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Abstract
A major challenge in Content-Based Image Re-
trieval (CBIR) is to bridge the semantic gap be-
tween low-level image contents and high-level se-
mantic concepts. Although researchers have inves-
tigated a variety of retrieval techniques using differ-
ent types of features and distance functions, no sin-
gle best retrieval solution can fully tackle this chal-
lenge. In a real-world CBIR task, it is often highly
desired to combine multiple types of different fea-
ture representations and diverse distance measures
in order to close the semantic gap. In this paper,
we investigate a new framework of learning to rank
for CBIR, which aims to seek the optimal combina-
tion of different retrieval schemes by learning from
large-scale training data in CBIR. We first formu-
late the problem formally as a learning to rank task,
which can be solved in general by applying the ex-
isting batch learning to rank algorithms from text
information retrieval (IR). To further address the
scalability towards large-scale online CBIR appli-
cations, we present a family of online learning to
rank algorithms, which are significantly more ef-
ficient and scalable than classical batch algorithms
for large-scale online CBIR. Finally, we conduct an
extensive set of experiments, in which encouraging
results show that our technique is effective, scalable
and promising for large-scale CBIR.

1 Introduction
Content-based image retrieval (CBIR) has been extensively
studied for many years in multimedia and computer vision
communities. Extensive efforts have been devoted to various
low-level feature descriptors [Jain and Vailaya, 1996] and dif-
ferent distance measures defined on some specific sets of low-
level features [Manjunath and Ma, 1996]. Recent years also
witness the surge of research on local feature based represen-
tations, such as the bag-of-words models [Sivic et al., 2005]
using local feature descriptors (e.g., SIFT [Lowe, 1999]).
∗This work was supported by Singapore MOE tier 1 research

grant (C220/MSS14C003) and the National Nature Science Foun-
dation of China (61428207).

Although CBIR has been studied extensively for years, it
is often hard to find a single best retrieval scheme, i.e., some
pair of feature representation and distance measure, which
can consistently beat the others in all scenarios. It is thus
highly desired to combine multiple types of diverse feature
representations and different kinds of distance measures in
order to improve the retrieval accuracy of a real-world CBIR
task. In practice, it is however nontrivial to seek an optimal
combination of different retrieval schemes, especially in web-
scale CBIR applications with millions or even billions of im-
ages. Besides, for real-world CBIR applications, the optimal
combination weights for different image retrieval tasks may
vary across different application domains. Thus, it has be-
come an urgent research challenge for investigating an auto-
mated and effective learning solution for seeking the optimal
combination of multiple diverse retrieval schemes in CBIR.

To tackle the above challenge, in this paper, we investi-
gate a machine learning framework of learning to rank al-
gorithms in seeking the optimal combination of multiple di-
verse retrieval schemes for CBIR by learning from large-scale
training data automatically. In particular, we first formulate
the problem as a learning to rank task, which thus can be
solved in general by applying the existing batch learning to
rank algorithms in text IR. However, to further improve the
efficiency and scalability issues, we present a family of on-
line learning to rank algorithms to cope with the challenge
of large-scale learning in CBIR. We give theoretical analysis
of the proposed online learning to rank algorithms, and em-
pirically show that the proposed algorithms are both effective
and scalable for large-scale CBIR tasks.

In summary, our main contributions of this paper include:
i) We conduct a comprehensive study of applying learning to
rank techniques to CBIR, aiming to seek the optimal combi-
nation of multiple retrieval schemes; ii) We propose a family
of efficient and scalable online learning to rank algorithms
for CBIR; iii) We analyze the theoretical bounds of the pro-
posed online learning to rank algorithms, and also examine
their empirical performances extensively.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 presents our problem for-
mulation and a family of online learning to rank algorithms
for CBIR, and Section 4 gives theoretical analysis. Section 5
discusses our experiments and Section 6 concludes this work.
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2 Related Work
2.1 Learning to Rank and CBIR
Learning to rank has been extensively studied in text Infor-
mation Retrieval (IR) [Qin et al., 2010]. In general, most ex-
isting approaches can be grouped into three major categories:
(i) pointwise, (ii) pairwise, and (iii) listwise approaches. We
briefly review related work in each category below.

The first group, the family of pointwise learning to rank ap-
proaches, simply treats ranking as a regular classification or
regression problem by learning to predict numerical ranking
values of individual objects. For example, in [Cooper et al.,
1992; Crammer and Singer, 2001; Li et al., 2007], the rank-
ing problem was formulated as a regression task in different
forms. In addition, [Nallapati, 2004] formulated the ranking
problem as a binary classification of relevance on document
objects, and solved it by applying some discriminative mod-
els such as SVM.

The second group of learning to rank algorithms, the fam-
ily of pairwise approaches, treats the pairs of documents
as training instances and formulates ranking as a task of
learning a classification or regression model from the col-
lection of pairwise instances of documents. A variety of
pairwise learning to rank algorithms have been proposed by
applying different machine learning algorithms [Joachims,
2002; Burges et al., 2005; Tsai et al., 2007]. The well-
known algorithms include: SVM-based approaches such
as RankSVM [Joachims, 2002], neural networks based
approaches such as RankNet [Burges et al., 2005], and
boosting-based approaches such as RankBoost [Freund et al.,
2003], etc. This group is the most widely explored research
direction of learning to rank, in which many techniques have
been successfully applied in real-world commercial systems.
In general, our proposed approaches belong to this category.

The third group, the family of listwise learning to rank ap-
proaches, treats a list of documents for a query as a train-
ing instance and attempts to learn a ranking model by op-
timizing some loss functions defined on the predicted list
and the ground-truth list. There are two different kinds
of approaches in this category. The first is to directly
optimize some IR metrics, such as Mean Average Preci-
sion (MAP) and Normalized Discounted Cumulative Gain
(NDCG) [Järvelin and Kekäläinen, 2000]. Example algo-
rithms include AdaRank [Xu and Li, 2007] and SVM-MAP
by optimizing MAP [Yue et al., 2007], and SoftRank [Taylor
et al., 2008] and NDCG-Boost [Valizadegan et al., 2009] by
optimizing NDCG, etc. The other is to indirectly optimize
the IR metrics by defining some listwise loss function, such
as ListNet [Cao et al., 2007] and ListMLE [Xia et al., 2008].

Unlike the extensive studies in text IR literature, learning
to rank has been seldom explored in CBIR, except some re-
cent study in [Faria et al., 2010; Pedronette and da S Tor-
res, 2013] which simply applied some classical batch learn-
ing to rank algorithms. Unlike their direct use of the batch
learning to rank algorithms that are hardly scalable for large-
scale CBIR applications, we propose a family of efficient
and scalable online learning to rank algorithms and evalu-
ate them extensively on a comprehensive testbed. Finally,
we note that our work is also very different from a large

family of diverse existing studies in CBIR [He et al., 2004;
Hoi et al., 2006; Chechik et al., 2010] that usually to ap-
ply machine learning techniques (supervised or unsupervised
learning) to learn a good ranking function on a single type
of features or some combined features. Such existing tech-
niques potentially could be incorporated as one component
of our scheme, which is out of scope of the discussions in
this work.

2.2 Online Learning
Online learning is a family of efficient and scalable machine
learning algorithms [Rosenblatt, 1958; Crammer et al., 2006]
extensively studied in machine learning for years. In general,
online learning operates in a sequential manner. Consider on-
line classification, each time step, an online learner processes
an incoming example by first predicting its class label; af-
ter that, it receives the true class label from the environment,
which is then used to measure the loss between the predicted
label and the truth label; at the end of each time step, the
learner is updated whenever the loss is nonzero. Typically,
the goal of an online learning task is to minimize the cumula-
tive mistakes over the entire sequence of predictions.

In literature, a variety of algorithms have been proposed
for online learning [Hoi et al., 2014]. The most well-known
example is the Perceptron algorithm [Rosenblatt, 1958]. In
recent years, various algorithms have been proposed to im-
prove Perceptron [Li and Long, 1999; Crammer et al., 2006],
which usually follow the criterion of maximum margin learn-
ing principle. A notable approach is the family of Passive-
Aggressive (PA) learning algorithms [Crammer et al., 2006],
which updates the classifier whenever the online learner fails
to produce a large margin on the current instance. These algo-
rithms are often more efficient and scalable than batch learn-
ing algorithms. In this work, we aim to extend the existing
online learning principle for developing new learning to rank
algorithms. In addition, we note that our work is also very
different from another study in [Grangier and Bengio, 2008]
which focuses on text-based image retrieval by applying PA
algorithms. By contrast, our CBIR study focuses on image
retrieval based on the visual similarity. Finally, the proposed
online learning to rank is based on linear models and is thus
more scalable than the kernel-based similarity learning ap-
proaches [Xia et al., 2014].

3 Online Learning to Rank for CBIR
In this section, we present the problem formulation and the
proposed online learning to rank algorithms for CBIR.

3.1 Problem Formulation
Let us denote by I an image space. Each training instance
received at time step t is represented by a triplet instance
(qt, p

1
t , p

2
t ), where qt ∈ I denotes the t-th query in the en-

tire collection of queries, p1t ∈ I and p2t ∈ I denote a pair of
images for ranking prediction w.r.t. the query qt.

We also denote by yt ∈ {+1,−1} the true ranking order of
the pairwise instances at step t such that image p1t is ranked
before p2t if yt = +1; otherwise p1t is ranked after p2t . We
introduce a mapping function

φ : I × I 7→ Rn,
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which creates a n-dimensional feature vector from an image
pair. For example, consider φ(q, p) ∈ Rn, one way to extract
one of the n features is based on different similarity measures
on different feature descriptors.

The goal of a learning to rank task is to search for the opti-
mal ranking model w ∈ Rn with the following target ranking
function for any triplet instance (qt, p

1
t , p

2
t ):

f(qt, p
1
t , p

2
t ) = w>φ(qt, p

1
t , p

2
t )

= w>(φ(qt, p
1
t )− φ(qt, p

2
t )).

By learning an optimal model, we expect the prediction
output by the function f(qt, p

1
t , p

2
t ) will be positive if an im-

age p1t is more similar to the query qt than another image p2t ,
and negative otherwise.

In particular, for a sequence of T triplet training instances,
our goal is to optimize the sequence of ranking models
w1, . . . ,wT so as to minimize the prediction mistakes dur-
ing the entire online learning process. Below we present a
family of online learning algorithms to tackle the learning to
rank tasks. We note that we mainly explore the first-order on-
line learning techniques due to their high efficiency, but the
similar idea could also be extended by exploring second-order
online learning techniques [Dredze et al., 2008].

3.2 Online Perceptron Ranking (OPR)
The Online Perceptron Ranking (OPR) follows the idea of
Perceptron [Rosenblatt, 1958], a classical online learning al-
gorithm. In particular, given any training instance (qt, p

1
t , p

2
t )

and true label yt, at step t, OPR makes the following update:

wt+1 = wt + yt(φ(qt, p
1
t )− φ(qt, p

2
t )), (1)

whenever ytwt
>(φ(qt, p

1
t )−φ(qt, p

2
t ))<0; otherwise, the

ranking model remains unchanged.

3.3 Online Passive Aggressive Ranking (OPAR)
The Online Passive Aggressive Ranking (OPAR) follows the
idea of the online passive-aggressive (PA) learning [Crammer
et al., 2006] to tackle this challenge. In particular, we first
formulate the problem as an optimization task (OPAR-I):

wt+1 = arg min
w

1

2
‖w −wt‖2 + C`(w; (qt, p

1
t , p

2
t ), yt), (2)

where `(w) is a hinge loss defined as

`(w) = max(0, 1− ytw>(φ(qt, p
1
t )− φ(qt, p

2
t ))),

and C > 0 is a penalty cost parameter. We can also formulate
this problem as another variant (OPAR-II):

wt+1 = arg min
w

1

2
‖w −wt‖2 + C`(w; (qt, p

1
t , p

2
t ), yt)

2. (3)

The above two optimizations trade off two major concerns:
(i) the updated ranking model should not be deviated too
much from the previous ranking model wt, and (ii) the up-
dated ranking model suffers a small loss on the triplet training
instance (qt, p

1
t , p

2
t ). The tradeoff is essentially controlled by

the penalty cost parameter C. Finally, we can derive the fol-
lowing proposition for the closed-form solutions to the above
optimizations.

Proposition 1. The optimizations in (2) and (3) have the fol-
lowing closed-form solution:

wt+1 = wt + λtyt(φ(qt, p
1
t )− φ(qt, p

2
t )), (4)

where λt for (2) is computed as:

λt = min(C,
`t(wt)

‖φ(qt, p1t )− φ(qt, p2t ))‖2
), (5)

and λt for (3) is computed as:

λt =
max(0, 1−wt

>yt(φ(qt, p
1
t )− φ(qt, p

2
t )))

‖φ(qt, p1t )− φ(qt, p2t ))‖2 + 1
2C

.

The above proposition can be obtained by following the
similar idea of passive aggressive learning in [Crammer et
al., 2006]. We omit the details here due to the space limita-
tion. From the results, we can see that the ranking model re-
mains unchanged if wt

>yt(φ(qt, p
1
t ) − φ(qt, p

2
t )) ≥ 1. That

is, we will update the ranking model whenever the current
ranking model fails to rank the order of p1t and p2t w.r.t. query
qt correctly at a sufficiently large margin.

3.4 Online Gradient Descent Ranking (OGDR)
The Online Gradient Descent Ranking (OGDR) follows the
idea of Online Gradient Descent [Zinkevich, 2003] to tackle
our problem. When receiving a training instance (qt, p

1
t , p

2
t )

and its true label yt at each time step t, we suffer a hinge loss
as Eq. (5). Then we update the ranking model based on the
gradient descent of the loss function:

wt+1 = wt − η∇`(w; (qt, p
1
t , p

2
t ), yt), (6)

where η is the learning rate. More specifically, whenever the
loss `(w; (qt, p

1
t , p

2
t ), yt) is nonzero, OGDR makes the fol-

lowing update:

wt+1 = wt + ηyt(φ(qt, p
1
t )− φ(qt, p

2
t )). (7)

4 Theoretical Analysis
In this section, we analyze the performance of the proposed
online algorithms. We firstly present a lemma to disclose the
relationship between the cumulative loss and an IR perfor-
mance measure, i.e., mean average precision (MAP).

Lemma 1. For one query qt and its related images, the MAP
is lower bounded as follows:

MAP ≥ 1− γMAP

T

∑
`(w; (qt, p

1
t , p

2
t ), yt),

where γMAP = 1/m, and m is the number of relevant docu-
ments.

Proof. Using the essential loss idea defined in [Chen et al.,
2009], from Theorem 1 of [Chen et al., 2009] we could see
the essential loss is an upper bound of measure-based rank-
ing errors; besides, the essential loss is the lower bound of
the sum of pairwise square hinge loss, using the properties of
square hinge loss, which is non-negative, non-increasing and
satisfy `(0) = 1.
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The above lemma indicates that if we could prove bounds
for the online cumulative hinge loss compared to the best
ranking model with all data beforehand, we could obtain the
cumulative IR measure bounds. Fortunately there are strong
theoretical loss bounds for the proposed online learning to
rank algorithms. Therefore, we can prove the MAP bounds
for each of the proposed algorithms as follows.
Theorem 1. Assume maxt ‖φ(qt, p

1
t )−φ(qt, p

2
t )‖2 ≤ X , the

MAP of the Online Perceptron Ranking algorithm is bounded
as

MAP ≥ 1− γMAPX

2
− γMAP

T
{1

2
‖w‖2 +

∑
`t(w)}.

Proof. Define ∆t = ‖wt − w‖2 − ‖wt+1 − w‖2, it is not
difficult to see:

T∑
t=1

∆t = ‖w‖2 − ‖wT+1 −w‖2 ≤ ‖w‖2.

In addition, according to the update rule, we have

∆t = −2yt(wt −w) · (φ(qt, p
1
t )− φ(qt, p

2
t ))

− ‖φ(qt, p
1
t )− φ(qt, p

2
t )‖2

≤ 2`t(wt)− 2`t(w)−X

Combining the above two inequalities results in

‖w‖2 ≥
∑
t

[2`t(wt)− 2`t(w)−X].

Re-arranging the above inequality gives∑
`t(wt) ≤

1

2
‖w‖2 +

∑
[`t(w) +

1

2
X].

Plugging the above inequality into the Lemma 1 concludes
the proof.

Theorem 2. Assume maxt ‖(φ(qt, p
1
t ) − φ(qt, p

2
t ))‖2 ≤ X ,

the MAP of the OPAR-I algorithm is bounded as follows:

MAP ≥ 1− γMAPC
2X

λ∗

− γMAP

Tλ∗
{1

2
‖w‖2 + C

∑
`t(w)},

where λ∗ = minλt>0 λt, while the MAP of the OPAR-II al-
gorithm is bounded as:

MAP ≥ 1− γMAP (X + 1/(2C))

`∗T
{‖w‖2

+2C
∑

`t(w)2},

where `∗ = min`t>0 `t.

Proof. Firstly, for the OPAR-I algorithm, it is not difficult to
show that

T∑
t=1

∆t = ‖w‖2 − ‖wT+1 −w‖2 ≤ ‖w‖2,

where ∆t = ‖wt−w‖2−‖wt+1−w‖2. In addition, using
the relation between wt and wt+1 gives

∆t =− 2λtyt(wt −w)>[φ(qt, p
1
t )− φ(qt, p

2
t )]

− λ2
t‖(φ(qt, p

1
t )− φ(qt, p

2
t ))‖2

≤2λt`t(wt)− 2λt`t(w)− λ2
tX.

Combining the above two inequalities gives

‖w‖2 ≥
∑
{2λt`t(wt)− 2λt`t(w)− λ2

tX}.

Denote λ∗ = minλt>0 λt and re-arranging the above in-
equality, we can get∑

`t(wt) ≤
1

λ∗
{1

2
‖w‖2 + C

∑
`t(w) +

1

2
C2XT}.

Plugging the above inequality into Lemma 1 concludes the
first part of this theorem.

Similarly, assume `∗ = min`t(wt)>0 `t(wt) for OPAR-II
algorithm, we can prove∑

t

`t(wt) ≤
(X + 1/(2C))

`∗
{‖w‖2 + 2C

∑
`t(w)2}.

Combining the above inequality with Lemma 1 concludes
the second part of this theorem.

Theorem 3. Assume maxt ‖(φ(qt, p
1
t ) − φ(q,tp

2
t ))‖2 ≤ X ,

the MAP of the online gradient descent ranking algorithm is
bounded as:

MAP ≥ 1− γMAP

T
{ 1

2η
‖w‖2 +

ηXT

2
+

T∑
t=1

`t(w)}.

Proof. Firstly, according to equation (6), we have

‖wt+1 −w‖2 = ‖wt − η∇`t(wt)−w‖2

= ‖wt −w‖2 − 2〈wt −w, η∇`t(wt)〉+ ‖η∇`t(wt)‖2.
The above equality can be reformulated as follows:
〈wt −w,∇`t(wt)〉

=
1

2η
[‖wt −w‖2 − ‖wt+1 −w‖2 + ‖η∇`t(wt)‖2]. (7)

Secondly, `t(·) is convex, so

`t(w) ≥ `t(wt) + 〈∇`t(wt), (w −wt)〉.
Reformulating this inequality and plugging it into Eq. (7) re-
sults in

`t(wt)− `t(w) ≤ 〈∇`t(wt),wt −w〉
1

2η
[‖wt −w‖2 − ‖wt+1 −w‖2 + ‖η∇`t(wt)‖2].

Summing the above inequality over t, we get
T∑

t=1

`t(wt)−
T∑

t=1

`t(w)

≤
T∑

t=1

1

2η
[‖wt −w‖2 − ‖wt+1 −w‖2 + ‖η∇`t(wt)‖2]

=
1

2η
[‖w1 −w‖2 − ‖wT+1 −w‖2] +

T∑
t=1

1

2η
‖η∇`t(wt)‖2

≤ 1

2η
‖w‖2 +

T∑
t=1

η

2
‖yt(φ(qt, p

1
t )− φ(q,tp

2
t ))‖2.

Re-arranging the above inequality results in
T∑

t=1

`t(wt) ≤
1

2η
‖w‖2 +

ηXT

2
+

T∑
t=1

`t(w).

Plugging the above inequality into the Lemma 1 concludes
the proof.
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5 Experiments
We conduct an extensive set of experiments for benchmark
evaluations of varied learning to rank algorithms for CBIR
tasks, including both batch and online learning algorithms.

5.1 Testbeds for Learning to Rank
Table 1 shows a list of image databases in our testbed. For
each database, we randomly split it into five folds, in which
one fold is used for test, one is for validation, and the rest are
for training. Besides, to test the scalability of our technique
for large-scale CBIR, we also include a large database (“Im-
ageCLEFFlickr”), which includes ImageCLEF as a ground-
truth subset and 1-million distracting images from Flickr.

Table 1: List of image databases in our testbed.
Datasets #images #classes #train-instances
Holiday 1,491 500 200,000

Caltech101 8,677 101 200,000
ImageCLEF 7,157 20 200,000

Corel 5,000 50 200,000
ImageCLEFFlickr 1,007,157 21 3,000,000

To generate training data of query-dependent descriptors,
for each query in a dataset, we involve all positive/relevant
images and sample a subset of negative/irrelevant images.
The feature mapping φ(q, p) ∈ Rn is computed over 9 dif-
ferent features with 4 similarity measurements, which results
in 36-dimensional feature representation. Due to the low ef-
ficiency of the existing batch learning to rank algorithms, we
design two different experiments. The first aims to evalu-
ate different learning to rank algorithms on all the standard
databases, in which we can only sample a total of 200,000
training instances as training data set to ensure that all the
batch learning to rank algorithms can be completed. The sec-
ond aims to examine if the proposed technique can cope with
large amount of training data, in which a total of 3-million
training instances were generated in the training data set. For
validation and test data sets, we randomly choose 300 valida-
tion images and 150 test images from each fold.

5.2 Setup and Compared Algorithms
To conduct a fair evaluation, we choose the parameters of dif-
ferent algorithms via the same cross validation scheme in all
the experiments. To evaluate the retrieval performance, we
adopt the mean Average Precision (mAP), a metric widely
used in IR, which is calculated based on the Average Preci-
sion (AP) value of all the queries, where the value of AP is
the area under precision-recall curve for a query.

To evaluate the efficacy of our scheme, we compare the
proposed family of online learning to rank algorithms, in-
cluding OPR, OPAR-I, OPAR-II and OGDR, against sev-
eral representative batch learning to rank algorithms in
text IR, including RankNet [Burges et al., 2005], Co-
ordinate Ascent(“C-Ascent”) [Metzler and Croft, 2007],
RankSVM [Herbrich et al., 2000] and LambdaMART(“λ-
MART”) [Wu et al., 2010]. Besides, we also evaluate two
straightforward baselines: (i) “Best-Fea”: it selects the best
query-dependent descriptor for ranking via cross validation;

and (ii) “Uni-Con”: it uniformly combines all the query-
dependent descriptors for ranking.

5.3 Evaluation on Standard Datasets
We first evaluate the algorithms on the standard datasets.
Table 2 shows average MAP performance on five standard
datasets. Several observations can be drawn as follows.

Table 2: Evaluation of the average MAP performance.
Algorithm Holiday Caltech101 ImageCLEF Corel
Best-Fea 0.4892 0.2664 0.5777 0.1846
Uni-Con 0.5175 0.2594 0.6174 0.2990
RankNet 0.6292 0.2753 0.6326 0.3133
C-Ascent 0.6373 0.3193 0.6803 0.3406

RankSVM 0.6429 0.3270 0.6585 0.3366
λ-MART 0.6230 0.3650 0.6796 0.3683

OPR 0.6219 0.3285 0.6555 0.3292
OPAR-I 0.6329 0.3070 0.6556 0.3340
OPAR-II 0.6283 0.3157 0.6632 0.3389
OGDR 0.6368 0.3024 0.6626 0.3228

First, we observe that all the learning to rank algorithms
outperform the two heuristic baselines (“Best-Fea” and “Uni-
Con”) for most cases. This clearly demonstrates that the pro-
posed learning to rank framework can effectively combine
different feature representation and distance measures for im-
proving image retrieval performance. Second, comparing dif-
ferent batch learning to rank algorithms, we observe that no
single method can beat the others on all datasets, which is
consistent to some previous empirical study in text IR, and
λ-MART tends to perform slightly better which attained the
best performance among 2 out of 4 datasets. Third, by exam-
ining the proposed online learning to ranking algorithms, we
found that their average mAP performance is fairly compa-
rable to the batch algorithms, which indicates that the online
algorithms are at least as effective as the existing batch algo-
rithms in terms of the retrieval efficacy.
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Figure 1: Cumulative time cost on Corel w/ 200k instances.

To evaluate the efficiency and scalability, we measure the
time cost taken by different learning to rank algorithms given
different amounts of training data. Figure 1 shows the eval-
uation of CPU time cost on the Corel dataset on different
amounts of training instance streams from a total of 200,000
training instances. The online learning algorithms take only
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tens of seconds for training while batch learning algorithms
are much slower, e.g. C-Ascent take around 2 hours. It is
clear to see that the proposed online algorithms are consid-
erably more efficient and scalable than most of the existing
batch algorithms.

5.4 Evaluation on the Large-scale Dataset
In this experiment, we evaluate the proposed family of online
learning to rank algorithms on the large-scale dataset, i.e., the
ImageCLEFFlickr data set with over 1-million images and 3-
million training instances. For the batch algorithms, we can
only evaluate the RankSVM since the other algorithms are
too computationally intensive to run on this data set.
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Figure 2: Evaluation of the MAP performance on the Image-
CLEFFlickr dataset with over 1-million images.

Figure 2 shows the evaluation of mAP performance on five
different folds and Table 3 shows the evaluation of running
time cost on 3-million training instances. We can draw sev-
eral observations from the results. First, the online learning
to rank algorithms generally outperform the baseline algo-
rithms without learning to rank significantly. Furthermore,
our proposed algorithms achieve better or at least comparable
accuracy performance than the state-of-the-art batch learning
to rank approaches. Finally, the online learning to rank algo-
rithms are generally more efficient than the batch algorithm.

Table 3: Running time(s) on 3-million training instances.
RankSVM OPR OPAR-I OPAR-II OGDR

4737 1154 1370 1708 2307

5.5 Evaluation on the Large Scale Online CBIR
We now simulate a real-world online CBIR system by assum-
ing training data arrive sequentially. This is a more realistic
setting, especially for web image search engines where user
query log data collected from click actions often arrive se-
quentially. At each iteration, after receiving a query image,
we first apply the former learned model for CBIR, and then
assume the top 50 retrieved images would be labeled, e.g.,
via a relevance feedback scheme interactively. After that, the
newly received labeled data are adopted to update the model
which will predict the next query image. Because batch learn-
ing algorithms require all the labeled data (including the ear-

lier iterations) available for training, we employ a reservoir
scheme that cached all the labeled data for RankSVM.

Specifically, we use ImageCLEFFlickr as the database set,
and randomly select 2,000 images for sequential queries. Fig
3 shows the improvement of NDCG@50 for different algo-
rithms compared to the Uni-Con baseline, whose average
NDCG@50 over 2,000 queries is about 0.80.
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Figure 3: Online cumulative retrieval performance.

We also measure the cumulative CPU time cost taken by
different algorithms shown in Figure 4. The batch learning
algorithm RankSVM take about a few of hours for re-training
while all online learning methods just take several seconds.
It is clear to observe that batch algorithms are impractical for
this application, meanwhile the proposed online algorithms
are significantly more efficient and scalable.
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Figure 4: Online Cumulative Time Cost.

6 Conclusions
This paper investigates a new framework of efficient and scal-
able learning to rank for CBIR, which aims to learn an opti-
mal combination of multiple feature representations and dif-
ferent distance measures. We formulate the problem as a
learning to rank task, and explore online learning to solve
it. To overcome the drawbacks of existing batch learning to
rank techniques, we present a family of efficient and scalable
online learning to rank algorithms, which are empirically as
effective as the batch algorithms for CBIR, but significantly
more scalable by avoiding re-training. Finally, we note that
our technique is rather generic, which could be extended for
solving many other types of multimedia retrieval tasks.
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