
Generalized Discrete Preference Games
Vincenzo Auletta

University of Salerno
auletta@unisa.it

Ioannis Caragiannis
University of Patras
caragian@upatras.gr

Diodato Ferraioli
University of Salerno

dferraioli@unisa.it

Clemente Galdi
University of Naples “Federico II”

clemente.galdi@unina.it

Giuseppe Persiano
University of Salerno

giuper@unisa.it

Abstract
Recently, much attention has been devoted to dis-
crete preference games to model the formation of
opinions in social networks. More specifically,
these games model the agents’ strategic decision
of expressing publicly an opinion, which is a re-
sult of an interplay between the agent’s private be-
lief and the social pressure. However, these games
have very limited expressive power; they can model
only very simple social relations and they assume
that all the agents respond to social pressure in
the same way. In this paper, we define and study
the novel class of generalized discrete preference
games. These games have additional characteristics
that can model social relations to allies or competi-
tors and complex relations among more than two
agents. Moreover, they introduce different levels of
strength for each relation, and they personalize the
dependence of each agent to her neighborhood.
We show that these novel games admit generalized
ordinal potential functions and, more importantly,
that every two-strategy game that admits a general-
ized ordinal potential function is structurally equiv-
alent to a generalized discrete preference game.
This implies that the games in this novel class cap-
ture the full generality of two-strategy games in
which the existence of (pure) equilibria is guaran-
teed by topological arguments.

1 Introduction
Understanding the emergent behavior of groups of interact-
ing agents is an important research challenge in the social
sciences and in AI. One of the problems considered along
this direction is to understand how opinions are formed and
expressed in a social context, e.g., how an opinion diffuses
in a social network when each single agent adapts her own
belief in response to the opinions expressed by her “friends.”
The recent research activity on this subject is extensive, both
in AI and in multiagent systems [Pryymak et al., 2012;
Tsang and Larson, 2014] and in CS at large [Acemoglu and
Ozdaglar, 2011; Bindel et al., 2011; Mossel and Tamuz,
2014], as well as in sociology, economics, physics, and epi-
demiology.

A classical model for studying the diffusion and the adop-
tion of opinions in a social network has been proposed by
Friedkin and Johnsen [1990] as a refinement of a previous
model introduced by DeGroot [1974]. The model assumes
that each agent has a private belief, but the opinion she even-
tually expresses can be different from her belief, and it is
given by the outcome of a repeated averaging between her
belief and the opinions of individuals with whom she has so-
cial relations. Recently, Bindel et al. [2011] considered this
model and proved that, under mild assumptions, whenever
beliefs and opinions belong to [0, 1], the repeated averaging
process leads to a unique equilibrium, describing the opinion
that each agent eventually expresses.

Two recent papers — by Ferraioli et al. [2012] and by
Chierichetti et al. [2013] — focus on a refinement of this
model, where beliefs and opinions are discrete and can take
two possible values: 0 and 1. This simple restriction has im-
portant effects. Clearly, the discrete nature of the preferences
does not allow for averaging anymore and several nice prop-
erties of the opinion formation models mentioned above —
such as the uniqueness of the outcome — are lost. In con-
trast, it now seems natural to assume that each agent behaves
strategically and aims to pick the most beneficial (or less
costly) opinion for her, where the benefit (or cost) depends
both on her internal belief and on the opinions of individuals
with whom she has social relations.

This immediately defines a discrete preference game. With
the notation that we will use later, let us define the cost of
agent i when the binary strategies of the n agents are given
by the vector s = (s(1), . . . , s(n)) as

ci(s) = ↵ · |s(i)� b(i)|+(1� ↵) ·
X

j2N(i)

|s(i)� s(j)|, (1)

where b(i) 2 {0, 1} denotes the belief of agent i and N(i)
is the set of individuals with whom she has social relations
(e.g., friends in the social network). Note that the cost has
two components that depend on the distance of the agent’s
strategy from her internal belief and from the strategies of her
neighbors, respectively. The parameter ↵ 2 [0, 1] adjusts the
relative importance of the two terms. Intuitively, it measures
the degree of coordination the agents seek.

The class of discrete preference games was recently con-
sidered by Chierichetti et al. [2013]. They assess the qual-
ity of states using the total (or social) cost of the agents.
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Their findings include tight bounds on the price of stability
for discrete preference games as well as conditions that im-
ply that states of minimum social cost are always equilibria.
These results come in contrast to the price of anarchy that
can be unbounded; the same result has also been observed in-
dependently by Ferraioli et al. [2012]. Recently, Auletta et
al. [2015] also proved that a best response dynamics can lead
from the truthful profile (in which agents’ opinion coincides
with their belief) to an equilibrium in which the majority has
been subverted.

Still discrete preference games have evident limitations.
In order to overcome them, we significantly generalize the
model; this is our main conceptual contribution. Chierichetti
et al. [2013] generalized these games to more than two strate-
gies per agent. However, this kind of generalization faces the
problem that it is not clear whether there exists an ideal metric
for representing distances among opinions, and different re-
sults are obtained by adopting different metrics. In addition,
games with two strategies per agent have been proved to be
as general (and challenging) as possible from the computa-
tional complexity point of view; see [Fabrikant et al., 2004].
For these reasons, we keep the two-strategy restriction and
instead consider richer relations among agents. For exam-
ple, the facts that each agent treats her neighbors equally, she
seeks agreement to all of them, and all social relations include
only two agents are obvious limitations of discrete preference
games. In contrast, we would like to (1) model social rela-
tions to both allies or competitors, (2) include complex rela-
tions between more than two agents, (3) introduce different
levels of strength for each relation, and (4) personalize the
dependence of each agent to its neighborhood.

So, motivated by games that are inspired by constraint
satisfaction optimization problems — such as cut games
and party affiliation games; see, e.g., [Balcan et al., 2013;
Caragiannis et al., 2014; Wooldridge et al., 2013] — we
define the broader class of generalized discrete preference
games. In these games, the strategy of each agent is again
a binary opinion. Social relations (or social constraints) are
weighted Boolean formulas over the strategies of subsets of
agents. Then, the cost of each agent depends on the total
weight of the unsatisfied formulas whose outcome depend on
the opinion of the agent; the particular dependence can be dif-
ferent from agent to agent. We give the detailed definition of
generalized discrete preference games in Section 3, where we
also present and discuss several examples.

Our main technical contributions are presented in Section
4. First, we kill many birds with one stone: in Theorem 1,
we show that the negative sum of the weights of the satis-
fied formulas is a generalized ordinal potential function for
such a game. Note that the same potential function may cor-
respond to very different games and essentially describes the
general structure of the Nash dynamics graph of each of them.
In addition, depending on some details in the definition of the
agents’ costs, the potential function can be proved to be exact,
weighted, or ordinal potential. As a consequence, we have
that generalized discrete preference games always admit pure
Nash equilibria, and that a finite sequence of best-response
strategy updates always converges to an equilibrium. Po-
tential functions usually reveal a structure in the underlying

game and have turned out to be useful for a more deep under-
standing of it. For example, they have been useful in proving
bounds on the price of stability [Anshelevich et al., 2008] or
in bounding the time required to reach equilibria or efficient
states after best-response play [Awerbuch et al., 2008]. We
hope that the potential function we define can play such im-
portant roles for generalized ordinal potential games.

Second, and probably more importantly, in Theorem 4 we
show that every game with two strategies per agent that ad-
mits a generalized ordinal potential is structurally equiva-
lent (in particular, better-response equivalent) to a general-
ized discrete preference game. This implies that generalized
discrete preference games capture the full generality of two-
strategy games in which the existence of pure equilibria is
guaranteed by topological arguments. This result is similar
in spirit to the equivalence proved by Monderer and Shapley
[1996] between exact potential and congestion games. This
equivalence has been extremely useful for a deep understand-
ing of the former class of games. On the other side, gener-
alized ordinal potential games are still not well understood,
even if it has been proved that they have many important ap-
plications such as in load balancing [Even-Dar et al., 2007]
and in wireless spectrum management [Wong et al., 2014].
We hope that generalized discrete preference games can play
the same role as congestion games for improving our knowl-
edge about generalized ordinal potential games. Ideally, we
would like to be able to prove properties of generalized or-
dinal potential games by focusing on equivalent generalized
discrete preference games.
Other Related Work. The paper that is most closely re-
lated to ours is the one by Chierichetti et al. [2013] which we
have discussed above. Independently, Ferraioli et al. [2012]
have considered the same class of games, mostly focusing on
the study of (noisy) best-response dynamics with respect to
their convergence to equilibria or stable states. An interesting
generalization has been proposed by Bhawalkar et al. [2013]
who consider beliefs and opinions in [0, 1]; according to their
model, in addition to the opinion expressed, the social rela-
tions of an agent are also part of her strategy and are selected
so that connections to agents with similar opinions are more
preferable.

In addition to the cited papers that study games involving
Boolean variables and constraints, Bonzon et al. [2006] de-
fined boolean games where, like generalized discrete prefer-
ence games, the interdependence among agents is represented
through boolean formulas involving their strategies. How-
ever, classical boolean games assume that formulas are not
weighted, while we will see that weights are crucial for our
equivalence result to hold. Recently, extensions to boolean
games that include weights (e.g., see [Harrenstein et al.,
2014]) have been proposed, but still they are too restrictive
for achieving our results.

Studies in social networks consider several phenomena re-
lated to the spread of social influence such as information cas-
cading, network effects, epidemics, and more. The book of
Easley and Kleinberg [2010] provides an excellent introduc-
tion to the theoretical treatment of such phenomena. From
a different perspective, problems of this type have also been
considered in the distributed computing literature, motivated
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by the need to control and restrict the influence of failures in
distributed systems; e.g., see the survey by Peleg [2002] and
the references therein.

2 Preliminaries
Discrete preference games are formally defined as follows.
There are n agents; we use [n] = {1, 2, . . . , n} to denote
their set. Each agent corresponds to a distinct node of an
undirected graph G = (V,E) that represents the social net-
work; i.e., the network of social relations between the agents.
Agent i has an (internal) belief b(i) 2 {0, 1} and her strategy
set consists of the two alternatives that she can declare as her
opinion (or preference), i.e., s(i) 2 {0, 1}. A strategy profile
(or, simply, a profile or state) is a vector of strategies, with
one strategy per agent. We use bold symbols for profiles; i.e.,
s = (s(1), . . . , s(n)). For y 2 {0, 1}, we denote as y the
negation of y; i.e., y = 1� y.

At a profile s, the cost of agent i is denoted by ci(s) and
is defined as in (1). A profile s is a pure Nash equilibrium
(or, simply, an equilibrium) if ci(s)  ci(s(i), s�i) for ev-
ery agent i. The notation (s(i), s�i) is used to refer to the
state in which all agents besides agent i follow their strategies
in state s and agent i follows strategy s(i). As observed in
[Chierichetti et al., 2013] and [Ferraioli et al., 2012], discrete
preference games always have equilibria. This follows using
potential function arguments; we discuss potential functions
of different types below.

Following the standard terminology in the game theory lit-
erature, we say that a game is an exact potential game if
there exists a function � defined over the states of the game
such that the following condition holds: For every two states
(s,x�i) and (s0,x�i) that differ in the strategy of agent i,
ci(s,x�i) � ci(s0,x�i) = �(s,x�i) � �(s0,x�i). It is a
weighted potential game if there exists a function � and pos-
itive weights (vi)i2[n] so that the above condition becomes
ci(s,x�i) � ci(s0,x�i) = vi · (�(s,x�i)� �(s0,x�i)). It
is an ordinal potential game if there exists a function � such
that the condition becomes ci(s,x�i) � ci(s0,x�i) > 0 ,
�(s,x�i) � �(s0,x�i) > 0; Finally, it is a generalized or-
dinal potential game if there exists a function � such that
ci(s,x�i)� ci(s0,x�i) > 0 ) �(s,x�i)��(s0,x�i) > 0.

Note that each class generalizes the previous one. It is
a folklore result — e.g., see Monderer and Shapley [1996]
— that every (finite) generalized ordinal potential game has
at least one Nash equilibrium and it can be reached through
cost-decreasing strategy updates of the agents. Specifically,
any local minimum of the potential function corresponds to
an equilibrium of the game. The opposite — i.e., the fact that
equilibria always correspond to local minima of the potential
function — is true for ordinal potential games but it is not
necessarily true for generalized ordinal potential games.

3 Generalized Discrete Preference Games
We are now ready to define the broader class of generalized
discrete preference (GDP) games. Like in discrete preference
games, again we assume that every agent i has a private be-
lief b(i) 2 {0, 1} and that her strategy s(i) is a preference

from the strategy set {0, 1}. However, in contrast to discrete
preference games, agents are not only interested in agree-
ing to their neighbors and more complex constraints can be
used to represent their preferences. Specifically, we define
a social constraint as a Boolean formula involving the opin-
ions (but not the beliefs) of a subset of agents. For example,
the social constraint C(s) = (s(i) ^ s(j)) _ (s(i) ^ s(j))
involves agents i and j and is satisfied when the opinions
of i and j are different. In addition to social constraints,
GDP games have belief constraints; these constraints are true
when the expressed opinion of an agent coincides with her
belief. Specifically, the belief constraint Bi(s) of agent i
is Bi(s) = (s(i) ^ b(i)) _ (s(i) ^ b(i)) and, unlike so-
cial constraints, involves only the opinion and the belief of
agent i. Sometimes, we will use the equivalent constraint
Bi(s) = s(i) (respectively, Bi(s) = s(i)) if b(i) = 0 (re-
spectively, b(i) = 1). A set C of constraints is feasible if, for
every agent i, at most one of the two belief constraints s(i)
and s(i) belongs to C.

In a generalized discrete preference game, each constraint
C has a non-negative weight W (C). For any agent i and
for any profile s, we also denote by wi(s) the sum of the
weights of the constraints involving agent i that are satisfied
at s. Furthermore, we denote by wi the sum of the weights of
all constraints that involve agent i and we denote by w(s) the
sum of all constraints satisfied at s. Also, we let w denote the
sum of the weights of all constraints.

The cost ci(s) of agent i in profile s is defined through a
monotone non-decreasing function Fi : R�0 ! R�0 on the
weight of the constraints that involve i and are unsatisfied at
s. More precisely, we have ci(s) = Fi(wi�wi(s)). Note that
using different functions Fi we can model agents that evalu-
ate their social relationships in different ways. We emphasize
that, in the definition of the cost of agent i, the function Fi

gets as input the total weight of all unsatisfied constraints that
involve i. In a sense, an agent cares about all (belief and so-
cial) constraints she is involved in and cannot disregard any
constraint. Observe that, through these agent-specific func-
tions is possible to model agents that give different impor-
tance to the constraints in which they are involved, even if
constraint weights are common to each agent. An example of
such a setting is described later.

To sum up, a generalized discrete preference game is a tu-
ple ([n], C,W, (Fi)i2[n]), where C is a feasible set of con-
straints, W is the weight function and Fi is the cost function
of i. Next we give examples showcasing the expressiveness
of GDP games.
Examples. We give examples of games that fall within our
class, mostly focusing on notions that will be used again
later. A constraint C is an equality-constraint if it is satis-
fied only when all agents involved in C have the same opin-
ion. Formally, C is an equality-constraint on N ✓ [n] if
C(s) =

�V
i2N si

�
_
�V

i2N si
�
. This allows to easily model

a group of agents that want to agree with each other. A con-
straint C is an or-constraint if it is satisfied in all profiles
except the ones in which the agents involved in C have a spe-
cific configuration. Formally, C is an or-constraint on N if
C(s) =

W
i2N `i, where `i 2 {si, si}. This allows to model
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the natural requirement of an agent that wants to avoid a spe-
cific configuration.

We also introduce another class of constraints, that, even
though it is less natural than previous ones, it will turn out to
be sometimes useful for characterizing the behavior of GDP
games. Specifically, a constraint C is a switch-constraint if
every time an agent that is involved in the constraint switches
her preference then the constraint switches between satisfied
and unsatisfied. Formally, C is a switch-constraint on set N
of agents if C(s) =

L
i2N `i, where `i 2 {si, si}. Infor-

mally, a switch constraint represents a parity requirement.
According to the definition of GDP games, the weight of a

constraint is the same for all agents involved in the constraint.
Nevertheless, as we will show next, this restriction still allows
to implement many natural cost functions1.

In particular, very natural cost definitions can be obtained
using specific choices for the Fi functions. For example, the
cost function, according to which an agent tries to minimize
the sum of the weights of the unsatisfied constraints in which
she is interested, can be modeled by the identity function; that
is, Fi(r) = r for each r � 0.

In another natural example, the cost function assigns to
the belief constraint an agent-specific weight that is differ-
ent from the one assigned to social constraints. For example,
consider the following cost function ci(s) = ↵(1�Bi(s)) +

(1� ↵)di�ni(s)
di

where di is the number of social constraints
in which i is involved and ni(s) is the number of social con-
straints in which i is involved among those that are satisfied
at s. This cost function then balances among the closeness
to agent’s own belief and the fraction of satisfied constraints
in which she is involved. Even though in our definition the
weight of a constraint is the same for all agents, we can imple-
ment this cost function through a weighted identity function
Fi; i.e., Fi(r) = vir for any r � 0, where vi > 0. Indeed, we
can set W (Bi) = ↵di for each i 2 [n], W (C) = 1 � ↵ for
each social constraint C 2 C and vi =

1
di

for each i 2 [n].
Another natural class of cost functions is the one according

to which agents are happy if and only if the sum of weights of
the unsatisfied constraints is less than the sum of weights of
satisfied constraints. This can be achieved by using the ma-
jority function, i.e., Fi(r) = 1 if r � wi

2 and Fi(r) = 0 other-
wise. We can also consider threshold functions, according to
which the agents are happy if and only if the sum of weights
of the unsatisfied constraints is less than some threshold T ,
i.e., Fi(r) = 1 if r � T and Fi(r) = 0 otherwise.

Note that discrete preference games are the special case of
GDP games in which all non-belief constraints are equality
constraints for pairs of agents and the cost of each agent is
defined using the identity function.

4 Existence of Equilibria
We present our structural results in this section. We begin
by proving that GDP games are generalized ordinal potential
games. As such, they always admit a pure Nash equilibrium.

1Clearly, it is possible to introduce in the game player-specific
unrelated weights. However, this will break our equivalence result.

Theorem 1. Let G = ([n], C,W, (Fi)i2[n]) be a generalized
discrete preference game. The function �w(s) is a general-
ized ordinal potential function for G.

Proof. Consider an agent i and profile s. Without loss of
generality, let us assume that ci(0, s�i)� ci(1, s�i) > 0; we
will show that w(1, s�i)� w(0, s�i) > 0.

By the definition of the cost of agent i, we have Fi(wi �
wi(0, s�i))�Fi(wi�wi(1, s�i)) > 0 and, since the function
Fi is monotone non-decreasing, wi(0, s�i)�wi(1, s�i) < 0.
Now, for the total weight of constraints that do not depend on
the opinion or the belief of agent i, we obviously have

w(0, s�i)� wi(0, s�i) = w(1, s�i)� wi(1, s�i). (2)

Hence, w(1, s�i)� w(0, s�i) > 0, as desired.

The function �w(s) gives a stronger characterization for
special subclasses of GDP games.
Proposition 2. Let G = ([n], C,W, (Fi)i2[n]) be a general-
ized discrete preference game. Then, the function �w(s) is:
An exact potential for G if the Fi’s are identity functions; a
weighted potential for G if the Fi’s are weighted identity func-
tions; an ordinal potential for G if every constraint C 2 C is
a switch-constraint and the Fi’s are majority functions.

Proof. Consider an agent i and profile s. Let us first assume
that Fi is a weighted identity function with Fi(r) = vi · r.
Hence, ci(0, s�i) � ci(1, s�i) = vi · (wi � wi(0, s�i)) �
vi · (wi � wi(1, s�i)) = vi · (wi(1, s�i)� wi(0, s�i)) =
vi · (w(1, s�i)� w(0, s�i)), where the last equality follows
by the observation (2) above. The claim for identity functions
follows by setting vi = 1 for every agent i.

Now, let us focus on a generalized discrete preference
game with switch constraints and majority functions for the
definition of agents’ cost. Since we have already proved that
�w(s) is a generalized ordinal potential function, all that
is left to prove is that w(0, s�i) � w(1, s�i) < 0 implies
ci(0, s�i)� ci(1, s�i) > 0.

From observation (2), w(0, s�i) � w(1, s�i) < 0 implies
that wi(0, s�i) � wi(1, s�i) < 0 for every s and i. Fur-
thermore, for switch constraints we have that wi(0, s�i) +
wi(1, s�i) = wi. Therefore we obtain that wi(1, s�i) >
wi
2 and wi(0, s�i) <

wi
2 . Since Fi is the majority func-

tion, it follows that ci(0, s�i)� ci(1, s�i) > 0.

Let us note that Proposition 2 is, in a sense, “tight”. For the
first two cases of Proposition 2, it is easy to construct GDP
games with non-identity and non-weighted identity functions
that do not admit exact and weighted potential functions, re-
spectively. We give examples indicating that, by slightly de-
viating from either of the assumptions of switch constraints
or majority functions, we obtain games that do not admit an
ordinal potential function.

Indeed, we will first show that if Fi are threshold (but not
majority) functions, we may have a game that does not ad-
mit an ordinal potential function. Consider a game with two
agents, the switch constraints C1 = s1�s2 and C2 = s1�s2
and the belief constraints B1 = s1 and B2 = s2 with weights
W (C1) = 1, W (C2) = 2, W (B1) = 1 and W (B2) = 2.
F1 is the majority function and F2 is a threshold function

56



with a threshold at 5. Suppose that an ordinal potential �
exists. It is easy to see that c1(0, 0) > c1(1, 0) and, hence,
it must also be �(0, 0) > �(1, 0). On the other side, we
can easily verify that c2(0, 0) = c2(0, 1), c1(0, 1) = c1(1, 1)
and c2(1, 1) = c2(1, 0). Hence, it should also be �(0, 0) =
�(0, 1) = �(1, 1) = �(1, 0), a contradiction.

The same may happen if the Fi’s are majority functions
but there are non-switch constraints. Consider a game with
three agents, the switch constraint C1 = s1 � s2, two or-
constraints C2 = s1 _ s3 and C3 = s2 _ s3, and belief
constraints B1 = s1, B2 = s2, and B3 = s3 with weights
W (C1) = W (B1) = W (B2) = W (B3) = 3, W (C2) = 2,
W (C3) = 8. We can easily verify that c1(0, 1, 1) = 1
but c1(1, 1, 1) = c2(1, 1, 1) = c2(1, 0, 1) = c1(1, 0, 1) =
c1(0, 0, 1) = c2(0, 0, 1) = c2(0, 1, 1) = 0. An ordinal poten-
tial function � should then satisfy �(0, 1, 1) > �(1, 1, 1) =
�(1, 0, 1) = �(0, 0, 1) = �(0, 1, 1), a contradiction.

4.1 Better-Response Equivalence
We now define the concept of better-response equivalence in
order to state the main theorem of this section.
Definition 3. Two games G = ([n], (Si)i2[n], (ci)i2[n]) and
G0 = ([n], (Si)i2[n], (c

0
i)i2[n]) with the same set of profiles

S are better-response equivalent if, for every pair of profiles
s, s0 2 S that differ in the strategy of only one agent (say i),
we have that ci(s) > ci(s0) if and only if c0i(s) > c0i(s

0).
Clearly, one could construct artificial classes of games that

are better-response equivalent to generalized ordinal poten-
tial games. The importance of our next statement is that it
involves a very natural class of games, namely GDP games.
Theorem 4. Any two-strategy generalized ordinal potential
game G is better-response equivalent to a generalized discrete
preference game G0.

The rest of this subsection is devoted to proving Theorem
4. Without loss of generality, we assume that the strategy set
of each agent of G is {0, 1}. The profiles can then be iden-
tified with the nodes of an n-dimensional undirected hyper-
cube. An undirected edge (s, s0) of the hypercube connects
two profiles that differ in the strategy of a single agent; e.g.,
s = (0, s�i) and s

0 = (1, s�i), for some i 2 [n]. Sometimes
we denote edge (s, s0) by (s, i) or, equivalently, by (s0, i) and
call it a dimension-i edge.
Directing and Tagging Edges. If (s, s0) is a dimension-i
edge and ci(s) > ci(s0), then we direct it from s to s

0. If
instead ci(s) = ci(s0), the edge is left undirected. Notice that,
since G is a generalized ordinal potential game, the partially
directed hypercube is essentially the Nash dynamics graph of
G and contains no cycle consisting only of directed edges.
Then we tag undirected edges as good as long as we can do
so without creating a cycle consisting solely of directed and
good edges. Remaining edges are called bad.
Claim 5. For each pair of profiles s, s0, there is an undirected
path on the partially directed hypercube between s and s

0 that
does not use bad edges.

Proof. Suppose that all undirected paths from s to s

0 contain
some bad edge. If we tag at least one bad edge as good, no
cycle is created, a contradiction.

Defining the Constraints. Let us now start to describe the
generalized discrete preference game G0 that will turn out to
be equivalent to G. It has two types of constraints.

Node constraints: For every node s of the hypercube, G0

has constraint V (s) that is satisfied at all profiles except at s.
It is easy to see that V (s) can be expressed as an or-constraint
and that every agent is involved in V (s).

Edge constraints: For every edge (s, i), G0 has constraint
E(s, i) that is satisfied at all profiles except at each endpoints,
(0, s�i) and at (1, s�i). It is easy to see that E(s, i) can be
expressed as an or-constraint that involves all agents except i.

Defining the Constraint Weights. In order to define the
weights of the constraints, let us fix some additional notation.
We will identify a constraint with its weight. Thus, the weight
of the constraint associated with edge (s, i) is E(s, i) and the
weight of the constraint associated with node s is V (s). We
also denote by E(s) the weight of all edge constraints inci-
dent to s; that is, E(s) =

P
i E(s, i). Similarly, for an agent

i we denote by E(i) the sum of the weights of all dimension-
i edge constraints; that is, E(i) =

P
s E(s, i). Finally, we

denote by V =
P

s V (s) the sum of the weights of all node
constraints and by E =

P
s,i E(s, i) the sum of the weights

of all edge constraints.
We assign weight 0 to each edge constraint, except for the

ones corresponding to bad edges that have weight 2n.
The weights of the node constraints are determined as fol-

lows. We remove all bad edges from the (partially directed)
hypercube and contract good edges by merging endpoints
into super-nodes. By Claim 5 and by the tagging proce-
dure, the resulting graph is a connected directed acyclic graph
(DAG); that is, ignoring direction, for every two super-nodes
X and Y , the DAG contains a directed path between X and
Y . Weights of the node constraints are determined so that
the two following properties hold: If s and s

0 belong to
the same super-node X of the DAG, then V (s) + E(s) =
V (s0) + E(s0), and we set W (X) = V (s) + E(s); If s and
s

0 belong to different super-nodes X and Y and there is a di-
rected path from X to Y , then W (X) = V (s) + E(s) >
V (s0) + E(s0) = W (Y ).

Note that an assignment satisfying both these properties
always exists. Indeed, we can determine the weights of
the node constraints according to a topological ordering of
the super-nodes of the DAG. For every super-node X of in-
degree 0, we determine the node s? with the maximum E(s?)
among all of its nodes and set V (s?) = N = (n + 1)2n.
Then we set V (s) = N � E(s) + E(s?) for all the other
nodes s of X . Observe that W (X) = N + E(s?). Sup-
pose now that we have set the weights for all super-nodes that
have an out-going edge to super-node Y and let X be the
such super-node that minimizes W (X). Then for all nodes
s

0 of Y we set V (s0) = W (X) � 1 � E(s0). Observe that
W (Y ) = W (X)� 1.

We next prove that these weights are non-negative. Let
s be a node, Ys be the corresponding super-node. Consider
the super-nodes of in-degree 0 from which it is possible to
reach Ys in the DAG and let X be the such super-node that
minimizes W (X). We have V (s) � W (X)�dist(Ys, X)�
E(s0), where dist(Ys, X) denotes the distance between X
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and Ys in the DAG. Since W (X) � N , dist(Ys, X)  2n�
1 and E(s0)  n2n, we have that our choice of N is sufficient
to make V (s) � 0 for every node s.
Determining the Fi’s. Remember that wi(s) denotes the sum
of the weights of the constraints that involve agent i and that
are satisfied at profile s. Note that wi(s) = V � V (s) +E �
E(i) � E(s) + E(s, i). We next show that, for each agent
i, there is a monotone non-decreasing function Fi such that
the resulting game G0 is better-response equivalent to G. It
suffices to show that, if (s, s0) is a dimension-i directed edge,
then Fi(wi � wi(s)) > Fi(wi � wi(s0)); if instead (s, s0)
is a (good or bad) undirected edge, then Fi(wi � wi(s)) =
Fi(wi � wi(s0)).

Consider first a directed edge (s, s0) and let us denote by
X and Y the super-nodes of the endpoints. By construction,
we have W (X) = V (s) + E(s) > V (s0) + E(s0) = W (Y )
which, together with the observation that E(s, i) = E(s0, i),
implies wi(s) < wi(s0). Therefore, the directed edge (s, s0)
imposes the constraint that Fi is not constant in the interval
[wi � wi(s0), wi � wi(s)].

If (s, s0) is a good edge, then s and s

0 belong to the same
super-node and thus V (s) + E(s) = V (s0) + E(s0), which
implies that wi(s) = wi(s0).

So, it remains to consider a bad edge (s, s0) with wi(s) <
wi(s0). Then, function Fi must be constant in the inter-
val [wi � wi(s0), wi � wi(s)] and this is possible if and
only if for every directed dimension-i edge (z,w), the in-
terval [wi � wi(w), wi � wi(z)] is not entirely contained
in [wi � wi(s0), wi � wi(s)]. Indeed, we now prove that
wi(z) < wi(s). Let X and Z be the super-nodes corre-
sponding to s and z, respectively. Then, wi(z) � wi(s) =
W (X)�W (Z)�E(s, i)+E(z, i) = W (X)�W (Z)�2n,
where we have used that (s, i) is a bad edge (hence, E(s, i) =
2n) and (z, i) is a directed edge (hence, E(z, i) = 0). Since
W (X)�W (Z)  dist(X,Z)  2n� 1, we have wi(z) <
wi(s), as desired. The proof of Theorem 4 is now complete.

Let us add a technical remark on the above proof. Observe
that there exist no or-constraint of cardinality n�1 for n = 2.
However, the above proof can be adjusted in order to work
with belief constraints in place of or-constraints of cardinality
n � 1. Note that, in this case, we need to satisfy the further
requirement according to which at most one belief constraint
for each agent has a positive weight. However, from Claim 5,
it follows that at most one bad edge can exist in this case.
If no bad edge exists, the proof above does not require any
change. If exactly one bad edge exists, we assume without
loss of generality that 1 is the agent involved in this edge.
Then, it can be verified that the proof above holds even if
agent 2 assigns weight 0 to both her belief constraints, and
agent 1 assigns weights 0 and M .

4.2 Impossibility of Isomorphism
Even if structural equivalence between two-strategy general-
ized ordinal potential games and GDP games is certainly im-
portant, one may still wonder whether a stronger result (in the
sense of the following definition) is possible.
Definition 6. Two games G = ([n], (Si)i2[n], (ci)i2[n]) and
G0 = ([n], (Si)i2[n], (c

0
i)i2[n]) with the same set of profiles S

are called isomorphic if for all profiles s 2 S, ci(s) = c0i(s).
In particular, given a two-strategy game that admits a gen-

eralized ordinal potential, is there an isomorphic generalized
discrete preference game? Unfortunately, this is not possible.
To demonstrate the impossibility, we will consider the fol-
lowing simple two-agent game with two strategies per agent:

0 1
0 1,1 2,0
1 1,0 0,1

The first value in each cell is the cost of the row agent
and the second one is the cost of the column agent. It can
be easily verified that the following function is a general-
ized ordinal potential function for this game: �(00) = 3,
�(01) = 2, �(11) = 1 and �(10) = 0. In order to
build an isomorphic generalized discrete preference game
we need to define a non-decreasing function F1 so that
the conditions F1 (w1 � w1(01)) > F1 (w1 � w1(00)) and
F1 (w1 � w1(10)) > F1 (w1 � w1(11)) are satisfied. These
conditions simply require that the row agent strictly prefers
profile 00 to profile 01 and profile 11 to profile 10. From
the monotonicity of F1, it must be wi(01) < wi(00) and
wi(10) < wi(11). Recall that w(s) is the sum of the weights
of all constraints satisfied at s. For b 2 {0, 1}, let �i(b) be
the weight of the belief constraint of agent i if it is satisfied
by b, and 0 otherwise. Since there are only two agents, each
of them is involved in all constraints, besides the belief con-
straints of the other agent. Using this notation, the above in-
equalities can be expressed as

w(01)� �2(1) < w(00)� �2(0), (3)
w(10)� �2(0) < w(11)� �2(1). (4)

For the column agent, we need a function F2 so that
the conditions F2 (w2 � w2(00)) > F2 (w2 � w2(01)) and
F2 (w2 � w2(11)) > F2 (w2 � w2(10)) are satisfied. The
same arguments as above allow us to rewrite these require-
ments as

w(00) < w(01), (5)
w(11) < w(10). (6)

Hence, in order to satisfy (3) and (5) we need that �2(1) >
�2(0). But, in order to satisfy (4) and (6) we need that
�2(0) > �2(1). We have obtained the desired contradiction.

5 Epilogue
We believe that our findings could open new research lines for
understanding the performances and the complexity of equi-
libria. Even though (approximate) equilibria and convergence
issues have been extensively studied in exact potential games
— e.g., see [Awerbuch et al., 2008; Bhalgat et al., 2010;
Caragiannis et al., 2014; 2011; Christodoulou et al., 2012;
Fabrikant et al., 2004] — generalized ordinal potential games
are much less understood. Whether generalized discrete pref-
erence games could play a role analogous to that of conges-
tion games in this direction certainly deserves investigation.

We also remark that some of our results can be extended
to more than two strategies by opportunely choosing a metric
for the distances among opinions. Anyway, we refrain to in-
troduce new, possibly unrealistic, metrics, and look forward
for the definition of a natural and largely-approved metric.
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