
Polynomial Rewritings for Linear Existential Rules
Georg Gottlob1 Marco Manna2 Andreas Pieris3

1Department of Computer Science, University of Oxford, UK
2Department of Mathematics and Computer Science, University of Calabria, Italy

3Institute of Information Systems, Vienna University of Technology, Austria

georg.gottlob@cs.ox.ac.uk, manna@mat.unical.it
pieris@dbai.tuwien.ac.at

Abstract
We consider the scenario of ontology-based query
answering. It is generally accepted that true scala-
bility in this setting can only be achieved via query
rewriting, which in turn allows for the exploitation
of standard RDBMSs. In this work, we close two
open fundamental questions related to query rewrit-
ing. We establish that linear existential rules are
polynomially combined rewritable, while full lin-
ear rules are polynomially (purely) rewritable; in
both cases, the target query language consists of
first-order or non-recursive Datalog queries. An
immediate consequence of our results is that DLR-
LiteR, the extension of DL-LiteR with n-ary roles,
is polynomially combined rewritable.

1 Introduction
This paper considers the well-known setting of ontology-
based query answering (OBQA), where an ontology is used
to enrich the extensional dataset with intensional knowledge.
A database D is combined with an ontology Σ, while an in-
put query is answered against the logical theory (D ∪ Σ). In
this setting, Description Logics (DLs) and existential rules are
popular ontology languages, while conjunctive queries (CQs)
is the main querying tool. Thus, efficient procedures for CQ
answering under such languages are of great importance.

Among KR researchers there is a clear consensus that the
required level of scalability in OBQA can only be achieved
via query rewriting, which attempts to reduce OBQA into the
problem of evaluating a query over a relational database. Two
query languages are usually considered: first-order queries,
which can be translated into standard SQL, and non-recursive
Datalog queries, which can be translated into SQL with view
definitions (SQL DDL). Therefore, query rewriting allows for
the exploitation of existing technology provided by standard
RDBMSs. The main approaches to query rewriting are the
pure approach [Calvanese et al., 2007] and the combined ap-
proach [Lutz et al., 2009]:
Pure Approach: An ontology Σ can be combined with a CQ

q into a database query qΣ, such that, for every database
D, qΣ over D yields exactly the same result as q evalu-
ated against (D∪Σ). This approach applies only to lan-
guages for which the data complexity of CQ answering

is below PTIME; thus, useful formalisms with PTIME-
hard data complexity are immediately excluded.

Combined Approach: A refined approach to query answer-
ing, which overcomes the above shortcoming, is the
combined approach that allows for the encoding of the
consequences of the ontology in the given database. An
ontology Σ can be incorporated together with a given
CQ q into a database query qΣ, but also with a given
database D into a database DΣ, such that qΣ over DΣ

yields the same result as q evaluated over (D ∪ Σ).
Both approaches have been applied to DLs and classes of

existential rules; see, e.g., [Calvanese et al., 2007; Lutz et
al., 2009; Kontchakov et al., 2010; 2011; Calı̀ et al., 2012a;
2012b; Gottlob et al., 2014b]. However, they both suffer from
a crucial weakness, which may revoke the key advantage of
query rewriting, i.e., the use of RDBMSs: (pure or combined)
rewriting algorithms may generate from a reasonably sized
CQ an exponentially sized database query, which can be pro-
hibitive for efficient execution by an RDBMS. This naturally
leads to the polynomial version of the pure approach and the
combined approach, where the rewriting algorithms are re-
quired to terminate after polynomially many steps.

The polynomial pure approach has been applied to DL-
LiteF [Kontchakov et al., 2010], one of the core languages
of the DL-Lite family of DLs, and to unary inclusion depen-
dencies [Kikot et al., 2011], that is, a small fragment of inclu-
sion dependencies. The polynomial combined approach has
been applied to ELHdr

⊥ [Lutz et al., 2009], an extension of
the well-known DL EL, to DL-LiteNhorn [Kontchakov et al.,
2010; 2011], one of the most expressive logic of the DL-Lite
family, and only recently to the main guarded- and sticky-
based classes of existential rules [Gottlob et al., 2014b]. In
this work, we are mainly concerned about existential rules.

Research Challenges. The problem of applying the poly-
nomial pure and combined approach to existing classes of
existential rules is relatively understood. Nevertheless, there
are still basic open questions regarding the well-known for-
malism of linear (existential) rules, that is, assertions of the
form ∀X∀Y(s(X,Y) → ∃Z p(X,Z)), where s(X,Y) and
p(X,Z) are atomic formulas [Calı̀ et al., 2012a]. Despite
their simplicity, linear rules are powerful enough for captur-
ing prominent database dependencies, and in particular inclu-
sion dependencies, as well as key DLs such as DL-LiteR and
DLR-LiteR, the extension of DL-LiteR with n-ary roles. Ev-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2992

idently, linear rules form a central language that deserves our
attention. As stated in [Gottlob et al., 2014b], a major open
question is the following:

Can we apply the polynomial combined approach to the
class of linear rules?

The answer to the above question is affirmative under the as-
sumption that the arity of the underlying schema is bounded;
implicit in [Gottlob et al., 2014a]. However, little is known
for arbitrary linear rules, without any assumption on the un-
derlying schema. Regarding the analogous question for the
polynomial pure approach, it is well-known that the answer
is negative; implicit in [Gottlob et al., 2014a]. Noticeably,
this negative result cannot be transferred to full linear rules,
i.e., linear rules without existential quantification. This gives
rise to the following fundamental question:

Can we apply the polynomial pure approach to the class of
full linear rules?

Our Results. It is the precise aim of the current work to
give answers to the above open questions. In fact, we show
that the answer to both questions is affirmative:

The class of linear existential rules is polynomially com-
bined Q-rewritable, while full linear existential rules
are polynomially (purely) Q-rewritable, where Q con-
sists of first-order or non-recursive Datalog queries.

Since linear rules generalize DLR-LiteR, we immediately
conclude that DLR-LiteR is also polynomially combined Q-
rewritable. These are non-trivial results that required novel
techniques beyond the state of the art. In fact, all the for-
malisms for which the polynomial pure and combined ap-
proach have been applied, share a property that is crucial for
the existing rewriting techniques: given a (Boolean) CQ q, a
database D, and an ontology Σ, if q is entailed by (D ∪ Σ),
then q admits a proof of polynomial size, i.e., q is already en-
tailed by a polynomially sized subinstance of the underlying
canonical model of D and Σ. However, the above property
does not hold for (full) linear rules [Gottlob et al., 2014b].
Hence, by following the same principle as in existing tech-
niques, i.e., to simulate the polynomially sized proof of the
given query via a first-order or a non-recursive Datalog query,
the obtained rewritings will unavoidably be of exponential
size. Thus, our challenge is to simulate query proofs not nec-
essarily of polynomial size via polynomially sized queries.

2 Preliminaries
Technical Definitions. Consider the following pairwise dis-
joint (infinite countable) sets: a set C of constants, a set N of
labeled nulls, and a set V of variables. A term t is a con-
stant, null, or variable. An atom has the form p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. For
an atom a, we denote dom(a), null(a) and var(a) the set
of its terms, nulls, and variables, respectively; these extend to
sets of atoms. Conjunctions of atoms are often identified with
the sets of their atoms. An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and nulls.
A database D is a finite instance such that dom(D) ⊂ C. A
homomorphism is a substitution h : C∪N∪V→ C∪N∪V

that is the identity on C. We assume familiarity with conjunc-
tive queries (CQs). We write q(I) for the answer to a CQ q
over I . A Boolean CQ (BCQ) q has a positive answer over I ,
denoted I |= q, if () ∈ q(I).

An existential rule (or simply rule) σ is a constant-free
first-order formula ∀X∀Y(ϕ(X,Y) → ∃Z p(X,Z)), where
(X∪Y∪Z) ⊂ V, ϕ is a conjunction of atoms; ϕ(X,Y) is the
body of σ, while p(X,Z) is the head of σ. A class of existen-
tial rules that is of special interest for the current work con-
sists of linear existential rules (or simply linear rules), that
is, rules with only one body-atom [Calı̀ et al., 2012a]. More
precisely, the class of linear rules, denoted LIN, is defined as
the family of all possible sets of linear rules. Given a set Σ
of rules, sch(Σ) is the set of predicates occurring in Σ. For
brevity, we will omit the universal quantifiers. An instance I
satisfies σ, written I |= σ, if the following holds: whenever
there exists a homomorphism h such that h(p(X,Y)) ∈ I ,
then there exists h′ ⊇ h|X, where h|X is the restriction of h
on X, such that h′(p(X,Z)) ∈ I; I satisfies a set Σ of rules,
denoted I |= Σ, if I satisfies each σ of Σ.

The models of a database D and a set Σ of rules, denoted
mods(D,Σ), is the set {I | I ⊇ D and I |= Σ}. The an-
swer to a CQ q w.r.t. D and Σ is defined as the set of tu-
ples ans(q,D,Σ) =

⋂
I∈mods(D,Σ){t | t ∈ q(I)}. The

answer to a BCQ q is positive, denoted (D ∪ Σ) |= q, if
ans(q,D,Σ) 6= ∅. The problem of CQ answering is defined
as follows: given a CQ q, a database D, a set Σ of rules, and
a tuple of constants t, decide whether t ∈ ans(q,D,Σ). In
case q is a BCQ, the above problem is called BCQ answer-
ing. These decision problems are LOGSPACE-equivalent, and
we thus focus only on BCQ answering. For query answering
purposes, we can assume, w.l.o.g., that both the query and the
database contain only predicates of sch(Σ).

We assume familiarity with the chase procedure. Recall
that the chase for a database D and a set Σ of rules, denoted
chase(D,Σ), is a universal model ofD and Σ, and thus (D∪
Σ) |= q iff chase(D,Σ) |= q, for each BCQ q. The chase
graph for D and Σ, denoted CG(D,Σ), is a directed labeled
graph (N,E, λ), where N is the set of nodes, λ is the node
labeling function N → chase(D,Σ), and an edge (v, u) ∈
E iff λ(u) is obtained from λ(v) via a single chase step. It
is easy to verify that, whenever Σ ∈ LIN, CG(D,Σ) is a
directed forest.

Query Rewriting. For our purposes, we are going to
consider two central query languages, namely first-order
queries (FO), and non-recursive Datalog queries (NDL); see,
e.g., [Abiteboul et al., 1995]). The formal definition of poly-
nomial combined Q-rewritability, where Q ∈ {FO,NDL},
which is at the basis of the polynomial combined approach,
is as follows; in the sequel, fix a class C of existential rules:

Definition 1 The class C is polynomially combined Q-
rewritable if, for every BCQ q, database D, and Σ ∈ C, we
can rewrite in polynomial time: (i) q and Σ, independently of
D, into qΣ ∈ Q, and (ii) D and Σ, independently of q, into a
database DΣ, such that, (D ∪ Σ) |= q iff DΣ |= qΣ.

The rewriting of q and Σ is the query compilation phase,
while the rewriting of D and Σ is the database compilation

2993

p(z1,a,z2)

p(z1,z3,a)

p(a ,z1,b)

p(z4,z1,b)

p(b,z4,z1)

p(a ,b,c)

p(z3,a,z1)

p(b ,z5,c)

p(b ,c,d)

p(z5,c,b)

∃A∃B∃C∃D (p (A,a,B) ∧ p(C,B,b) ∧ p(D,c,b))

z3

z1

z4

z5

(a)

(b)

Figure 1: Illustration of a proof generator.

phase. If the database compilation phase is dropped, then we
get the notion of polynomial Q-rewritability.

Definition 2 The class C is polynomiallyQ-rewritable if, for
every BCQ q, and Σ ∈ C, it is possible to rewrite in polyno-
mial time: q and Σ into qΣ ∈ Q, such that, for every database
D, (D ∪ Σ) |= q iff D |= qΣ.

3 Proof Generator
In this section, we introduce our main technical tool, called
proof generator, which formalizes the intuitive idea that BCQ
answering under linear rules can be realized as a reachability
problem on the chase graph. Let us first illustrate the key
ideas underlying the proof generator via a simple example.

Example 1 Let D = {p(a, b, c), p(b, c, d)}, and let Σ be the
set of linear rules:

b → ∃W p(X,W, Y) b → ∃W p(Z,W, Y)
b → ∃W p(Y,X,W) b → p(Y,Z,X),

where b = p(X,Y, Z). Given the BCQ

q = ∃A∃B∃C∃D (p(A, a,B) ∧ p(C,B, b) ∧ p(D, c, b)),

as illustrated in Figure 1(a), there exists a homomorphism h
(dashed arrows in the figure) that maps q to an initial segment
of the chase graph of D and Σ, and thus (D ∪ Σ) |= q. It is
interesting to observe that the nulls occurring in h(q), i.e., z1,
z3, z4 and z5, form a rooted forest F , depicted in Figure 1(b),
with the following properties; for brevity, let ν(z) be the atom
in CG(D,Σ) where the null z is invented (see shaded atoms
in Figure 1(a) for ν(z1), ν(z3), ν(z4) and ν(z5)): (i) for ev-
ery root node z, ν(z) is reachable from D; (ii) for every edge
(z, w), ν(w) is reachable from ν(z); and (iii) for every atom
a ∈ h(q), there exists a unique path π in F that contains all
the nulls in a, and, assuming that the leaf node of π is z, a
is reachable from ν(z). Indeed, it is easy to verify that ν(z1)
and ν(z5) are reachable from D, ν(z3) and ν(z4) are reach-
able from ν(z1), and finally, h(p(A, a,B)) = p(z3, a, z1)
is reachable from ν(z3), h(p(C,B, b)) = p(z4, z1, b) from
ν(z4), and h(p(D, c, b)) = p(z5, c, b) from ν(z5).

Roughly speaking, the triple consisting of: (1) the homo-
morphism h, that maps q to the chase; (2) the function ν,
that gives the atoms in the chase where the nulls occurring in
h(q) were invented; and (3) the forest F , that encodes how
the nulls of h(q) depend on each other, as well as the order

of their generation, is what we call a proof generator for q
w.r.t. D and Σ. The existence of such a triple, allows us to
generate the part of the chase due to which the query is en-
tailed, i.e., the proof of the query (hence the name “proof
generator”). Therefore, for query answering purposes under
linear rules, we simply need to check if such a proof generator
exists. Let us now formalize the above intuitive ideas.

Rooted Forests. A rooted tree T on a set S is a tree with S
be the node set of T , where one node, denoted root(T), has
been designated the root, and the edges have an orientation
away from the root. The tree-order of T is the (non-strict)
partial order �T over S such that v �T u iff the unique path
from the root to u passes through v. The corresponding strict
partial order is given by: v ≺T u iff v �T u and v 6= u.
A rooted forest F on a set S is a collection of rooted trees
T1, . . . , Tn on S1, . . . ,Sn, resp., where Si ∩ Sj = ∅, for
1 6 i < j 6 n, and S =

⋃
i∈[n] Si. We define root(F) =⋃

i∈[n]{root(Ti)}. The forest-order of F is the partial order
�F=

⋃
i∈[n] �Ti

, while v ≺F u iff v �F u and v 6= u.
Consider a set T ⊆ S such that, for each v, u ∈ T, v �F u
or u �F v. It can be verified that there exists a unique v ∈ T,
denoted greatestF (T), such that u ≺F v, for each u ∈ T.

Query Answering and Proof Generators. For technical
clarity, we focus, w.l.o.g., on linear rules in normal form, i.e.,
linear rules with at most one occurrence of an existentially
quantified variable; see, e.g., [Gottlob et al., 2014b]. Fix a
BCQ q, a database D, and a set Σ ∈ LIN. As said above, a
proof generator for q w.r.t. D and Σ is a triple consisting of
a homomorphism h : var(q) → (dom(D) ∪N), a function
ν : null(h(q)) → chase(D,Σ), and a rooted forest F on
null(h(q)). Such a triple, in order to be a valid candidate for a
proof generator, must satisfy certain properties. In particular,
(1) the atoms of h(q), as well as the atoms where the nulls of
h(q) were invented, do not contain incomparable (w.r.t. �F)
nulls of h(q), and (2) for each z ∈ null(h(q)), z is the most
recently generated null among the nulls in ν(z). The above
properties are formalized via the proof generator scheme. In
the sequel, for brevity, let U = null(h(q)).
Definition 3 A proof generator scheme for q w.r.t.D and Σ
is a triple (h, ν, F), with h : var(q) → (dom(D) ∪N) be a
mapping, ν : null(h(q)) → chase(D,Σ) be a (total) func-
tion, and F be a rooted forest on null(h(q)), such that:

1. For each a ∈ (h(q) ∪ {ν(z) | z ∈ U}), and for each
z, w ∈ (null(a) ∩U), z �F w or w �F z; and

2. For each z ∈ U, z = greatestF (null(ν(z)) ∩U).
We are now ready to define the notion of the proof gener-

ator. Roughly, a proof generator is a proof generator scheme
that gives rise to a proof of the given query, that is, a (finite)
part of the chase due to which the query is entailed. The latter
can be easily verified by applying some reachability checks
on the chase graph. A path π = v1 . . . vn, where n > 1, in
CG(D,Σ) = (N,E, λ) is called generating for a null z if,
z 6∈ null(λ(vi)), for each i ∈ [n − 1], and z ∈ null(λ(vn)).
Given two (distinct) atoms a, b ∈ chase(D,Σ), we write
a b for the fact that b is reachable from a in CG(D,Σ).
Furthermore, given a null z occurring in chase(D,Σ), we
write a z b for the fact that b is reachable from a in
CG(D,Σ) via a path that is generating for z.

2994

Definition 4 A proof generator for q w.r.t. D and Σ is a
proof generator scheme (h, ν, F) such that:

1. For each z ∈ root(F), there exists a ∈ D such that
a z ν(z);

2. For each edge (z, w) of F , ν(z) w ν(w);
3. For each a ∈ h(q) with z = greatestF (null(a)), either
a = ν(z) or ν(z) a; and

4. For each a ∈ h(q) with null(a) = ∅, there exists b ∈ D
such that b a.

Our main technical lemma follows:

Lemma 5 (D ∪Σ) |= q iff there exists a proof generator for
q w.r.t. D and Σ.

4 Linear Existential Rules
In this section, we give a positive answer to our first research
question regarding linear rules and the polynomial combined
approach. More precisely, we show that:

Theorem 6 LIN is polynomially combined Q-rewritable,
where Q ∈ {FO,NDL}.

To establish the above theorem, we heavily rely on the no-
tion of the proof generator. For the rest of this section, fix a
BCQ q, a database D, and a set Σ ∈ LIN. By Lemma 5, it
suffices to construct in polynomial time a query qΣ ∈ Q (in-
dependently of D), and a database DΣ (independently of q),
such that DΣ |= qΣ iff a proof generator for q w.r.t. D and Σ
exists. Roughly, the query qΣ consists of three components:
the first one guesses a triple (h, ν, F) as in Definition 3, the
second component verifies that the guessed triple is a proof
generator scheme, and finally, the third component verifies
that the guessed triple is a proof generator for q w.r.t. D and
Σ. The interesting part of qΣ is its third component, which ap-
plies the crucial reachability checks required by Definition 4.
Although the path among two atoms in the chase graph may
be of exponential size, its existence can be checked via Q-
queries of polynomial size.

Let us make some assumptions that will simplify our task.
Recall that Σ is in normal form, i.e., each rule has at most one
occurrence of an existentially quantified variable. We further
assume that the existentially quantified variable appears in the
last position of the head-atom. Moreover, we assume that Σ
contains only one predicate p of arity ω. As shown in [Gottlob
et al., 2014b], the above assumptions can be made without
affecting the generality of our proof. We finally assume that q
is of the form ∃Z(p(t1)∧. . .∧p(tn)), where Z = Z1, . . . , Z`,
and ti ∈ (dom(D) ∪ Z)ω , for each i ∈ [n].

4.1 First-Order Rewriting
We first focus on the case where Q = FO.

DATABASE COMPILATION PHASE. We define

DΣ = D ∪ {bit(0), bit(1), star(?)},

where bit and star are auxiliary predicates not occurring in
sch(Σ), while 0, 1 and ? are fresh constants not in D. The
purpose of 0 and 1 is, intuitively speaking, to encode in bi-
nary form the nulls that appear in the proof of the given query

q. Note that those nulls cannot be explicitly encoded in DΣ,
since in this case DΣ will depend on q, and such a rewriting
will not be consistent with Definition 1. The purpose of ? is
to help us to indicate that a path in the chase graph does not
need to be generating for some null. Clearly, DΣ does not
depend on q, and it can be constructed on O(1) time.

QUERY COMPILATION PHASE. Let us now proceed with
the definition of qΣ. As said above, qΣ consists of three com-
ponents: guess a triple (h, ν, F), verify that is a proof gen-
erator scheme, and finally, verify that is a proof generator.
Before giving the general shape of qΣ, let us introduce the
variables, and their underlying meaning, that we will use in
qΣ — assume, for the moment, that α is a sufficiently large
integer such that all the nulls that may occur in the proof of q
can be represented via tuples of the form {0, 1}α:

- For each i ∈ [`], Zi = Z1
i , ..., Z

α
i represents the term

(constant or null) to which the query variable Zi is
mapped to via the homomorphism h. Notice that such
a term is encoded as a tuple of length α;

- For each i ∈ [`], T1
i , . . . ,T

ω
i , where each Tj

i is an α-
tuple, represents an atom in the chase where a null oc-
curring in h(q) was invented. In other words, assuming
that Tω

i encodes the null z (the set Σ is in normal form,
and thus an invented null appears at the last position),
then T1

i , . . . ,T
ω
i represents the atom ν(z); and

- For each i ∈ [` − 1], the pair (Ai,Bi) represents an
edge in the rooted forest F on null(h(q)); for brevity,
let A = {A1, . . . ,A`−1} and B = {B1, . . . ,B`−1}

We define Q as the set that collects all the variables intro-
duced above. Let us now comment on the key value α. It is
well-known that, for query answering purposes under linear
rules, it suffices to focus on an initial segment of the chase
graph of depth δ = (n+ 1) · (2ω)ω [Calı̀ et al., 2012a]. This
implies that the maximum number of atoms that can appear in
the proof of q is (n · δ), which in turn implies that the number
of nulls in the proof of q is bounded by (n · δ · ω). Thus, it
suffices to let α = dlog(n · δ · ω)e. It is important to say that
α is polynomial w.r.t. q and Σ, and independent of D.

The general shape of qΣ is as follows:

∃Q (GuessTriple(Q) ∧ ProofGeneratorScheme(Q)∧
ProofGenerator(Q)) .

With the aim of simplifying the definition of qΣ, we make
use of some useful shortcuts, given in Table 1. The employed
shortcuts are self-explanatory, and thus we proceed with qΣ,
without discussing their semantic meaning.

The real purpose of the subquery GuessTriple(Q) is to
ensure that the guessed triple (h, ν, F) is valid, which means
that ν : null(h(q)) → chase(D,Σ) is indeed a (total) func-
tion, and F is a rooted forest on null(h(q)). This can be eas-
ily done via a simple first-order query. In what follows, we
present the formal definition of ProofGeneratorScheme(Q)
and ProofGenerator(Q).

Proof Generator Scheme. We check whether the guessed
triple is indeed a proof generator scheme. In fact, we simply
need to check if the two conditions in Definition 3 hold. But

2995

Shortcut Definition
X = Y

∧
i∈[|X|](X[i] = Y[i])

null(X)
∧

X∈X bit(X)

qNull(X) null(X) ∧
∨

i∈[`](X = Zi)

dom(X) ∃Y(p(Y) ∧
∨

Y ∈Y(X = Y))

const(X) ∃Y
(
dom(Y) ∧

∧
X∈X(X = Y)

)
sstar(X)

∧
X∈X star(X)

X ∈ T
∨

Y∈T (X = Y)

X ≺1 Y ¬(X = Y) ∧
∨

i∈[`−1]((X = Ai) ∧ (Y = Bi))

X ≺i+1 Y ∃W ((X ≺i W) ∧ (W ≺1 Y))

X ≺ Y
∨

i∈[`−1](X ≺i Y)

min(X) qNull(X) ∧ (X ∈ A) ∧ ¬(X ∈ B)
sup(X, T) qNull(X) ∧ (X ∈ T)∧∧

Y∈T (qNull(Y)→ ((X = Y) ∨ (Y ≺ X)))

Table 1: X,Y are tuples of variables, while T is a sequence
of tuples of variables. Zi, Ai and Bi are variables of Q.
Recall that p is the unique predicate that occurs in Σ.

let us first introduce some auxiliary notation. For each i ∈
[n], tti is defined as the tuple f(ti[1]), . . . , f(ti[w]), where
f(t) = (t)α, if t ∈ C, and f(t) = t1, . . . , tα, if t ∈ Z;
recall that p(ti) is an atom of q. Moreover, for each j ∈ [ω],
ttji = f(ti[j]). For example, if ω = 3, ti = c, Z3, Z1, and
α = 2, then tti = c, c, Z1

3 , Z
2
3 , Z

1
1 , Z

2
1 , while tt1

i = c, c,
tt2
i = Z1

3 , Z
2
3 and tt3

i = Z1
1 , Z

2
1 .

The first condition in Definition 3, namely “for each a ∈
(h(q)∪{ν(z) | z ∈ U}), and for each z, w ∈ (null(a)∩U),
z �F w or w �F z”, can be verified via PGS 1(Q):∧

i∈[n]

∧
j,k∈[ω]

((
qNull(ttji) ∧ qNull(ttki)

)
→

(
(ttji = ttki) ∨ (ttji ≺ ttki) ∨ (ttki ≺ ttji)

))
∧∧

i∈[`]

∧
j,k∈[ω]

((
qNull(Tj

i) ∧ qNull(Tk
i)
)
→

(
(Tj

i = Tk
i) ∨ (Tj

i ≺ Tk
i) ∨ (Tk

i ≺ Tj
i)
))

.

The second condition, which asks that “for each z ∈ U, z =
greatestF (null(ν(z))∩U)”, can be checked via PGS 2(Q):∧

i∈[`]

(
qNull(Tω

i)→ sup(Tω
i ,T

1
i , . . . ,T

ω
i)
)
.

Notice that PGS 2(Q) assumes the following: for each tuple
b of bits in the image of Z1, . . . ,Z`, there exists i ∈ [`] such
that Tω

i is mapped to b. This is enforced by the subquery of
GuessTriple(Q), which checks whether ν : null(h(q)) →
chase(D,Σ) is a total function. Consequently, the query
ProofGeneratorScheme(Q) is (PGS 1(Q) ∧ PGS 2(Q)).

Proof Generator. We proceed to check if the guessed triple
is a proof generator for q w.r.t. D and Σ, or whether the four
conditions in Definition 4 are fulfilled. Let us assume, for the
moment, that we have access to the subqueries π and πG. In-
tuitively, π(X ,Y), where X and Y are collections of tuples
of variables representing some tuples in the chase, let say tX

and tY , respectively, means that p(tX) p(tY). Analo-
gously, πG(X ,Y), assuming that Y[ω] represents the null z,
is equivalent to p(tX) z p(tY). Both π and πG are formally
defined below.

The first condition in Definition 4, that is, “for each z ∈
root(F), there exists a ∈ D such that a z ν(z)”, can be
verified via the query PG1(Q), which is defined as:∧
i∈[`]

(min(Tω
i)→ ∃S1 . . . ∃Sω (p(S1, . . . , Sω)∧

πG((S1)α, . . . , (Sω)α,T1
i , . . . ,T

ω
i)
))
.

The second condition, namely “for each edge (z, w) of F ,
ν(z) w ν(w)”, can be checked via the query PG2(Q):∧
i,j∈[`]

(
(qNull(Tω

i) ∧ qNull(Tω
j) ∧ (Tω

i ≺1 Tω
j))→

πG(T1
i , . . . ,T

ω
i ,T

1
j , . . . ,T

ω
j)
)
.

The third condition, that is, “for each a ∈ h(q) with z =
greatestF (null(a)), either a = ν(z) or ν(z) a”, can be
verified by the query PG3(Q):∧

i∈[n]

∧
j∈[`]

(
sup(Tω

j , tti)→ π(T1
j , . . . ,T

ω
j , tti)

)
.

Finally, the fourth condition, namely “for each a ∈ h(q) with
null(a) = ∅, there exists b ∈ D such that b a”, can be
checked via the query PG4(Q):

∧
i∈[n]

 ∧
j∈[ω]

const(ttji)

→ ∃S1 . . . ∃Sω

(p(S1, . . . , Sω) ∧ π((S1)α, . . . , (Sω)α, tti))) .

Consequently, ProofGenerator(Q) is defined as (PG1(Q)∧
PG2(Q)∧PG3(Q)∧PG4(Q)). To conclude the definition
of qΣ, it remains to define the crucial subqueries π and πG.

The Subqueries π and πG. As said above, π(X ,Y) is equiv-
alent to p(tX) p(tY), where tX and tY are tuples in the
chase represented by X and Y , while πG(X ,Y) means that
p(tX) z p(tY), where Y[ω] represents the null z. Assume
that we have access to an auxiliary subquery πi(X ,Y,T),
which states the following: if T = (?)α, then p(tY) is reach-
able from p(tX) in CG(D,Σ) via some path of length at most
2i; otherwise, if T = Y[ω], then p(tY) is reachable from
p(tX) via a path of length at most 2i that is also generating
for z. Then, the crucial subqueries can be defined as

π(X ,Y) ≡ πλ(X ,Y,T) ∧ sstar(T)
πG(X ,Y) ≡ πλ(X ,Y,T) ∧ (T = Y[ω]),

where 2λ is the maximum size of a path among two atoms
in the proof of q. Recall that, for query answering purposes
under linear rules, it suffices to focus on an initial segment
of the chase graph of depth δ = (n + 1) · (2ω)ω [Calı̀ et
al., 2012a]. Therefore, 2λ 6 δ; hence, for our purposes, it
suffices to set λ = dlog δe. It is crucial for our construction
that λ is polynomial w.r.t. q and Σ, and independent of D.

2996

Let us now proceed with the formal definition of πi. To this
end, we need an effective way to check if a tuple is obtained
from some other tuple during the chase by applying a certain
linear rule. This is achieved via the subquery σ̂(X ,T), where
X is a sequence of tuples (of variables) of length 2ω, which
has the following intuitive meaning: if T = (?)α, then the
tuple in the chase graph represented by X [ω + 1], . . . ,X [2ω]
can be obtained from X [1], . . . ,X [ω] by applying σ; other-
wise, if T = X [2ω], then in addition we need that the null
represented by T is invented in the generated atom — the
formal definition of σ̂ follows.

Assume that σ is a linear rule of the form p(t1, . . . , tω)→
p(tω+1, . . . , t2ω). We define the function ξ : [2ω] → [2ω] in
such a way that, for each i ∈ [2ω]: if ti /∈ {ti+1, . . . , t2ω},
then ξ(i) = i; otherwise, ξ(i) is the smallest j > i such
that ti = tj and ti 6∈ {ti+1, . . . , tj−1}. In words, given the
position i of a variable V occurring in σ, ξ(i) is the next po-
sition (from left-to-right) where the same variable V (if any)
occurs in σ. For example, if σ is the rule p(X1, X1, X2) →
p(X2, X1, X3), we have that ξ(1) = 2, ξ(2) = 5, ξ(3) = 4,
ξ(4) = 4, ξ(5) = 5, ξ(6) = 6.

We proceed by considering the following two cases where
σ contains or not an existentially quantified variable:

- If σ contains an existentially quantified variable, which
implies {tω+1, . . . , t2ω−1} ⊆ {t1, . . . , tω} and t2ω 6∈
{t1, . . . , tω}, then σ̂(X ,T) is defined as
null(X [2ω]) ∧ (sstar(T) ∨ (T = X [2ω])) ∧∧

i∈[2ω−1]

(X [i] = X [ξ(i)]) ∧
∧
i∈[w]

(X [i] 6= X [2ω]).

- If σ does not contain an existentially quantified variable,
then σ̂(X ,T) is defined as

sstar(T) ∧
∧

i∈[2ω−1]

(X [i] = X [ξ(i)]).

We have now all the ingredients to define πi. This is done
inductively as follows: π0(X ,Y,T) is defined as∧

W∈{X ,Y}

∧
W∈W

(const(W) ∨ null(W)) ∧

(
(X = Y) ∨

∨
σ∈Σ

σ̂(XY,T)

)
,

while πi+1(X ,Y,T) is defined as (calligraphic letters, as
usual, denote sequences of α-tuples of variables)

∃Z

 ∧
i∈[ω]

(X [i] ∈ Y → X [i] ∈ Z)∧

∀U∀V∀W ((((U = X) ∧ (V = Z) ∧ sstar(W))∨
((U = Z) ∧ (V = Y) ∧ (W = T)))→ πi(U ,V,W))) .

One may claim that the definition of πi+1(X ,Y,T) can be
simplified by exploiting the query π̂i+1(X ,Y,T) defined as

∃Z∃W

 ∧
i∈[ω]

(X [i] ∈ Y → X [i] ∈ Z)∧

π̂i(X ,Z,W) ∧ sstar(W) ∧ π̂i(Z,Y,T)) ,

with π̂0(X ,Y,T) = π0(X ,Y,T). However, in this case, the
size of π̂λ will be exponential in λ, and thus exponential in
ω. The construction of qΣ is now complete, and the next key
result can be established:

Proposition 7 The following hold:

1. DΣ is constructible in O(1) time, independently of q;
2. qΣ ∈ FO, and is constructible in polynomial time, inde-

pendently of D; and
3. DΣ |= qΣ iff there exists a proof generator for q w.r.t. D

and Σ.

Note that the actual size of qΣ is O(|Σ|α2n5ω5). Clearly,
Proposition 7 and Lemma 5 imply Theorem 6 whenQ = FO.

4.2 Non-Recursive Datalog Rewriting
Let us now focus on the case where Q = NDL. To avoid no-
tational clutter, in what follows we will refer to the database
DΣ and the FO-query qΣ defined above by DFO

Σ and qFOΣ ,
respectively. Starting from qFOΣ , we can construct in polyno-
mial time (independently of D) a query qΣ ∈ NDL such that
DFO

Σ |= qFOΣ iff DΣ |= qΣ, where DΣ is defined as

DFO
Σ ∪ {neq(c, d) | c, d ∈ dom(DFO

Σ) and c 6= d},

which in turn implies Theorem 6 when Q = NDL. Let us
briefly explain how qΣ is constructed.

It is interesting to observe that qFOΣ can “almost” be trans-
formed into a positive existential first-order query. To achieve
this we need to overcome two difficulties: (1) π(X ,Y) and
πG(X ,Y) are defined via a formula that involves univer-
sal quantification; and (2) qFOΣ uses negation. To overcome
difficulty (1), let us assume, for the moment, that we have
access to the auxiliary predicates R and RG (R stands for
reachable) that store all the pairs (X ,Y) that make the sub-
queries π(X ,Y) and πG(X ,Y), respectively, true. Then, in
qFOΣ , we replace π(X ,Y) and πG(X ,Y) with the atomic for-
mula R(X ,Y) and RG(X ,Y), respectively; this gives us the
query [qFOΣ]R. It is easy to verify that [qFOΣ]R can be trans-
formed in polynomial time into negation normal form, where
each negated atom is of the form ¬(X = Y) or ¬bit(X).
Since DΣ gives us access to the relation neq , we can re-
place ¬(X = Y) with neq(X,Y). Moreover, we can replace
¬bit(X) with the equivalent formula (dom(X) ∨ star(X)).
After applying the above replacements, we obtain the positive
existential query [qFOΣ]+R .

It is well-known that each positive existential query can be
effectively rewritten as a non-recursive Datalog query. Thus,
[qFOΣ]+R can be transformed in polynomial time into an NDL-
query [qΣ]R. In order to obtained the desired NDL-query qΣ,
it remains to show that the crucial predicates R and RG can be
defined via a non-recursive Datalog query of polynomial size.
Assuming that we have access to the predicate Rλ that holds
all the triples (X ,Y,T) that make the subquery πλ(X ,Y,T)
true, the desired predicates are defined via the rules

Rλ(X ,Y,W), sstar(W) → R(X ,Y)
Rλ(X ,Y,Y[ω]) → RG(X ,Y).

Finally, the predicate Rλ can be defined via the polynomially
sized NDL-query obtained after transforming the “almost”

2997

positive existential FO-query π̂λ into an exponentially more
succinct non-recursive Datalog query — recall that π̂λ is the
naive implementation of πλ via a query of exponential size
(given at the end of Section 4.1).

It is interesting to observe that, when the target query lan-
guage is FO, the database compilation phase is feasible in
constant time, while for NDL rewritings it takes polynomial
time. This is because FO-queries are powerful enough to ex-
press inequalities, which is not the case for NDL-queries.

5 Dropping Existential Quantifiers
We proceed to give a positive answer to our second research
question regarding the class of full linear rules and the poly-
nomial pure approach. Recall that full linear rules are linear
rules without existential quantification, and the correspond-
ing class is denoted FLIN. We show that:

Theorem 8 FLIN is polynomially Q-rewritable, where Q ∈
{FO,NDL}.

The above result can be shown via simplified versions of
the rewriting procedures presented above. Fix a BCQ q, and
a set Σ ∈ FLIN, under the same assumptions as in Section 4.
We first focus on the case where Q = FO, and we are go-
ing to construct an FO-query qFOΣ . Since Σ is full, for ev-
ery database D, chase(D,Σ) does not contain null values.
Therefore, qFOΣ can be obtained from the FO-query qΣ de-
fined in Section 4.1, by keeping only PG4(Q), which checks
if “for each a ∈ h(q) with null(a) = ∅, there exists b ∈ D
such that b a”. Since there are no nulls in the chase, we
do not need anymore to represent the terms in the chase via
α-tuples. Thus, Q = Z1, . . . , Z`, and qFOΣ is defined as

∃Q

 ∧
i∈[n]

(∃S (p(S) ∧ πλ(S, ti)))

 ,

where λ = dlogωωe. The crucial subquery πλ is defined
inductively as follows: π0(X,Y) is

∧
W∈{X,Y},i∈[ω]

dom(W[i]) ∧

(
(X = Y) ∨

∨
σ∈Σ

σ̂(XY)

)
,

while πi+1(X,Y) is

∃Z (∀U∀V ((((U = X) ∧ (V = Z))∨
((U = Z) ∧ (V = Y)))→ πi(U,V))) .

The actual size of the obtained query is O(|Σ|nω2 logω).
Having the first-order query qFOΣ in place, it is easy to con-
struct an equivalent NDL-query qNDL

Σ , in the same way as
discussed in Section 4.2, and Theorem 8 follows.

6 Discussion and Future Work
The results of this work are, for the moment, of theoretical na-
ture and we do not claim that they will directly lead to better
practical algorithms. We believe that a smart implementation
of the proposed techniques can lead to more efficient rewrit-
ing procedures; this will be the subject of future research. We

are also planning to optimize the proposed rewriting algo-
rithms, with the aim of constructing queries of optimal size.
For example, after a more refined analysis, one can show that
the bound α can be reduced from polynomial to logarithmic.

Acknowledgements. G. Gottlob was supported by the EP-
SRC Programme Grant EP/M025268/ “VADA: Value Added
Data Systems – Principles and Architecture”. M. Manna
was supported by the MIUR project “SI-LAB BA2KNOW –
Business Analitycs to Know”, and by Regione Calabria, pro-
gramme POR Calabria FESR 2007-2013, projects “ITravel
PLUS” and “KnowRex: Un sistema per il riconoscimento e
l’estrazione di conoscenza”. A. Pieris was supported by the
Austrian Science Fund (FWF): P25207-N23 and Y698.

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Calı̀ et al., 2012a] Andrea Calı̀, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem.,
14:57–83, 2012.

[Calı̀ et al., 2012b] Andrea Calı̀, Georg Gottlob, and An-
dreas Pieris. Towards more expressive ontology lan-
guages: The query answering problem. Artif. Intell.,
193:87–128, 2012.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tom. Reasoning, 39(3):385–429, 2007.

[Gottlob et al., 2014a] Georg Gottlob, Stanislav Kikot, Ro-
man Kontchakov, Vladimir V. Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of
query rewriting in ontology-based data access. Artif. In-
tell., 213:42–59, 2014.

[Gottlob et al., 2014b] Georg Gottlob, Marco Manna, and
Andreas Pieris. Polynomial combined rewritings for ex-
istential rules. In KR, 2014.

[Kikot et al., 2011] Stanislav Kikot, Roman Kontchakov,
and Michael Zakharyaschev. Polynomial conjunctive
query rewriting under unary inclusion dependencies. In
RR, pages 124–138, 2011.

[Kontchakov et al., 2010] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in DL-Lite. In
KR, 2010.

[Kontchakov et al., 2011] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In
IJCAI, pages 2656–2661, 2011.

[Lutz et al., 2009] Carsten Lutz, David Toman, and Frank
Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In IJCAI,
pages 2070–2075, 2009.

2998

