Query Understanding through Knowledge-Based Conceptualization

Zhongyuan Wang, Kejun Zhao
Renmin University of China
Beijing, China
{kejunzhao, mengxf}@ruc.edu.cn

Haixun Wang
Microsoft Research
Beijing, China
zhy.wang@microsoft.com

Xiaofeng Meng, Ji-Rong Wen
Google Research
Mountain View, CA, USA
haixun@google.com
jirong.wen@gmail.com

Abstract
The goal of query conceptualization is to map instances in a query to concepts defined in a certain ontology or knowledge base. Queries usually do not observe the syntax of a written language, nor do they contain enough signals for statistical inference. However, the available context, i.e., the verbs related to the instances, the adjectives and attributes of the instances, do provide valuable clues to understand instances. In this paper, we first mine a variety of relations among terms from a large web corpus and map them to related concepts using a probabilistic knowledge base. Then, for a given query, we conceptualize terms in the query using a random walk based iterative algorithm. Finally, we examine our method on real data and compare it to representative previous methods. The experimental results show that our method achieves higher accuracy and efficiency in query conceptualization.

1 Introduction
We are concerned with the problem of conceptualizing short text such as search queries. Specifically, given a query, we are interested in inferring the most likely concepts for terms in the query. Consider the example query watch harry potter. The term harry potter may refer to a variety of concepts including book, movie, and character. In this context, its most likely concept is movie. Short text conceptualization is important to a wide range of applications including text classification [Wang et al., 2014a], head modifier detection [Wang et al., 2014b], web table understanding [Wang et al., 2012], query task identification [Hua et al., 2013], etc.

There are many challenges within this problem. A document usually contains rich context which is crucial to lexical and syntactic disambiguation. For short text, however, neither parsing nor topic modeling works well because there are simply not enough signals in the input. To solve the problem, we must i) derive more signals from the input by combining it with external knowledge bases, and ii) devise a framework that enables the signals to fully interplay, so that we have more power to disambiguate and understand a short text.

- Deriving signals from the input and external knowledge bases. Humans usually do not have problems understanding short texts that are noisy, sparse, and ambiguous. It is, however, very difficult for machines. This is not surprising as most existing work treat text as bags of words [Blei et al., 2003; Boyd-Graber et al., 2007], and/or use statistical topic models [Phan et al., 2008; Kim et al., 2013] for sense disambiguation [Navigli, 2009; Moro et al., 2014]. But the signals in the input might be too subtle for bag-of-words or co-occurrence based statistical approaches to capture. For example, the word premiere in premiere Lincoln is an important signal indicating Lincoln is a movie, and the word watch in watch harry potter indicates harry potter is a movie or a DVD (instead of a book). However, such lexical knowledge, i.e., premiere is an important attribute for a movie and watch usually takes a movie as a direct object, is not explicit in the input. We need extra knowledge bases to fill the gap.

- Building a holistic model for short text understanding. Existing natural language processing techniques adopt a multi-tiered model. For example, POS tagging is performed first, then chunking, parsing, entity resolution, etc. Signals flow from lower tiers to upper tiers, but not in the other direction. For short texts, we may need a new model. Take the query watch harry potter as an example. Here, watch is a verb because harry potter is a movie, and harry potter is a movie because watch is a verb. Thus, deciding the POS tag of a word actually requires signals from entity resolution, which happens at a much later tier in the NLP stack. Recent work on short text understanding [Hua et al., 2015] has put more emphasis on using signals from lexical knowledge bases to assist query understanding, but it still uses a multi-tiered model that divides the task into three steps: text segmentation, word type detection, and instance disambiguation. A holistic model that allows all available signals to fully interplay in various subtasks will enable better understanding of short texts.

In this paper, we build a semantic network to enable us to derive more signals from the input. The knowledge we are interested in is knowledge of the language, or knowledge about how words interact with each other in a language (instead of encyclopedic knowledge). Such knowledge is important because the input often contains words that are not instances, but
Search queries contain many non-instance words. Figure 1 shows the percentage of queries that contain frequent non-instance words. In certain cases, these words actually represent instances (e.g., in watch and jewelry, watch is an instance), but in most cases they provide important signal to help disambiguate instances in the query.

In the rest of the paper, we address the following two challenges to understand short texts.

- We use a knowledge base that maps instances to their concepts, and build a knowledge base that maps non-instance words, including verbs and adjectives, to concepts. For example, watch maps to movie. But most words play more than one role: The word watch may be just a noun that maps to the concept wrist watch. One may think that an important signal for their role detection is POS tagging. Unfortunately, POS tagging does not perform well for queries due to their lack of linguistic structure. Table 2 shows some examples based on the Stanford Parser [Socher et al., 2013]. Thus, we need additional signals to help make the decision. In this paper, we derive semantic signals from a large scale, data driven semantic network [Wu et al., 2012], and also concept-level co-occurrence data, to solve this problem.

- Once we have access to a lot of semantic signals, we need a model that guides us toward a coherent understanding of the short text. We break the boundary between the tiers in natural language processing, and adopt a holistic framework. Specifically, we organize terms, concepts, and all relevant signals into a graph, and use an iterative random walk approach to reach a coherent understanding of the input.

The rest of the paper is organized as follows: Section 2 introduces some preliminary background, including that of a knowledge base we use in our work. Section 3 explains how we mine relationships between non-instance words and concepts. Section 4 presents our model for query conceptualization. Experimental studies are discussed in Section 5 and we conclude in Section 6.

2 Preliminary

Humans can understand sparse, noisy, and ambiguous input such as short texts because they have knowledge of the language and the world. Many knowledge bases have emerged in recent years, including DBpedia\(^1\), freebase [Bollacker et al., 2008], Yago [Suchanek et al., 2007], etc. Most of them are encyclopedic knowledge bases, containing facts such as Barack Obama’s birthday and birthplace. They are essential for answering questions, but not for understanding them. To understand a question, we need knowledge of the language, for example, the knowledge that birthplace and birthday are properties of a person; and lexical knowledge bases are constructed for this purpose. In our work, we use a probabilistic lexical knowledge base known as Probase\(^2\) [Wu et al., 2012], but our techniques can be applied to other knowledge bases such as Yago.

Concepts

Probase contains millions of terms. Each term is a concept, an instance, or both. It also contains two major relationships between the terms: the isA relationship (e.g., Barack Obama isA President) and the isAttributeOf relationship (e.g., population isAttributeOf country). For an isA relationship between an instance \(e\) and a concept \(c\), we can calculate the typicality of the concept given the instance as follows:

\[
P^*(c|e) = \frac{n(e, c)}{\sum_{c_i} n(e, c_i)}
\]

where \(n(e, c)\) is the frequency we observe the isA relationship \((e, c)\) in a corpus. Typicality scores are critical for conceptualization or generalization.

Concept Clusters

As we mentioned, Probase contains millions of concepts, and a term may generalize into many concepts. For example, tiger maps to many concepts such as animal, wild animal, exotic animal, jungle animal, etc. Dimensionality reduction of the concept space is necessary to reduce computation complexity and to create more meaningful similarity functions, both of which are essential for inference.

We adopt a K-Medoids clustering algorithm [Li et al., 2013] to group concepts into 5,000 disjoint concept clusters. For example, individual concepts such as animal, wild animal,
exotic animal, jungle animal, etc. are all grouped into the concept cluster animal. Thus, instead of conceptualizing an instance to individual concepts, we can conceptualize it to concept clusters. Specifically, the probability that an instance e maps to a concept cluster c is defined as

$$P(c|e) = \sum_{c^* \in c} P^*(c^*|e)$$ \hspace{1cm} (2)

In the rest of the paper, we use concept to denote a concept cluster.

Attributes

We treat attributes as the first class citizen for short text processing. Probase contains the isAttributeOf relationship, which is derived from the following syntactic pattern:

the (attrib) of (the/a/an) (term) (is/are/was/were/...)

Here, (attrib) denotes the attribute to be extracted, (term) denotes either a concept (e.g., country) or an instance (e.g., Italy). As an example, from the president of a country, president is derived as an attribute of the concept country. Likewise, from the capital of China, capital is derived as an attribute of China. Then, because China belongs to the concept country, capital is also associated with country. Probase uses a RankSVM model to combine attributes derived from concepts and instances [Lee et al., 2013]. In other words, it implements a function f to compute the following typicality score for attributes:

$$P(c|a) = f(n_{c^*,a}, n_{e_1,a}, \ldots, n_{e_k,a})$$ \hspace{1cm} (3)

where $n_{c^*,a}$ denotes how frequently a is derived as an attribute for a raw concept c^* and $n_{e_i,a}$ denotes how frequently a is derived as an attribute of e_i, which is an instance of concept c^*. We finally derive $P(c|a)$ by aggregating raw concepts into concept clusters.

Framework and Notation

Our framework consists of two parts: an offline part, which mines relationships between non-instance words and concepts, and an online part, which infers the concepts for terms in a query. The notions used in this paper are given in Table 3. A query contains one or multiple terms, and a term is a multi-word expression that can be a verb, an adjective, an attribute, or an instance. We use t to denote a term, and we use $P(z|t)$ to denote the type distribution of t, where type distribution means the probability that the term is a verb, an adjective, an attribute, or an instance.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>a concept (cluster)</td>
</tr>
<tr>
<td>c^*</td>
<td>an individual concept in Probase</td>
</tr>
<tr>
<td>e</td>
<td>an instance</td>
</tr>
<tr>
<td>f</td>
<td>a term (can be an instance, or a non-instance term)</td>
</tr>
<tr>
<td>term type</td>
<td>any of {verb, adjective, attribute, instance}</td>
</tr>
<tr>
<td>z</td>
<td>a random variable that denotes the term type</td>
</tr>
<tr>
<td>$P(t</td>
<td>c,z)$</td>
</tr>
<tr>
<td>$P(c</td>
<td>t,z)$</td>
</tr>
</tbody>
</table>

Table 3: Basic Notions Used in this Paper

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td>0.1033</td>
</tr>
<tr>
<td>watch</td>
<td>0.8374</td>
</tr>
<tr>
<td>pink</td>
<td>0.0041</td>
</tr>
<tr>
<td>harry potter</td>
<td>0</td>
</tr>
<tr>
<td>potter</td>
<td>0.8389</td>
</tr>
<tr>
<td>watch</td>
<td>0.0577</td>
</tr>
<tr>
<td>book</td>
<td>0.6830</td>
</tr>
<tr>
<td>potter</td>
<td>0.0029</td>
</tr>
<tr>
<td>watch</td>
<td>0.3101</td>
</tr>
</tbody>
</table>

Table 4: Type distribution of a term $P(z|t)$

- $P(z|t)$: For a term t, $P(z|t)$ denotes the prior probability that t is of a particular type z. For instance, for the word watch that appears in web documents, we find that it is a verb with probability $P(verb|watch) = 0.8374$.
- $P(c|t, z)$: For a term t of type z, $P(c|t, z)$ denotes the probability of the concept that the term is associated with. For example, $P(movie|watch, verb)$ denotes how likely the verb watch is related to the concept movie.

In the rest of this section, we describe how we obtain these distributions. We use these distributions for query understanding in Sec 4.

Parsing

To obtain the probabilities mentioned above, we first use an NLP parser to parse a large web corpus of billions of documents. Specifically, we use the Stanford Parser to obtain POS taggings and dependency relationships between tokens in the texts. The POS taggings reveal whether a token is an adjective or a verb, and the dependency between tokens, together with Probase as a lexicon, will be used to derive the dependency between adjectives/verbs and instances/concepts. We will describe more details in later part of this section.

Deriving $P(z|t)$

We compute $P(z|t)$ as follows:

$$P(z|t) = \frac{n(t,z)}{n(t)}$$ \hspace{1cm} (4)

where $n(t,z)$ is the frequency term t appears as type z in the corpus, and $n(t)$ is the total frequency of term t. Table 4 shows some results.

Deriving $P(c|t, z)$

Since z can be instance, attribute, verb, or adjective, we discuss each case separately.
When z is instance, $P(c|t, z = \text{instance})$ is reduced to $P(c|e)$, which can be derived from Probase using Eq. 2, as follows:

$$P(c|t, z = \text{instance}) = P(c|e) \quad (5)$$

Case 2: z is attribute.

When z is attribute, $P(c|t, z = \text{instance})$ is reduced to $P(c|a)$, which can be derived from Probase using Eq. 3, as follows:

$$P(c|t, z = \text{attribute}) = P(c|a) \quad (6)$$

Case 3: z is verb or adjective.

We first find the relationships between verbs/adjectives and instances, and then use instances as a bridge, as shown in Fig. 2, to derive relationships between verbs/adjectives and concepts.

Specifically, we detect co-occurrence relationships between verbs/adjectives and instances, and then use instances as a bridge, as shown in Fig. 2, to derive relationships between verbs/adjectives and concepts.

We assign a transition probability $P(c|t)$ to an edge from a non-concept term t (instance, attribute, verb, adjective) to a concept c:

$$P(c|t) = \sum_{z} P(c|t, z) \times P(z|t) \quad (10)$$

- We assign a transition probability $P(c_2|c_1)$ to an edge between two concepts c_1 and c_2. The probability is derived by aggregating the co-occurrences between all (unambiguous) instances of the two concepts.

$$P(c_2|c_1) = \frac{\sum_{e_i \in c_1, e_j \in c_2} n(e_i, e_j)}{\sum_{e_i \in c_1} \sum_{e_j \in c_2} n(e_i, e_j)} \quad (11)$$

The denominator normalizes the relatedness. In practice, we only take the top 25 related concepts for each concept ($P(c_2|c_1) = 0$ if c_2 is not among the top 25 related concepts of c_1).
4 Understanding Queries

In this section, we discuss how to annotate terms in a query with their proper concepts. For example, for query apple ipad, we want to annotate apple with company or brand, and ipad with device or product.

Our Approach

As described, the semantic network consists of terms, concepts, and their relationships (Figure 3). In particular, each term maps to a set of concepts. For a query q, the terms in q evoke a subgraph in the semantic network. For any term t in q, our goal is to find $\arg \max_c p(c|t, q)$. That is, we want to rank the concepts that t maps to in the given context of q.

Consider the query watch harry potter and Fig. 3, which contains the subgraph evoked by the query. Here, movie is a better concept than book for harry potter because movie can be reached by both watch and harry potter. A random walk based approach may be appropriate here to find the preferred concepts. However, traditional random walk methods are for simple networks where nodes, as well as edges, are homogeneous. In our case, the semantic network is not homogeneous. For example, watch can be a verb or an instance. In watch harry potter, the concept movie is related to both the verb sense of watch and the movie sense of harry potter. Once we are more certain that watch is a verb, we become more confident that harry potter refers to a movie instead of a book.

To address this problem, we use multiple rounds of random walks to find the most likely concepts. Within each round, we use our current belief of term-to-type and term-to-concept mappings to weight the candidate concepts. Between two rounds, we update our belief based on the new weights of the concepts. After the process converges, we obtain the final results.

Algorithm

The algorithm has 3 components. First, we segment the query into a set of candidate terms. Second, we create a graph out of the terms and their relationships. Finally, we use an iterative process to find the most likely mapping from terms to concepts.

Query Segmentation

We segment a query into a set of terms $T = \{t_1, t_2, \ldots\}$. We use the Probase as our lexicon and identify all occurrences of terms in the query. For now, we only consider maximum terms, that is, terms not completely contained by other terms. For example, the query angry bird will be parsed into a single term angry bird, although angry and bird also belong to the lexicon. In some cases, the resulting terms may overlap. For example, for new york times square, we get two possible segmentations: 1) new york times square, and 2) new york times square. We consider both segmentations valid, and all of the terms will be used to construct the graph, as shown in Fig. 4(a). The most possible segmentation will be decided in the same process as we decide the concepts of the terms. In this case, since new york times square reinforce concepts such as area, location, and attraction, while new york times square do not reinforce any concrete concept, the former segmentation will be chosen at last. In query segmentation, we ignore terms such as prepositions (e.g., of, for, etc.) These terms provide useful linguistic clues to understand term dependency. However, this paper focuses on labeling terms by their concepts. Readers interested in the dependency structure of the query may refer to [Hua et al., 2015].

Graph Construction

The set of terms we obtain after segmentation evoke a subgraph of the semantic network we have constructed. More specifically, each term $t \in T$ connects to its concepts in the semantic network. The subgraph we are interested in is formed by the terms and their concepts. Figure 4 shows the subgraphs evoked by queries new york times square and cheap disney watch.

Random Walks

We perform multiple random walks to find the most likely concepts for each term. Each random walk consists of multiple iterations.

In the first random walk, let E denote the vector of the edge weights, and let V^n denote the vector of node weights in the n-th iteration of the random walk. In other words, the edge weights do not change between iterations, while the node weights change. Specifically, the weight of edge e in the first random walk is:

$$E[e] = \begin{cases} P(c|t) & e : t \rightarrow c \\ P(c_2|c_1) & e : c_1 \rightarrow c_2 \end{cases} \quad (12)$$

where $P(c|t)$ and $P(c_2|c_1)$ are derived by Eq. 10 and Eq. 11 respectively. The weight of node v at iteration 0 is ($|T|$ is the number of terms):

$$V^0[v] = \begin{cases} 1/|T| & v \text{ is a term} \\ 0 & v \text{ is a concept} \end{cases} \quad (13)$$

We use random walk with restart [Sun et al., 2005] to update the weights of the nodes. Specifically, we have

$$V^n = (1 - \alpha)E' \times V^{n-1} + \alpha V^0 \quad (14)$$

where E' is the matrix form of E defined by Eq. 12. We perform the random walk for several iterations (as 2 iterations cover all relationships among terms and concepts in the evoked graph, there is no need to have many iterations).
Table 5: Non-instance Terms Conceptualization

<table>
<thead>
<tr>
<th>Term</th>
<th>watch</th>
<th>book</th>
<th>pink</th>
<th>orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>GBIA</td>
<td>83.6%</td>
<td>89.7%</td>
<td>86.9%</td>
</tr>
<tr>
<td></td>
<td>NLP</td>
<td>60.9%</td>
<td>75%</td>
<td>61.7%</td>
</tr>
<tr>
<td>Recall</td>
<td>GBIA</td>
<td>83.3%</td>
<td>83.3%</td>
<td>80.7%</td>
</tr>
<tr>
<td></td>
<td>NLP</td>
<td>75.1%</td>
<td>57.1%</td>
<td>65.9%</td>
</tr>
</tbody>
</table>

After the current random walk, we obtain a new vector of node weights. For the example in Fig. 4(b), the weight of product becomes larger after the random walk. We then prepare the next random walk by creating a new vector of product node weights. For the example in Fig. 4(b), the weight of product becomes larger. Hence, we assign more weight to watch-to-product mapping and less weight to watch-to-site mapping.

With the new node weight vector and the new edge weight vector, we start the next random walk. The process is repeated till convergence. We argue that our algorithm converges as it is known that a standard random walk with restart converges [Fujjwara et al., 2012]. Specifically, the convergence of Eq 14 is guaranteed when E is constant [Strang, 2003]. In our case, since E and V are non-negative and $E \propto V^n$, it follows that the entire process will converge.

At last, we annotate concepts of a term in the given query by normalizing its edges’ weights:

$$E[e] \leftarrow (1 - \beta) \times V^n[e] + \beta \times E[e] \quad e : t \to c$$

Intuitively, in Fig. 4(b), because product can be reached by cheap and disney during the random walk, the weight of product becomes larger. Hence, we assign more weight to watch-to-product mapping and less weight to watch-to-site mapping.

Table 6: Lexical Relationships of Non-instance Terms

<table>
<thead>
<tr>
<th>term (verb)</th>
<th>dangerous (adj.)</th>
<th>population (attribute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>passage</td>
<td>crime</td>
<td>non-financial factor</td>
</tr>
<tr>
<td>anime</td>
<td>emergency</td>
<td>city</td>
</tr>
<tr>
<td>book</td>
<td>disaster</td>
<td>outlying area</td>
</tr>
<tr>
<td>novel</td>
<td>law</td>
<td>school</td>
</tr>
<tr>
<td>magazine</td>
<td>disease</td>
<td>mammal</td>
</tr>
<tr>
<td>writing</td>
<td>snake</td>
<td>insect</td>
</tr>
<tr>
<td>blogs</td>
<td>therapy</td>
<td>foreigner</td>
</tr>
<tr>
<td>fairytales/story</td>
<td>drug</td>
<td>threat</td>
</tr>
<tr>
<td>memoir</td>
<td>sound</td>
<td>organisms</td>
</tr>
</tbody>
</table>

5 Experiment

We create two labeled datasets out of randomly selected search queries. The first consists of 600 queries about 6 ambiguous terms: watch, book, pink, orange, population, birthday (100 queries for each term). The second also consists of 600 queries, among which 200 contain ambiguous terms apple or fox and the other 400 are totally random. We ask 12 colleagues to label the 1200 queries. It is easy to label the type of a term in each query. For concept labels, we run our algorithms first, and ask our volunteers to rank the top-N concepts for each term. Specifically, a concept is assigned a score $rel_i = 1/2^{1/4}$ if it is considered a correct/related/not-sure/false label. We use the precision of Top-N concepts [Lee et al., 2013] for evaluation, i.e., $Precision@N = \frac{\sum_{i=1}^{N} rel_i}{N}$.

We evaluate our algorithm (denoted as GBIA or Graph-Based Iterative Algorithm) in several aspects. First we study precision and recall of type detection (i.e., detecting whether a term is an instance, attribute, verb, or adjective) on the 1200 queries. We compare them with labels given by the Stanford parser (denoted as NLP). Table 5 shows the outcome, and our method has a clear advantage. As mentioned previously, our type detection method is based on lexical relationships mined from the web corpus. We also manually evaluate the quality of the mined relationships by inspecting the lexical relationships of several non-instance terms. We use Stanford Parser to parse 400 million sentences, which gives us POS taggings and dependency relationships. Then, we use Eq 6, 8, and 9 to rank concepts for each non-instance term. Table 6 shows the top 10 concepts generated for the chosen non-instance terms. They agree with manual results.

Next, we evaluate term conceptualization. We compare our method with the following 5 methods (2 state-of-the-art approaches and 3 variants of our method).

- **IJCAI11** [Song et al., 2011]. It groups instances by their conceptual similarity, and uses simple Bayesian analysis to conceptualize each group.
- **LDA** [Kim et al., 2013]. It combines LDA (which mostly models co-occurrence relationships) and Probease (which mostly models isA relationships) for short text conceptualization.
- **RW** (random walk). This is a variant of our method. It is a pure random walk approach without adjusting the weights on edges during the whole process.
- **GBIA-NA**. This is a variant of our method. It omits all non-instance terms in the queries, i.e., if a term appears in our collected non-instance term list, we remove it from the conceptual graph.
- **GBIA-AE**. This is a variant of our method. It treats all terms in Probase instance list as instances, i.e., if a verb/adjensive is also an instance in Probease, we initialize its type to be an instance only.

Figure 5 shows the overall precision of the top-2 concepts. The overall precision is calculated as $\frac{3}{2} Precision@1 + \frac{1}{2} Precision@2$. We can see that our method achieves the highest precision on both datasets. Table 7 shows some examples of the results.

We also examine the number of iterations and the time requirement of our method. Figure 6 shows that the efficiency
Table 7: Query Conceptualization Example

<table>
<thead>
<tr>
<th>Query</th>
<th>Non-instance</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>watch harry youtube</td>
<td>watch:verb</td>
<td>harry:person,author</td>
</tr>
<tr>
<td>buy watch and jewellery</td>
<td>buy:verb</td>
<td>watch:product,accessory</td>
</tr>
<tr>
<td>how to bake an apple</td>
<td>bake:verb</td>
<td>apple:fruit,food</td>
</tr>
<tr>
<td>tim cook apple ceo</td>
<td>ceo:attribute</td>
<td>tim:cook:executive,leader</td>
</tr>
<tr>
<td>yummy orange</td>
<td>yummy:adj</td>
<td>orange:fruit,food</td>
</tr>
<tr>
<td>orange t shirt dress</td>
<td>orange:adj</td>
<td>dress:garment,product</td>
</tr>
</tbody>
</table>

Figure 6: Algorithm Efficiency

of our approach is acceptable for online search, with the Y-axis representing the percentage of queries in the 1200 queries.

6 Conclusion

Query understanding is a challenging task. We have built a lexical knowledge base to discover fine-grained semantic signals from the input, and introduce a new graph-based iterative framework to determine the type as well as the concepts of the terms in the query. Experiments on real data have shown that our method achieved great improvement over previous methods for query understanding.

7 Acknowledgments

This work was partially supported by the National Key Basic Research Program (973 Program) of China under grant No. 2014CB340403, the National 863 High-tech Program (No. 2013AA013204), the Natural Science Foundation of China (No. 61379050, 91224008), and the Fundamental Research Funds for the Central Universities & the Research Funds of Renmin University of China.

References

