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Abstract
Community detection in graphs is widely used in
social and biological networks, and the stochastic
block model is a powerful probabilistic tool for de-
scribing graphs with community structures. How-
ever, in the era of “big data,” traditional inference
algorithms for such a model are increasingly lim-
ited due to their high time complexity and poor
scalability. In this paper, we propose a multi-stage
maximum likelihood approach to recover the latent
parameters of the stochastic block model, in time
linear with respect to the number of edges. We
also propose a parallel algorithm based on message
passing. Our algorithm can overlap communica-
tion and computation, providing speedup without
compromising accuracy as the number of proces-
sors grows. For example, to process a real-world
graph with about 1.3 million nodes and 10 million
edges, our algorithm requires about 6 seconds on
64 cores of a contemporary commodity Linux clus-
ter. Experiments demonstrate that the algorithm
can produce high quality results on both bench-
mark and real-world graphs. An example of finding
more meaningful communities is illustrated conse-
quently in comparison with a popular modularity
maximization algorithm.

1 Introduction
Community structures, in which nodes belonging to the same
community are more densely connected to each other than
externally, prevail in real graphs. Finding those structures
can be beneficial in many fields, such as finding protein
complexes in biological networks and topical or disciplinary
groups in collaborative networks [Fortunato and Castellano,
2012; Kemp et al., 2006; Ansótegui et al., 2012].

In this work, we consider non-overlapping community
structures. Many community detection algorithms handle
such a problem [Newman, 2004; Raghavan et al., 2007;
Blondel et al., 2008; Fortunato and Castellano, 2012; Liu et
al., 2013; Wickramaarachchi et al., 2014; Staudt and Mey-
erhenke, 2015]. However, they come along with limitations

for large graphs, for example, in handling community hetero-
geneity [Nadler and Galun, 2006; Fortunato and Barthelemy,
2007; Xiang and Hu, 2012]. Alternatively, model-based
methods can produce more reliable and accurate results when
the model assumptions are in accordance with the real graphs.
Stochastic block models (SBMs) are among the important
probabilistic tools describing the connectivity relationship be-
tween pairs of nodes [Holland et al., 1983], and have re-
ceived considerable attention both in theoretical [Celisse et
al., 2012] and application domains [Daudin et al., 2008].

Many algorithms have been proposed to infer the param-
eters of SBMs, such as Bayesian estimation [Hofman and
Wiggins, 2008] and nuclear norm minimization [Chen et al.,
2012]. Bayesian estimation defines the prior distributions on
latent variables (community labels of nodes) and maximizes
the posterior distribution when a graph is given [Hofman and
Wiggins, 2008]. Nuclear norm minimization of a matrix min-
imizes the sum of its singular values, and their algorithm is
verified on graphs containing one thousand nodes.

In this work, we propose a multi-stage likelihood maxi-
mization algorithm based on SBMs, which has three advan-
tages:
• Speed: We devise an algorithm based on coordinate de-

scent and use approximations to simplify computations.
Our algorithm runs in linear time with respect to the
number of edges.
• Scalability: We propose a parallel algorithm based

on a message-passing, which tends to be the most
portable and performance-consistent parallel program-
ming model for a variety of memory structures. We
overlap the communication and computation in the al-
gorithm, so that for large graphs, it can achieve signifi-
cant speedup proportional to the number of processors.
To the best of our knowledge, it is the first parallel algo-
rithm for inferring SBMs.
• Quality: The algorithm can produce high-quality re-

sults. In the initialization, it considers each node as
one community and then employs a multi-stage iterative
strategy to construct larger communities gradually. It
outperforms traditional community detection algorithms
empirically as measured by normalized mutual infor-
mation (NMI) [Danon et al., 2005] with respect to the
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ground-truth. Experiments on real-world graphs show
that our algorithm can produce more meaningful com-
munities with good quality.

2 Stochastic Block Model

In this work, we develop a community detection algorithm
based on a stochastic block model (SBM). We define N as
the number of nodes and M as the number of undirected and
unweighted edges connecting those nodes. Each node be-
longs to one of K blocks, and we use Z ∈ {0, 1}N×K to
represent the block labels. That is, Zir = 1 means node
i belongs to block r and each row of Z contains only one
nonzero entry. We also define a matrix B ∈ [0, 1]K×K

where Brk(r 6= k) represents the probability of connections
between nodes drawn from block r and k, respectively. If
r = k, Brk represents the probability of connections inside
the block.

Using the matricesB and Z, we define a probability matrix
Θ = ZBZT . Then the adjacency matrix W of a sample
network can be drawn from the following model:

Pr(Wij) =

{
Θij if Wij = 1,

1−Θij if Wij = 0,
(1)

for i, j ∈ {1, 2, · · · , N} and i 6= j, indicating that Wij is a
sample from the Bernoulli distribution with success rate Θij .
Typically, the adjacency matrix W is available from the data
set. Our primary purpose is to estimate Z.

3 Methodology

For a specific model, the likelihood is a function of the model
parameters, describing the probability of obtaining the ob-
served data with these parameters. The maximum likelihood
estimator is the setting of parameters that maximizes the like-
lihood function.

As defined in Eq. (1), if onlyW is given, the log-likelihood
function is

L(B,Z|W ) =
∑
i6=j

log Pr(Wij)

=
∑
i6=j

log[(1−Wij) + (2Wij − 1)Θij ].

It is very time consuming to maximize such a likelihood func-
tion directly through traditional optimization methods (for ex-
ample, branch-and-bound) for large graphs in which there are
at least NK unknown variables.

For the sake of speed and scalability, we propose a fast al-
gorithm that updates B and Z in turn to maximize the objec-
tive function L(B,Z|W ), and use a multi-stage framework
to help the solution be close to the global optimum. We also
develop a parallel implementation to make the model more
scalable.

3.1 Estimation Algorithm
Given W , the maximum likelihood estimates of (B,Z) are
defined as

argmax
B,Z

{
L(B,Z|W )

=
∑
i6=j

log[(1−Wij) + (2Wij−1)Θij ]

=
∑
i6=j

log[(1−Wij) + (2Wij−1)(ZBZT )ij ]
}
, (2)

subject to 0 ≤ Bij ≤ 1, Zij ∈ {0, 1},
∑
j Zij = 1. Roughly

speaking, we solve the above optimization problem by alter-
natively updating B and Z and using a community shrinking
and expanding strategy to improve accuracy.

We first describe the alternating updating procedure. When
Z is fixed and B is considered as unknown, without loss
of generality, let β = Brk. If other entries are fixed,
L(B,Z|W ) = s log(β) + ŝ log(1 − β) + C, where C is
a constant, s =

∑
ijWij(Z:rZ

T
:k)ij and ŝ =

∑
ij(1 −

Wij)(Z:rZ
T
:k)ij . Taking the derivative of L with respect to

β,
∂L

∂β
=
s

β
− ŝ

1− β
(3)

and setting the derivative to be zero, we have

β =
s

s+ ŝ
. (4)

As the inter-block connection probabilities are small, we use
a representative scalar value to replace the off-diagonal en-
tries of B, which can be computed by counting all the inter-
community edges. Thus, the total time complexity of updat-
ing B is O(N) +O(K) +O(M) = O(M).

Theorem 1 For fixed Z, the objective function L(B,Z|W )
achieves its global maximum if entries of B are updated ac-
cording to Eq. (4).

Proof When Z is fixed, because each entry of B can opti-
mize the objective function independently, after updating all
the entries by Eq. (4), the resulting B is a stationary point of
the objective function and each entry satisfies the constraints.

By taking the second derivative of the objective function,
we have

∂2L

∂β2

∣∣∣∣
β= s

s+ŝ

= − s

β2
− ŝ

(1−β)2

∣∣∣∣
β= s

s+ŝ

< 0. (5)

Therefore, when Z is given, the objective function at β
(determined by Eq. (4)) is a global maximum. As each entry
of B is irrelevant to each other, we can update B by Eq. (4)
sequentially.

When B is fixed, we use the block coordinate descent
method to update Z row by row. When updating the first Z
in ZBZT in Eq. (2), the algorithm keeps the second Z as its
previous estimate Z(t−1). Then, the likelihood function can
be locally maximized by setting all the elements in the row to
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0 but Zirmax = 1, where rmax is chosen by

rmax = argmax
r

∑
j 6=i

log
[
(1−Wij)

+ (2Wij − 1)(B[Z(t−1)]T )rj
]
. (6)

The time complexity for updating one node by Eq. (6) is
O(NK) and for all the nodes it is O(N2K).

To reduce the time complexity, we propose a faster method.
Let N (c) be a column vector containing the number of nodes
in each community, which is updated once the row Zi: is
changed. LetN (d) be a column vector containing the number
of nodes connected to node i in each community. Thus, we
have a new update rule:

rmax = argmax
r

K∑
k=1

[
N

(d)
k log(Brk)

+ (N
(c)
k −N

(d)
k ) log(1−Brk)

]
. (7)

The time complexity isO(Mi)+O(K2), whereMi is the de-
gree of node i used in computing N (d). If we use a scalar to
represent the inter-block connection probabilities as before,
we can replace the summation in Eq. (7) by two multiplica-
tions. We also note that a node will take only a block label
from its neighbors, and the time to enumerate over different
choices of r becomes O(Mi) for node i in Eq. (7). Thus,
the time complexity of computing labels for all the node is
reduced to

∑N
i=1O(Mi) = O(M).

For fixed B, we define G(B,Z(2), Z(1)) =
∑
i6=j log[(1−

Wij)+(2Wij−1)(Z(2)BZ(1)T )ij ]. Therefore, the objective
function can be rewritten as L(B,Z|W ) := G(B,Z,Z).

If entries in Z are continuous variables, then the above op-
timization can find a global maximum.

Theorem 2 min
Z(t)

−G(B,Z(t), Z(t−1)) under the constraints∑
r Zir = 1 and 0 ≤ Zir ≤ 1 is a convex optimization

problem when B and Z(t−1) are given.

We omit the proof because it is direct.
However, in our model, Z is a Boolean matrix. Thus, it

will probably converge to a local optimum, in which nodes
from several true communities may become one single tem-
porary community. Here we refer to the community that a
subset of nodes indeed belongs to as the true community for
those nodes, and the community determined by an algorithm
at each iteration is called the temporary community.

The local optimum problem can be avoided by limiting
each temporary community to contain only one true commu-
nity in the initialization. The next subsection describes the
detail.

Community Shrinking and Expanding
A community shrinking and expanding approach works as
follows. First, randomly initialize the nodes into αK tempo-
rary communities where α should be large enough so that the
community size is tiny. Second, run the inference algorithm
while gradually merge communities and reduce the number

of communities to K. When K is unknown, the algorithm
proceeds until no more merging is possible.

This approach reduces the “collision” probability in the ini-
tialization significantly, where a “collision” is the situation
that two true communities both have most of the nodes in one
temporary community. The ratio of the “non-collision” prob-
ability after shrinking to the probability without shrinking is:

K−1∏
k=0

1− k
αK

1− k
K

=
K−1∏
k=0

[1 +
(1− 1

α )k

K − k
] ≥ (1− 1

α
)
KK

K!
.

The lower bound is not sensitive to the choice of α when α is
large enough. For example, the lower bounds at α = 10 and
α = 100 are 0.9KK

K! and 0.99KK

K! , respectively, both of which
are very significant. In practice, we can choose αK = N .

Initializing an extra number of communities may introduce
some tiny communities in the final result. The community ex-
panding is devised by considering the likelihood of the inter-
community edges. When they are more likely to be in certain
communities, the corresponding nodes are merged. In detail,
for any two communities r and k, the number of edges be-
tween them is

crk =
∑
i6=j

ZirWijZjk,

which is out of nrk =
∑
i Zir ×

∑
i Zik, the maximum pos-

sible connections. Therefore, the log likelihood of the inter-
community edges crk belonging to the true community r can
be represented by Lp, while the likelihood of not belonging
to the community is Lq .

Lp =crk log(p) + (nrk − crk) log(1− p), (8)
Lq =crk log(q) + (nrk − crk) log(1− q), (9)

where p = (crr + crk + ckr + ckk)/(nrr +nrk +nkr +nkk)
indicating the internal density after merging, and q = Brk. If
Lp > Lq , we merge r and k into one community, otherwise
leave them separated.

The time complexity for each merging is O(K2). How-
ever, if we only consider the pairs of communities that have
at least one edge between them, the time complexity becomes
O(M). Community merging runs at the end of each stage af-
ter updating Z and B. Algorithm 1 is the pseudocode of the
serial algorithm.

Convergence Rate
We consider an ideal stochastic block model, which com-
prises K true communities with the same properties (com-
munity size, internal density, etc.). We define p(0)R ≈ 1

K2 as
the expected ratio of nodes belonging to the same true com-
munity over the total number of nodes over the total number
of nodes, in a temporary community at iteration zero.
Theorem 3 For an ideal stochastic block model, ML-SBM
with random initialization converges quadratically as

lim
t→∞

|p(t)R −
1
K |

|p(t−1)R − 1
K |2

= K.

The result can be proved by utilizing the concept of temporary
communities.
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Algorithm 1 Serial Algorithm (ML-SBM)

set community number to αK
initialize B, Z(t) into many tiny communities
Z(t−1) = Z(t)

repeat
repeat

for i = 1 : N do
compute N (d) for node i
update Z(t)

i: according to Eq. (7)
Z

(t−1)
i: = Z

(t)
i:

update N (c)

end for
update B according to Eq. (4)

until Z(t) does not change anymore
merge communities according to Eq. (8) and (9)

until no more merging is possible

3.2 Parallelism
The parallelism is designed as follows. Let SI be the set of in-
tegers from 1 to N , partitioned into non-overlapping and ap-
proximately equal-size subsets, each of which is represented
by SIb for the bth processor. For each processor, we also use
local variables sb, ŝb and βb, which have the similar defini-
tions as s, ŝ and β, but taking only the ith row (i ∈ SIb) of
W into account.

We choose a message-passing model which is applicable
on a variety of memory structures, whether shared, or dis-
tributed, or hybrid. We use non-blocking MPI communi-
cations to improve the communication-computation overlap.
This has two-fold benefits: if the hardware allows, it utilizes
the network bandwidth during computation, and it maintains
a convergence rate for Z similar to the serial version by trans-
mitting up-to-date community labels. In order to reduce the
overall communication data, changes of Zi: are sent to pro-
cessor b only if i has neighboring nodes in SIb. Because the
communication bandwidth will be higher as the message size
is larger, we buffer the change information of Z until com-
puting f rows of Z finishes. Here f is chosen to be inversely
proportional to the number of MPI ranks, and proportional to
N , maintaining a consistent convergence rate.

The algorithm uses similar partitioning and communicat-
ing strategies when computing B. Algorithm 2 presents the
pseudocode of the parallel algorithm.

In parallel computing, the rows of W are distributed on
different processors. If there are totally g processors (equal
to the number of MPI ranks) and data are evenly distributed,
the computation time of each processor for Eq. (4) and Eq.
(7) is O(Mg ). When the computations for B are partitioned
on each processor, reducing the number of communities also
requires O(Mg ) for each processor. The total message length
for Z and B during the iterations is O(g(N + K)). If the
bandwidth is constant, the speedup of the parallel algorithm
is

T (M)

T (Mg ) +O(N +K)
, (10)

where T is a linear function, such that the numerator and de-

Algorithm 2 Parallel Algorithm (Par-SBM)

set community number to αK
initialize B, Z(t) into many tiny communities
Z(t−1) = Z(t)

repeat
repeat

do in parallel
for i ∈ SIb do

compute N (d) for node i
update Z(t)

i: according to Eq. (7)
Z

(t−1)
i: = Z

(t)
i:

synchronize changes of Zi: at frequency f
end for
update sb and ŝb for each βb entries
synchronize s =

∑
b sb and ŝ =

∑
b ŝb

update B according to Eq. (4)
update N (c)

until Z(t) does not change anymore
merge communities according to Eq. (8) and (9)

until no more merging is possible

nominator indicate the running times of the serial version and
parallel version, respectively. Therefore, the speedup will in-
crease towards g if the number of edges increases given the
same N and K.

4 Experimental Results
4.1 The Serial Algorithm
In this section, we compare our algorithm (ML) with other
serial algorithms in MATLAB. The competitors include the
Louvain method (LV) [Blondel et al., 2008], a Bayesian in-
ference algorithm (BI) [Hofman and Wiggins, 2008], spec-
tral clustering (SC) [Von Luxburg, 2007], label propagation
(LP) [Raghavan et al., 2007], and modularity optimization
(MM) [Newman, 2004]. We use the LFR benchmark gener-
ator [Lancichinetti and Fortunato, 2009] to create graphs and
run all of them for comparison. Each generated graph is of
size 1000, average degree 30, maximum degree 50, exponent
of degree distribution −2, exponent of community size dis-
tribution −2, minimum community size 20, and maximum
size 100. µ is the proportion of inter-community connections
to the intra-community ones. The accuracy is evaluated by
normalized mutual information (NMI) [Danon et al., 2005],
which compares the similarity between the computed com-
munity structure and the ground-truth one. The larger the
NMI is, the more similar the two schemes are. If two schemes
are identical, NMI is 1. The results are averaged on five
runs.

From Figs. 1(a) and 1(b) we can see that our algorithm is
relatively fast and has the best accuracy. When µ = 0, most
of the algorithms can find the correct result, and our algorithm
is the second fastest one. As µ increases to 0.7, our algorithm
needs a longer time to iterate, but its accuracy is still the best.
Only SC and LV can achieve a similar accuracy over a similar
amount of time.
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Figure 1: Comparison to popular algorithms in MATLAB.
(a) and (b) represent the variation of average accuracy and
running time over different choices of µ. (c) and (d) represent
the variation over different choices of graph size N .

However, for large graphs, SC is not scalable, and LV is
not accurate. Our algorithm is the method of choice for both
scalability and accuracy. Figs. 1(c) and 1(d) show the results
on graphs similar as the previous experiment but the average
degree is 10 and µ = 0.1. On large graphs, compared with
other algorithms, ours consistently produces more accurate
results with respect to the ground-truth setting, and the run-
ning time growth rate is smaller than others as the graph size
grows. The slow growth of the running time of our algorithm
is in accordance with the theoretical time complexity which
is linear in the number of edges.

4.2 The Parallel Algorithm
In this section, we exploit distributed memory parallelism for
larger graphs. When the input graph has more than one mil-
lion nodes, typical algorithms for stochastic block models are
not able to infer the parameters within a reasonable amount of
time (for example, 24 hours). Therefore, we compare our al-
gorithm (PS+number of processors) to a popular community
detection algorithm, the Louvain method (LV) [Blondel et al.,
2008] and a fast graph partitioning algorithm Metis (MT)
[Karypis and Kumar, 1998]. The Louvain method imple-
mented in C can also generate level one structures as byprod-
ucts containing the finest communities (LVF). Those commu-
nities are merged into larger ones in LV. Parallel algorithms
are often extended from serial versions [Wickramaarachchi et
al., 2014], but the results are typically invariant. We use sev-
eral metrics to compare the results, such as NMI, modularity
[Clauset et al., 2004], and conductance (the smaller, the bet-

Graph Name Node Number Edge Number
LFR-1e6 1,000,000 ∼ 5,000,000

cit-Patents 3,774,768 16,518,948
dblp-Coauthor 1,314,050 10,724,828

Table 1: Properties of the test graphs
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Figure 2: Comparison on benchmark data

ter) [Leskovec et al., 2009]. The results on those quantities
are averaged on five runs.

First, we run our algorithm on benchmark graphs (LFR-
1e6) generated by LFR benchmark [Lancichinetti and Fortu-
nato, 2009]. The parameters are similar to the serial case ex-
cept the graph size is increased to one million, and we change
two parameters (the mixing parameter µ and maximum com-
munity size mc) to have more variations. Fig. 2 shows the
results, in which GT is the ground truth given by the gener-
ator. Generally, the increase of µ and mc will decrease the
community detection accuracy, but the results generated by
our algorithm are always most close to the ground truth ac-
cording to NMI. The results with our algorithm are also very
close to the ground truth in numbers of communities (except
for MT which is predefined) and modularity, and are usually
better than others in modularity. In Fig. 2(b), as the prob-
lem becomes more difficult from left to right, our algorithm
spends more time to maintain the quality, while the other al-
gorithms finish within the same amount of time while sacrific-
ing the quality. In addition, the performance of our algorithm
is stable as the running results using 8 processors (P8) and 64
processors (P64) are fairly close.

We also compare algorithms on real-world graphs: cit-
Patents [Leskovec et al., 2005] and dblp-Coauthor [Ley,
2002]. Nodes in cit-Patents are patents in U.S. patent dataset
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Figure 3: Number of communities versus community size

Graph Algo Cond Mod Time (sec)

cit-
Patents

PS1 0.418 0.631 1514
PS8 0.416 0.638 284
PS64 0.415 0.639 51
LVF 0.594 0.560 103
MT 0.488 0.487 243

dblp-
Coauthor

PS1 0.114 0.631 186
PS8 0.113 0.632 33
PS64 0.112 0.632 6
LVF 0.397 0.561 22
MT 0.621 0.253 73

Table 2: Comparison on real-world data

and edges represent the citation relationships between the
two patents. dblp-Coauthor is a coauthor graph extracted
from publications in DBLP database. It is also worth not-
ing that LVF has higher NMI and more communities than LV
in benchmark test. It indicates that LV suffers from the res-
olution limit problem [Fortunato and Barthelemy, 2007] that
prefers unrealistically large communities. A similar problem
happens on LV for real-world data as it generates many com-
munities containing more than 104 nodes (Fig. 3). Especially,
for example, for dblp-Coauthor network, the biggest com-
munity by LV contains about 105 nodes (10% of the whole
graph). It is not realistic for collaboration networks and is
orders of magnitude larger than a reasonable community size
for human interaction [Leskovec et al., 2009], so LV is omit-
ted from the remaining comparisons. Alternatively, choos-
ing low level structures such as LVF can be a remedy [Good
et al., 2010], although it still contains a few extremely large
communities. On the other hand, MT tends to find even-size
communities, which is not desirable for community detection
either. Table 2 shows the quality of results by different algo-
rithms.

4.3 Microscopic Example on dblp-Coauthor
Network

In this section, we analyze the community detection results of
a run by our Par-SBM (PS) and the Louvain method [Blon-

(a) by Par-SBM (b) by LVF (c) by LV2

Figure 4: Subgraph of the dblp-Coauthor network, where col-
ors represent the community labels determined by different
algorithms

del et al., 2008] using random initialization. For the Lou-
vain method, we pick the Level One structure with finest
communities (LVF) and the Level Two structure denoted
by LV2. Communities become larger in higher level struc-
tures by the Louvain method. Taking the Conference Chair
as an example, we consider community containing author
“Michael Wooldridge,” and use SPS , SLV F , and SLV 2 to
represent the nodes in the community found by Par-SBM and
the Louvain method, respectively. The community size by our
algorithm is comparable to the one by LVF, but much smaller
than the one by LV2, as |SPS | = 255 and |SLV F | = 166,
while |SLV 2| = 26294.

All the algorithms are able to identify blue nodes in Fig.
4 as a separate community, while our Par-SBM provides the
clearest detail. SLV 2 contains one hundred times more nodes
than SPS . Among all the communities found by Par-SBM,
the red, green, and purple communities in Fig. 4(a) are
the top-three contributors to SLV 2, owning 2.96% of total
nodes in SLV 2. The three communities can be represented by
three nodes respectively: purple by Dr. Michael Wooldridge
(multi-agent systems), green by Dr. Bruce W. Porter (knowl-
edge systems), and red by Dr. Christopher W. Geib (Reports
of the AAAI Conference Workshops). Nodes in red forms a
strong community because the authors (although from differ-
ent areas of AI) are fully connected by the workshop reports
annually. However, some nodes in the aforementioned three
communities are inappropriately separated by LVF as shown
in Fig. 4(b).

5 Concluding Remarks
In this paper, we have proposed a fast algorithm for clustering
nodes in large graphs using stochastic block models. We have
adopted alternative updates and coordinate descent methods
to infer the latent parameters, and used community shrinking
and expanding to improve accuracy. Our algorithm has lin-
ear time complexity in the number of edges, and can scale to
multi-processor systems.

Compared with other community detection algorithms,
our SBM-based method can produce high quality results on
benchmark graphs and find interesting communities in the
real-world graphs.

This work can boost the application of SBMs on big data
and bring new insights by overcoming the accuracy or run-
ning time shortages of traditional algorithms. The code is
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available at https://github.com/pdacorn/par-sbm.
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