gibbs sampling on more parameters is
computationally much more expensive. As listed in Table 3,
more running time is needed by both SPMF and BPMF when
D grows. All experiments are conducted on the PCs with In-
tel Core i3-2120 3.3GHz processor and 4 GB RAM. Here
SPMF-1 indicates non-distributed sampling. SPMF-4 and
SPMF-8 use four and eight machines for distributed sam-
pling respectively. The change of RMSE (less than 0.00001)
is taken as the stop condition for both methods. Obviously,
distributed sampling in SPMF is helpful to speed up the in-
ferring process.

Long tail recommendation
In modern recommendation systems, only a small part of
items are popular, while a large part of items have few rat-
ing information. However, such unpopular items, also called
as long tail items [Anderson, 2006], often play an important
role for recommendation, esp., in commercial world. For ex-
ample, Amazon successfully makes most of their profit from
the long tail products rather than the best selling products.

In order to investigate how our proposed SPMF method
deal with the long tail items, we firstly ranking items accord-
ing to their rating frequency, and then almost evenly separated
them into ten groups. Figure 5(a) demonstrates the number
of ratings in ten item groups for MovieLens dataset, where
the x-axis refers to the boundary of rating frequency in each
group. Obviously, they follow long tail distribution. Figure
5(b) and (c) give the average RMSE of each item group for
MovieLens and Netflix respectively, which are obtained by
recommendation results SPMF, BPMF and PMF with setting
D = 50. As expected, the proposed SPMF model outper-
forms two baselines especially for the items in the long tail
part.

This result further verifies that SPMF integrating with
sparsity-favoring distribution (Laplace distribution) on latent

factors has ability to handle sparse rating data. The main rea-
son is that BPMF imposes Gaussian prior on V, while SPMF
assumes V is generated from Laplace distribution. Such spar-
sity prior can effectively partition the elements (in each factor
vector) into a large set which is close to zero with high prob-
ability and a small set which has significant mass on large
values. Thus, SPMF can model the long tail items well and
significantly enhance the recommendation performance espe-
cially for unpopular items.

5 Conclusions and Future Work
In this paper we propose a sparse probabilistic matrix factor-
ization model and a distributed Gibbs sampling algorithm to
infer the model. The experimental results have demonstrated
that the model can be efficiently trained and successfully ap-
plied on sparse and large-scale data by comparing with the
state-of-the-art MF-based CF methods. One distinguishing
characteristic of our model is that it has ability to deal with
long tail items. This makes SPMF have potential commercial
value, e.g., it can be used to explore the long tail market and
boost the one-stop shopping convenience.

The proposed model benefits from the Laplace distribution
for modeling the latent factor, however, we have to empiri-
cally tune the size of latent features. It will be nice if we
can automatically find the proper D. One more thing is that
the Gibbs sampling method for log-linear model has to cost
large memory, thus, we will transfer it into robust MF prob-
lem [Wang et al., 2012] to reduce the space complexity. An-
other possible direction is to extend the model and make it
able to do cold-start recommending which is a challenging
issue [Houlsby et al., 2014]. Last but not least, it is interest-
ing to apply the model in other domains such as e-commerce
with large-scale and online data.
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