Characterizing Causal Action Theories and Their Implementations in Answer Set Programming: Action Languages B, C and Beyond∗

Haodi Zhang and Fangzhen Lin
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Clearwater Bay, Kowloon, Hong Kong

Abstract
We consider a simple language for writing causal action theories, and postulate several properties for the state transition models of these theories. We then consider some possible embeddings of these causal action theories in some other action formalisms, and their implementations in logic programs with answer set semantics. In particular, we propose to consider what we call permissible translations from these causal action theories to logic programs. We identify two sets of properties, and prove that for each set, there is only one permissible translation, under strong equivalence, that can satisfy all properties in the set. As it turns out, for one set, the unique permissible translation is essentially the same as Balduccini and Gelfond’s translation from Gelfond and Lifschitz’s action language B to logic programs. For the other, it is essentially the same as Lifschitz and Turner’s translation from the action language C to logic programs. This work provides a new perspective on understanding, evaluating and comparing action languages by using sets of properties instead of examples. It will be interesting to see if other action formalisms can be similarly characterized, and whether new action formalisms can be defined using different sets of properties.

1 Introduction
Formal reasoning about action has been a central topic in logic-based AI for a long time, and motivated much of the early work on nonmonotonic logics. The main difficulties have been the frame and the ramification problems. Current consensus in the community is that to solve the ramification problem, a notion of causality is needed. As a result, there has been much work on causal action theories (e.g. [Lifschitz, 1987; Lin, 1995; McCain and Turner, 1995; Baral, 1995; Thielser, 1997; Lifschitz, 1997; Turner, 1999; Gelfond and Lifschitz, 1998; Lin, 2003; Herzig and Varzinczak, 2007; Lee et al., 2013]), and a variety of languages and semantics have been proposed. These different approaches basically all agree when the set of causal rules is stratified, and in this case yields a complete action theory that can be represented, for example, by a set of successor state axioms. However, when there are cycles in the rules, it is not always clear how these rules are going to be represented according to these different approaches, and what the correct results are supposed to be. For instance, do we allow cyclic rules to produce indeterminate effects on actions?

This motivated us to do a computer experiment that would systematically enumerate all possible causal theories in a small language, and look at their desirable models. As it turned out, what counts as a desirable model depends on what properties we want to have about causal theories. This led us to consider various properties of transition models of causal theories. We then consider how these various properties fit into some existing action languages that allow static causal rules. To make the comparisons systematic, and also for computational reasons, we consider what we call permissible translations of our causal action theories to logic programs under the answer set semantics [Gelfond and Lifschitz, 1988; 1991]. Specifically, given a set of properties on the transition models, we consider all possible permissible translations from our causal theories to logic programs so that the answer sets of these programs, when mapped back to the transition models of the causal theories, will satisfy all properties in the set. In this paper, we identify two such sets of properties. For both of them, our computer experiment shows that when there are at most three fluents in the language, the permissible translations are unique up to a notion of strong equivalence. The general case is proved by induction with the three fluent language as the base case.

Furthermore, for one set of properties, the translation is essentially the same as Balduccini and Gelfond’s translation from Gelfond and Lifschitz’s action language B to logic programs. For the other, the translation is essentially the same as Lifschitz and Turner’s translation from the action language C to logic programs. These results are significant in that they provide a new perspective on understanding, evaluating and comparing action languages by using sets of properties instead of examples. It is possible that other action languages can be similarly characterized, and new action languages defined using different sets of properties.

The rest of the paper is organized as follows. In Section

∗This work was supported in part by HK RGC under GRF 616013.
2 we formally introduce the syntax of the causal action theories that we use in this work. Next we list some reasonable properties that we expect the semantics of the causal action theories to satisfy in Section 3. Then in Section 4 we consider some straightforward mappings of our theories to some existing formalisms such as the action languages B [Gelfond and Lifschitz, 1999] and C [Giunchiglia and Lifschitz, 1998], and the situation calculus. In Section 5 we consider the problem of mapping causal action theories to logic programs under the answer set semantics, define the notion of permissible translations, and give our main results. In Section 6 we discuss some related work, and finally in Section 7 we conclude the paper.

2 Simple causal action theories

We assume a finite set \(\mathcal{F} \) of propositional atoms called fluents. We also assume two distinguished symbols "\(\top \)" for tautology, and "\(\bot \)" for contradiction. A fluent literal is either \(f \) or \(\neg f \) where \(f \in \mathcal{F} \). So far in work on causal action theory, the focus is on the formalization of the effects of primitive actions, and how the causal rules are used in this formalization. The actions are assumed to be independent, in the sense that the effects of one action are independent of the effects of any other actions. So to make our formalism as simple and to the point as possible, we assume that there is just one unnamed action in our language, and when we talk about the effect of an action, we refer to the effect of this implicitly assumed, unnamed action.

Syntactically, a causal action theory is a pair \((S,D)\), where \(S \) is a set of static causal rules, and \(D \) a set of dynamic causal rules. Both static and dynamic causal rules are pairs of the form \((l,G)\), where \(l \) is a fluent literal, and \(G \) a set of fluent literals. As a static causal rule, \((l,G)\) means that in every situation, whenever all fluent literals in \(G \) hold, \(l \) is caused to be true. As a dynamic causal rule, it means that in every situation where all fluent literals in \(G \) hold, the action is successfully executed, then \(l \) will be true in the new situation. Thus our dynamic causal rules are essentially direct action effect axioms. Notice that in the dynamic causal rules, action argument is omitted here as we have assumed that there is just one action. In the following, we call \(l \) the head, and \(G \) the premise of the static or dynamic causal rule. We assume that \(G \) is consistent, i.e. it does not contain both \(f \) and \(\neg f \), and does not contain \(\bot \). We define a premise \(G \) to be a set of fluent literals because the order of fluent literals in the premise does not matter. However, often we write \(G \) as a conjunction of fluent literals in it. For instance, both \(f_1 \land f_2 \) and \(f_2 \land f_1 \) denote the same premise \(\{f_1,f_2\}\). In particular, the empty set \(\emptyset \) is denoted by \(\top \).

Semantically, a causal action theory specifies a set of situations. A transition is a pair \((s,s')\), where both \(s \) and \(s' \) are states, which are sets of fluents. A state \(s \) can be considered a truth assignment such that a fluent \(f \) is true in \(s \) iff \(f \in s \). For a formula \(\varphi \), we write \(s \models \varphi \) if \(\varphi \) is true in the truth assignment \(s \). Similarly, for a set of fluent literals \(G \), we write \(s \models G \) if all fluent literals in \(G \) hold in the truth assignment. In particular, \(s \models \emptyset \) for any state \(s \). Intuitively, a transition \((s,s')\) means that the action can be successfully executed in \(s \) to yield \(s' \).

Definition 1 A state is a set of fluent atoms, and a transition is a pair of states. A semantic function \(\delta \) is a mapping from causal action theories to sets of transitions.

Thus a semantic function \(\delta \) gives a semantics to each causal action theory. We say that two causal action theories \(T_1 \) and \(T_2 \) are equivalent under \(\delta \) if they have the same transactions: \(\delta(T_1) = \delta(T_2) \). In the next section, we are going to discuss some properties about semantic functions.

3 Properties

We assume a fixed semantic function \(\delta \) below. Thus when we say that \((s,s')\) is a transition of \(T \), we mean that \((s,s') \in \delta(T) \). We list below some interesting properties about \(\delta \).

When reasoning about, say whether a switch is open or closed, we can use fluent closed to mean that the switch is closed and represent the fact that the switch is open by \(\neg \text{closed} \). Or we can do it the other way around, use open to mean that the switch is open and represent closed by \(\neg \text{open} \).

Our following property says that choosing which one to use as primitive is immaterial as long as one does this systematically.

Property 1 (Fluent literals are interchangeable) For any causal action theory \(T \), any fluent \(f \), and any pair of states \(s_1 \) and \(s_2 \), \((s_1,s_2)\) is a transition of \(T \) iff \((s_1',s_2')\) is a transition of \(T' \), where for any state \(s \),

\[
\delta(s') = \begin{cases}
 s' \setminus \{f\} & \text{if } f \in s \\
 s' \cup \{f\} & \text{otherwise}
\end{cases}
\]

and for any causal action theory \(T \), \(T' \) is the causal action theory obtained from \(T \) by replacing every occurrence of \(f \) by \(\neg f \).

Our next property is that the states in a transition must satisfy all static causal rules.

Property 2 (Static causal rules are state constraints) If \((s,s')\) is a transition of a causal action theory \((S,D)\), then for every static causal rule \((l,G)\) in \(S \), we have that

\[
s \models (l \lor \neg \bigwedge_{l_i \in G} l_i)
\]

and

\[
s' \models (l \lor \neg \bigwedge_{l_i \in G} l_i).
\]

Our next property says that if the premise of a static causal rule contains the negation of its head, then this rule is basically a constraint according to Property 2.

Property 3 (Immediate negative loops can be eliminated) For any causal action theory \((S,D)\), any \(r = (l,\{\neg l\} \cup G) \in S \), and any states \(s \) and \(s' \) that satisfy all rules in \(S \) (i.e. Property 2 holds for \(S \)), we have that \((s,s')\) is a transition of \((S,D)\) iff \((s,s')\) is a transition of \((S \setminus \{r\},D)\).

Our next property says that if there are no possible interactions between the static and dynamic causal rules, then only the dynamic causal rules can be applied. In other words, there are no ramifications.
Property 4 (No ramification when static causal rules do not interact with dynamic causal rules) Let $T = (S, D)$ be a causal action theory. If for every $(l, G) \in D$, there is no $(l', G') \in S$ such that the fluent in l occurs in G', then (s, s') is a transition of T iff for $s^- = \{ f \mid (\neg f, G) \in D, s \models G \}$ and $s^+ = \{ f \mid (f, G) \in D, s \models G \}$ we have that

- $s^+ \cap s^- = \emptyset$,
- $s' = (s \setminus s^-) \cup s^+$, and
- both s and s' satisfy the static causal rules in S (Property 2).

In particular, if $s^+ \cap s^- \neq \emptyset$, then T has no transitions.

The next property concerns the redundancy in premises. If s and s' satisfy the static causal rules in S, then the set of transitions under T is the same as the set of transitions under $T' = (S', D)$, where S' is

$$S' = (S \setminus \{(f, G_1), (f, G_2)\}) \cup \{(f, G)\}.$$

Property 4' (No ramification when static causal rules do not have cycle and do not interact with dynamic causal rules) Let $T = (S, D)$ be a causal action theory whose dependency graph is acyclic. If for every $(l, G) \in D$, there is no $(l', G') \in S$ such that the fluent in l occurs in G', then (s, s') is a transition of T iff for $s^- = \{ f \mid (\neg f, G) \in D, s \models G \}$ and $s^+ = \{ f \mid (f, G) \in D, s \models G \}$ we have that

- $s^+ \cap s^- = \emptyset$,
- $s' = (s \setminus s^-) \cup s^+$, and
- both s and s' satisfy the static causal rules in S (Property 2).

In particular, if $s^+ \cap s^- \neq \emptyset$, then T has no transitions.

Property 4' is weaker than Property 4 as the former applies only to "stratified" causal action theories.

The next property concerns the redundancy in premises. If both q and $\neg q$ will cause p, then p must be true regardless. Similarly, if both $q \land r$ and $\neg q \land r$ causes p, then we can conclude that q is immaterial and that r causes p.

Property 5 (Premises of static causal rules can be combined) Let $T = (S, D)$ be a causal action theory. If both (f, G_1) and (f, G_2) are in S, and for some set G of fluent literals, formula

$$\bigwedge_{l_k \in G} l_k$$

is logically equivalent to formula

$$\bigwedge_{l_k \in G_1} l_k \lor \bigwedge_{l_j \in G_2} l_j,$$

then the set of transitions under T is the same as the set of transitions under $T' = (S', D)$, where S' is

$$S' = (S \setminus \{(f, G_1), (f, G_2)\}) \cup \{(f, G)\}.$$

These properties may look arbitrary. As it turned out, certain combination of them can completely characterize a logic program implementation. Before we turn to this, we illustrate these properties by some examples.

The theory $T = \{ ((f_1, \neg f_1 \land f_2), (f_2, \top)) \}$ has one dynamic rule which says that the action always makes f_2 true, and one static rule which causes f_1 given $\neg f_1 \land f_2$. If the given semantic function δ satisfies Property 3 and Property 4, then for any states s and s' that satisfy $f_1 \lor \neg f_2$: (s, s') is a transition of T iff (by Property 3) it is a transition of $(\emptyset, \{ (f_2, \top) \})$ iff (by Property 4) $s' = s \cup \{ f_2 \}$.

The theory $\{ ((f_1, f_2), (\neg f_1, \neg f_2), (f_1, \top)) \}$ has one dynamic rule which says that the action always makes f_1 true, and two static rules: one says that f_2 will cause f_1 to be true, and the other that $\neg f_2$ will cause f_1 to be false. Property 4 applies to this theory, and by Properties 2 and 4, (s, s') is a transition of the theory iff both of them satisfy $f_2 \supset f_1$ and $\neg f_2 \supset \neg f_1$, and $s' = s \cup \{ f_1 \}$. This means that for (s, s') to be a transition, f_1 must be true in s already, and that $s' = s$. One can interpret this as saying that if s does not satisfy f_1, then the action cannot be executed. This is an instance of implicit qualification on action derived from static causal rules [Lin, 1995].

4 Embedding causal action theories in B, C, and others

Our causal action theories can be mapped to theories in action languages B, C, and others in a straightforward way. Notice that our language does not have terms for actions. Instead, there is an implicit action. Let’s call this action A.

Given a causal action theory $T = (S, D)$, it can be mapped to the following action description T_B in language B as follows: if (l, G) is in S, then the static causal rule “l if G” is in T_B, and if (l, G) is in D, then the action rule “A causes l if G” is in T_B. This mapping induces a semantic function δ for our causal action theories: $(s, s') \in \delta(T)$ iff (s, A, s') is a transition of T_B according to B. For this semantic function, it can be seen that Properties 2, 3 and 4 are satisfied (see Theorem 1 below).

A causal action theory $T = (S, D)$ can also be translated to the following action description T_C in action language C as follows: if (l, G) is in S, then the static causal rule “caused if $\bigwedge_{l_i \in G} l_i$” is in T_C, and if (l, G) is in D, then the action rule “caused if $\bigwedge_{l_i \in G} l_i$” is in T_C. Again this mapping induces a semantic function: (s, s') is a transition of T if $(s, A, s) is a transition of T_C according to C semantics. For this semantic function, we can see that Properties 1 2, 3 and 5 are satisfied, but not Property 4. For instance, consider the causal action theory $T = \{ ((f_2, f_1), (f_1, f_2)), \emptyset \}$. If $s = \emptyset$, and $s' = \{ f_1, f_2 \}$, then both s and s' satisfies all static causal rules, and according to C semantics, s' is a possible new state after the action A occurs in state s.

A causal action theory $T = (S, D)$ can also be mapped to Lin’s causal theory T_L in the situation calculus as follows: if (f, G_0) is in S, let $G = \bigwedge_{l_i \in G_0} l_i$, then the following causal rule is in T_L:

$$\forall s. Holds(G, s) \supset Caused(f, true, s),$$

3287
if \(\lnot(f, G) \) is in \(S \), then the following causal rule is in \(T_L \):
\[
\forall s. \text{Holds}(G, s) \supset \text{Caused}(f, \text{false}, s),
\]
if \((f, G) \) is in \(D \), then the following direct effect axiom is in \(T_L \):
\[
\forall s. \,(\text{Poss}(A, s) \supset (\text{Holds}(G, s) \supset \text{Caused}(f, \text{true}, \text{do}(A, s))))).
\]
and if \(\lnot(f, G) \) is in \(D \), then the following direct effect axiom is in \(T_L \):
\[
\forall s. \,(\text{Poss}(A, s) \supset (\text{Holds}(G, s) \supset \text{Caused}(f, \text{false}, \text{do}(A, s))))).
\]
As in language \(C \), under this mapping to Lin’s causal theories, Property 4 is not satisfied.

One could do similar mappings for other formalisms. However, an obvious question is why the mappings have to be the way that we described above. For instance, could we map theories here to language \(C' \)?

\[
\lnot F \cup \lnot F \cup F = \{ l, \neg f \mid f \in F \}, \quad F' = \{ f' \mid f \in F \}, \quad \text{and similarly for} \neg F', \quad \text{where} \quad \text{if} \quad f \in F, \quad f' \quad \text{is a new atom. The transitions of} \quad T \quad \text{and the answer sets of} \quad \xi(T) \quad \text{will then be related by identifying} \quad s \quad \text{with the fluents in} \quad F, \quad \text{and} \quad s' \quad \text{with those in} \quad F' \quad \text{of} \quad \xi(T) \quad \text{if there is an answer set} \quad A \quad \text{of} \quad \xi(T) \quad \text{such that} \quad s = \{ f \mid f \in F, f \in A \}, \quad s' = \{ f \mid f' \in F', f' \in A \}.
\]

Again, if we do not have any restrictions on what programs we can take as \(\xi(T) \), then we can have mappings that satisfy any consistent set of properties under the above correspondence between transitions and answer sets. However, from knowledge representation point of view, we would want the mapping to be compositional, in the sense that it can be composed from some mappings on the static and dynamic causal rules. As we mentioned, there has been much work on using logic programs for reasoning about action, and one of the key ideas has been to use the following rules to encode inertia:

\[
\begin{align*}
 f' & \leftarrow f, \quad \text{not} \quad f', \quad (3) \\
 \neg f' & \leftarrow \neg f, \quad \text{not} \quad f'. \quad (4)
\end{align*}
\]

Also we want the mapping to at least satisfy Property 2 so that both initial and successor states satisfy the static causal rules as constraints, and that a causal rule \((l, G)\) should be translated to some logic program rules about \(l \). Besides, we want the mapping to be uniformed in the sense that the fluent names are not material. More precisely, if \(\sigma \) is a permutation of fluent names, then applying the mapping to \(T \) after the fluent names are changed according to \(\sigma \) is the same as applying the mapping to \(T \) first, and then changing the fluent names in the logic program according to \(\sigma \).

To summarize, we study the following class of mappings.

Definition 2 A mapping \(\xi \) from causal action theories to logic programs is said to be permissible if it is

1. **(Compositional)** For each \(T = (S, D) \),
\[
\xi(T) = \bigcup_{r \in S} \xi^s(r) \cup \bigcup_{r \in D} \xi^d(r) \cup B,
\]
where
- \(\xi^s(r) \) is the translation on static causal rules, and for a rule \((l, G)\), \(\xi^s(l, G) \) is a logic program consisting of the following constraints:
 \[
 \leftarrow \overline{l}, G,
 \]
 \[
 \leftarrow \overline{r}, G',
 \]
 and some rules of form
 \[
 l' \leftarrow F_1', \quad \text{not} \quad F_2'
 \]
 where \(\overline{l} \) is the complement of \(l \): \(\overline{l} = \neg f \), and \(\overline{f} = f \), \(W' = l_1', ..., l_n' \) if \(W = \{ l_1, ..., l_n \} \), and \(F'_1 \) and \(F'_2 \) are sets of atoms in \(F'_D \cup \neg F'_G \), where \(F'_G \) are all fluents that appear in \(G \), and \(\not \{ l_1', ..., l_n' \} \) is not \(l_1', ..., l_n' \).
- \(\xi^d(r) \) is the translation on dynamic causal rules, and for a rule \((l, G)\), \(\xi^d(l, G) \) is a set of rules of the form
 \[
 l' \leftarrow F
 \]
 where \(F \) is a set of fluent literals in \(F \cup \neg F \);
- \(B \), the base, is the following set of rules that are independent of the given theory \(T \): for each \(f \in F \),
 \[
 f \leftarrow \neg f,
 \]
 \[
 \neg f \leftarrow f,
 \]
 \[
 f' \leftarrow f, \quad \text{not} \quad f',
 \]
 \[
 \neg f' \leftarrow \neg f, \quad \text{not} \quad f'.
 \]
2. (Uniform) Both ξ^s and ξ^d are homomorphic under any permutation σ on the set F of fluents: $\xi^s(r^\sigma) = (\xi^s(r))^\sigma$, and $\xi^d(r^\sigma) = (\xi^d(r))^\sigma$, where r^σ is obtained from r by a fluent substitution according to σ, and for any logic program P, P^σ is the program obtained from P by a fluent substitution according to σ.

Notice that for the translation $\xi^d(r)$ of a dynamic causal rule, no “negation-as-failure” operator is used. This is because we have the choice rules (8) and (9) in the base that generate all possible complete initial states. Under these choice rules, and given that there is no other rule about f or $\neg f$ in a permissible mapping, fluent literals “f” and “$\neg f$” are interchangeable, and so are “$\neg f$” and “not f”. Of course, we could allow the negation-as-failure operator in the translation of dynamic causal rules.

As an example of requiring a mapping ξ to be uniformed, if ξ maps a dynamic causal rule (f_1, f_2) to logic program $f'_1 \leftarrow f_2$, then it must map the dynamic causal rule (f_3, f_4) to $f'_3 \leftarrow f_4$.

Notice that a mapping ξ from causal action theories to logic programs yields a semantic function δ under (1) and (2): $(s, s') \in \delta(T)$ if there is an answer set A of $\xi(T)$ such that (1) and (2) hold. So in the following, when we say that a mapping satisfies a property, we mean that the semantic function yielded by the mapping satisfies this property.

Our main results are about the uniqueness of admissible mappings that satisfy certain sets of properties. Understandably, this uniqueness needs to be modulo on strong equivalence [Lifschitz et al., 2001] as two mappings that always yield strongly equivalent logic programs are indistinguishable under the answer set semantics.

Our first result shows the correspondence between action language B and permissible mappings that satisfy Properties 2, 3 and 4.

In the last section, we described a translation from our causal action theories to causal theories in action language B. Given a causal action theory T, let T_B denotes the causal theory in B according to this translation. We say that (s, s') is a transition of T under action language B semantics if (s, A, s') is a transition of T_B according to the semantics of action language B.

In general, given a mapping ξ from causal action theories to logic programs, we say that (s, s') is a transition of a causal action theory T under ξ if (s, s') is a transition of T under the semantic function yielded by ξ.

As we mentioned, our results make use of a notion of strong equivalence. Two logic programs P_1 and P_2 are strongly equivalent [Lifschitz et al., 2001] (under the answer set semantics) if $P_1 \cup P$ and $P_2 \cup P$ have the same answer sets for every logic program P. In the following, Given three logic programs P_1, P_2 and Q, we say P_1 and P_2 are strongly equivalent under Q, if $P_1 \cup Q$ and $P_2 \cup Q$ are strongly equivalent.

Theorem 1 Let ξ_B be the following mapping from causal action theories to logic programs: for each $T = (S, D)$,

$$\xi_B(T) = \bigcup_{r \in S} \xi^s_B(r) \cup \bigcup_{r \in D} \xi^d_B(r) \cup B,$$

where

- B is the base,
- for each static causal rule (l, G), $\xi^s_B(l, G)$ is the set of rules consisting of constraints (6) and (7), and the following rule
 $$l' \leftarrow G'.$$
- for each dynamic causal rule (l, G), $\xi^d_B(l, G)$ is the singleton set consisting of the following rule
 $$l' \leftarrow \overline{G}.'$$

We have

1. The mapping ξ_B is permissible and satisfies Properties 2, 3, 4. Furthermore, for any causal action theory T, (s, s') is a transition of T under ξ_B iff it is a transition of T under the B semantics.

2. If ξ is a permissible mapping that satisfies Properties 2, 3, 4, then ξ is strongly equivalent to ξ_B in the following sense: for any causal action theory, if (l, G) is a static causal rule, then $\xi^s(l, G)$ and $\xi^s_B(l, G)$ are strongly equivalent under the base B as defined in (5); and if (l, G) is a dynamic causal rule, then $\xi^d(l, G)$ and $\xi^d_B(l, G)$ are strongly equivalent under the base B as well.

The first part of the theorem says that ξ_B satisfies Properties 2, 3 and 4, and yields the same semantics as the action language B. The second part of theorem says that permissible mappings that satisfy Properties 2, 3 and 4 are unique up to strong equivalence.

We have a similar result for the action language C as well. In the following, given a causal action theory T, we say that (s, s') is a transition of T under C semantics if (s, A, s') is a transition of T_C according to C, where T_C is the action description in C translated from T given in the last section.

Theorem 2 Let ξ_C be the following mapping from causal action theories to logic programs: for each $T = (S, D)$,

$$\xi(T) = \bigcup_{r \in S} \xi^s_C(r) \cup \bigcup_{r \in D} \xi^d_C(r) \cup B,$$

where

- B is the base,
- for each static causal rule (l, G), $\xi^s_C(l, G)$ is the set of rules consisting of constraints (6) and (7), and the following rule
 $$l' \leftarrow \overline{G}'.$$
- for each dynamic causal rule (l, G), $\xi^d_C(l, G)$ is the singleton set consisting of the following rule
 $$l' \leftarrow G.$$

We have
1. The mapping ξ_C is permissible and satisfies Properties 1, 2, 3, 4, and 5. Furthermore, for any causal action theory T, (s, s') is a transition of T under ξ_C iff it is a transition of T under the C semantics.

2. If ξ is a permissible mapping that satisfies Properties 1, 2, 3, 4, and 5, then ξ is strongly equivalent to ξ_C in the following sense: for any causal action theory T, (l, G) is a static causal rule, then $\xi^s((l, G))$ and $\xi^C((l, G))$ are strongly equivalent under the base B as defined in (5); and if (l, G) is a dynamic causal rule, then $\xi^d((l, G))$ and $\xi^C((l, G))$ are strongly equivalent under the base B as well.

The two theorems above are proved inductively\(^1\). The base case is the language with three fluents. For the base case, the results are verified by a computer program that for each representative dynamic or static causal rule, enumerates all of its possible permissible mappings, and for each possible mapping checks if the respective properties are satisfied. The inductive step is proved manually. While the proof of the inductive step is tedious and non-trivial, the base case is conceptually more important. In fact, the theorems and the properties were “discovered” using our computer program. This is similar to computer-aided theorem discovery that we used earlier for some other problems [Lin, 2004; Lin and Chen, 2007; Tang and Lin, 2011].

These two theorems provide interesting insights into the relationships between the two action languages B and C. First of all, they both satisfy Property 2, thus all states in their transition models must satisfy all static causal rules. They also satisfy Property 3, thus treat static causal rules with negative loops as constraints.

However, while B seems to treat causal theories with or without positive dependency loops uniformly, C assigns special meanings to static causal rules with positive loops. This can be seen from the fact that while B satisfies Property 4, C only satisfies a weaker version of that, Property 4‘, which applies only to stratified theories. As an example, consider $T = \{((f_1, f_2), (f_2, f_1)), (\emptyset, 0)\}$. The two causal rules cause a cycle between f_1 and f_2. Under B’s semantics, for (\emptyset, s) to be a transition, it must be the case that $s = \emptyset$. In other words, when both f_1 and f_2 are false initially, then they must both stay false in the successor state. However, under C’s semantics, $(\emptyset, \{f_1, f_2\})$ is also a transition of T. In fact, static causal rules with immediate positive cycles such as (f, f) (or caused f if f in C’s language) have a special role: they are used to express the assumption that the fluent f is a default fluent.

Another difference between B and C can be seen from Property 5. The language C satisfies this property, thus allows premises from multiple static causal rules to be merged together and simplified by logical equivalence. However, this is in general not allowed in B. Consider the following causal action theories

\[T = \{((f_1, f_2 \land f_3), (f_1, f_2 \land \neg f_3), (f_3, f_1 \land f_2)), ((f_2, \top))\}. \]

The premises of the first two static causal rules can be merged and simplified according to C: T is equivalent to T' below:

\[T' = \{((f_1, f_2), (f_3, f_1 \land f_2)), ((f_2, \top))\}. \]

But under B’s semantics, these two theories are not equivalent. It can be seen that $(\emptyset, \{f_1, f_2, f_3\})$ is a transition of T' but not T under B.

We inductively prove the two theorems, with causal action theories mentioning no more than three fluents as base case. Details of the inductive proof is given in appendix.

6 Some discussions and related work

As we mentioned, there has been much work on specifying the effects of actions using a notion of causality. We have used a language as simple as possible, with just one action implicitly assumed in the language. Instead of defining a semantics model theoretically or by a set of axioms, we postulate some intuitively desirable properties on the underlying transition models.

Similar properties have been studied by others. Property 2 is universally accepted in all work so far, and is built-in in our definition of permissible mappings. It was also stated as postulate PC in [Herzig and Varzinczak, 2007], postulate C_3 in [Thielscher, 2011], and proved as Proposition 4 in [Sergot and Craven, 2005], for example.

Properties 4 and 4’ try to capture the obvious cases when there are no possible side effects. A similar postulate in the form of regional consistency is proposed in [Zhang et al., 2002]. And in [Herzig and Varzinczak, 2007], postulate PS is a combination of our Properties 4, with another property requiring that for any transition of a causal theory, the direct effect of the action should be in the successor state.

Property 5 defines an equivalence relation on sets of static causal rules. This is similar to Proposition 4 of [Giunchiglia et al., 2004] for nonmonotonic causal theories, and also Proposition 19 in [Sergot and Craven, 2005].

7 Concluding remarks

We have proposed a “minimalistic” language for causal action theories, and postulated some properties for them. We have considered possible embeddings of these causal action theories in some other action formalisms, and their implementations in logic programs with answer set semantics. In particular, we have proposed to consider what we call permissible mappings from causal action theories to logic programs. We prove that the only permissible translation under strong equivalence that satisfies Properties 2, 3 and 4 is Baldacci and Gelfond and Lifschitz’s B language to logic programs; and the only permissible translation under strong equivalence that satisfies Properties 1, 2, 3, 4’ and 5 is Lifschitz and Turner’s translation from the action language C to logic programs. These results suggest that the action languages B and C are characterized by the two sets of properties, respectively. More importantly, our approach can be applied to other action languages, and provides a new way to evaluate and compare action languages in a clear and uniform way.

\(^1\)Due to space restriction, we cannot include the proofs here. Interested readers can find the proofs at http://www.cs.ust.hk/faculty/flin/papers/ijcai2015-full.pdf.
For future work, it will be interesting to see whether similar properties and alternative notions of “permissible” translations can be identified for other action formalisms. It is also interesting to investigate some other properties and see how combinations of these properties can yield different action formalisms.

References

