
Selective Norm Monitoring

Natalia Criado

King’s College London, UK
natalia.criado@kcl.ac.uk

Jose M. Such

Lancaster University, UK
j.such@lancaster.ac.uk

Abstract

Real-world norm monitors have limited capabili-
ties for observing agents. This paper proposes a
novel mechanism to take full advantage of limited
observation capabilities by selecting the agents to
be monitored. Our evaluation shows this signifi-
cantly increases the number of violations detected.

1 Introduction

Within the Multi-agent System (MAS) area, norms coor-
dinate and regulate the activity of autonomous agents in-
teracting in a given social context [López y López et al.,
2006]. Several authors have proposed infrastructures to mon-
itor agent actions and detect norm violations [Gaertner et al.,
2007; Minsky and Ungureanu, 2000; Modgil et al., 2009].
The majority of these proposals assumed that actions are al-
ways observable. However, this assumption does not always
hold and, in practice, norm monitors may have limited obser-
vation capabilities. Very recent work on imperfect norm mon-
itoring proposes solutions to ensure complete observability
either by adding more monitors to observe all agents [Bulling
et al., 2013] or by adapting the norms to what can be mon-
itored [Alechina et al., 2014]. However, there are circum-
stances in which norms cannot be modified (e.g., contract/law
monitoring) or adding monitors is expensive and/or not feasi-
ble. This paper goes beyond these approaches by predicting
the actions that can be executed by each agent to select those
agents that are worth monitoring, so norm monitors could fo-
cus their limited observation capabilities on them.

2 Preliminary Definitions

L is a first-order language containing a finite set of predicate
and constant symbols, the logical connective ¬, the equal-
ity (inequality) symbol = (6=), the true (false) proposition >
(?), and an infinite set of variables. The predicate and con-
stant symbols are written beginning with a lower case letter.
Variables are written beginning with a capital letter. We will
relate our formulae via logical entailment ` (6`). We also as-
sume the standard notion of substitution of variables [Fitting,
1996]; i.e., a substitution � is a finite and possibly empty set
of pairs Y/y where Y is a variable and y is a term.

start

end

open

upload

download
close

Figure 1: Network File Sharing Protocol

The set of grounded atomic formulas of L is built of a fi-
nite set of predicates that characterise the properties of the
world relevant to norm monitoring. By a situation, we mean
the properties that are true at a particular moment. Some of
these properties are static and not altered by action execu-
tion, whereas other properties are dynamic and changed due
to agent actions. Specifically, we represent static properties
as a set1 of atomic grounded formulas of L, denoted by g. A
state s is a set of grounded atomic formulas of L, describing
dynamic properties which hold on state s. Thus, a situation is
built on a “closed world assumption” and defined by a set of
static properties g and a state s.
EXAMPLE 1. To illustrate our proposal, we shall use
a simplified example of users interacting with a network
file sharing system using the protocol depicted in Figure
1. In this example, L contains: 4 predicate symbols
(user,file, session, opened), to represent users, files, users
having initiated a session on the system, and files opened by
users; and constant symbols representing users (u1, u2, u3)
and files (f1 , f2). Information about users and files is static
and represented as:

g = {user(u1), user(u2), user(u3),file(f1),file(f2)}

Information about sessions and open files is dynamic.
Specifically, the initial state s0 is defined as follows:

s0 = {session(u2), session(u3), opened(u2 , f1)}

Action Definitions. In line with the existing literature
[Boutilier and Brafman, 2001], actions are represented us-
ing preconditions and postconditions. If a situation does not
satisfy the preconditions, then the action cannot be applied.

1In this paper sets are to be interpreted as the conjunction of their
elements.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

208

In contrast, if the preconditions are satisfied, then the action
can be applied transforming the current state into a new state
in which all negative (vs. positive) literals appearing in the
postconditions are deleted (vs. added).

Definition 1. An action description is a tuple hname,
pre, posti where:

• name is the action name;
• pre is the precondition, i.e., a set of positive and neg-

ative literals of L (containing both dynamic and static
properties) as well as equality and inequality constraints
on the variables;

• post is the postcondition; i.e., a set of positive and neg-
ative literals of L (containing dynamic properties only).

Given an action description d, we denote by pre(d), and
post(d) the action precondition, and postcondition.
EXAMPLE 2. Figure 1 shows the 6 actions2 considered in
our running example represented as arcs, each of which has
associated the following action description:

hstart, {user(U),¬session(U)}, {session(U)}i
hend, {user(U), session(U),¬opened(U, F)}, {¬session(U)}i

hopen, {user(U), session(U),file(F1),file(F2),
¬opened(U, F2)}, {opened(U, F1)}i

hupload, {user(U), session(U),file(F), opened(U, F)}, {}i
hdownload, {user(U), session(U),file(F), opened(U, F)}, {}i

hclose, {user(U), session(U),file(F), opened(U, F)},
{¬opened(U, F)}i

Definition 2. Given a situation represented by a state s
and a set of static properties g, and an action description
hname, pre, posti; an action instance (or action) is a tuple
hname, pre0, post0i such that:
• There is a substitution � of variables in pre, such that

s, g ` � · pre;
• pre0 is a set of grounded literals in � · pre containing

dynamic properties only;
• post0 = � · post.

Given an action a, we denote by actor(a) the agent perform-
ing the action, and by pre(a), post(a) the precondition, and
postcondition.

Given a set of actions A = {a1, ..., an}, we de-
fine pre(A) =

S
pre(ai), post(A) =

S
post(ai) and

actor(A) =
S
actor(ai).

In a MAS, concurrent actions, which are sets of actions
that occur at the same time and do not necessarily imply agent
coordination, define state transitions. For the sake of simplic-
ity, we assume that each agent performs one action at a time.
We also assume that concurrent actions are mutually consis-
tent; i.e., in a concurrent action there are not contradictions
among the actions’ preconditions and postconditions.
EXAMPLE 3. Assume that at state s0 the following concur-
rent action occurred — action descriptions and instances are
represented by their name and parameters:

A = {start(u1), upload(u2, f1), open(u3, f1)}

2Our proposal is agnostic wrt. the existence of a NOP action that
allows agents to remain still. For the sake of clarity and simplicity,
the running example does not include the NOP action. However,
our extensive experiments include the NOP action (see Section 4).

Norm Definitions. We consider norms as formal state-
ments that define patterns of behaviour by means of deontic
modalities (i.e., obligations and prohibitions). Specifically,
we consider norms as conditional rules of behaviour that de-
fine under which circumstances a pattern of behaviour be-
comes relevant and must be fulfilled [López y López et al.,
2006; Vasconcelos et al., 2007].

Definition 3. A norm is defined as a tuple hdeontic,
condition, actioni, where:

• deontic 2 {O,F} is the deontic modality, determining
if the norm is an obligation (O) or prohibition (F);

• condition is a set of literals of L as well as equality
and inequality constraints that represents the situations
in which the norm is relevant;

• action is a (possibly instantiated) action description.
We consider a closed legal system, where everything is

considered permitted by default, and obligation and prohibi-
tion norms define exceptions to this default permission rule.
We define that a norm is relevant to a specific situation (in-
stantiated) if the norm condition is satisfied in the situation;
i.e., if there is a substitution of the variables in the norm con-
dition such that the constraints in the norm condition are sat-
isfied and the positive (vs. negative) literals in the norm con-
dition are true (vs. false) in the situation. Finally, the se-
mantics of instances (and norms in general) depends on their
deontic modality. An obligation instance is fulfilled when the
mandatory action is performed and violated otherwise, while
a prohibition instance is violated when the forbidden action
is performed and fulfilled otherwise.
EXAMPLE 4. In our example, there is a norm that forbids a
user to open a file when another user has already opened it
to avoid concurrent access problems:

hF , {user(U2),file(F), opened(U2, F)}, open(U1, F)i
which instantiated as follows in state s0 (see Example 1):

hF , open(U1, f1)i where � = {F/f1 , U2/u2}
That is, as u2 had already opened the file f1, then any other
user U1 who opens the file violates the norm; e.g., u3 violates
the norm (see Example 3).

3 NM Information Model

Definition 4. A norm monitor (NM) is defined as a tuple
hG,N,D, oi where: G is a set of agents to be monitored; N
is the set of norms that regulate agent actions; D is a set of
action descriptions that represents the actions that can be per-
formed by agents; and o 2 N : o  |G| represents the obser-
vation capabilities of the monitor (i.e., the number of agents
that can be monitored simultaneously). Note this o models
NMs can have different observation capabilities. The evalua-
tion section proves the significant improvements obtained by
our NMs regardless of these observation capabilities.

The goal of the NM is to select the set of agents to be mon-
itored to maximize the number of norm violations and fulfil-
ments detected. Norm enforcement is out of the scope of this
work and we assume that once the NM detects a norm vio-
lation (vs. fulfilment), it applies the corresponding sanction
(vs. reward).

209

3.1 State Representation

As the NM may observe a subset of the actions performed by
agents, it has partial information about the state of the world.
The NM represents each partial state of the world, denoted by
p, using an “open world assumption” as a set of grounded lit-
erals that are known in the state. Thus, a partial state contains
positive (vs. negative) grounded literals representing dynamic
properties known to be true (vs. false) in the state. The rest
of dynamic properties are unknown.

We assume that the NM monitor has complete knowledge
of the initial state. Thus, at t = 0 the NM knows which
grounded atomic formulas are true or false in the current state,
i.e., the partial state p0 is equivalent to s0.
EXAMPLE 5. In our example, the NM knows which grounded
atomic formulas are true or false in the initial state (p0 ⌘ s0):

p0 = {¬session(u1), session(u2), session(u3)
¬opened(u1, f1), opened(u2, f1),¬opened(u3, f1),
¬opened(u1, f2),¬opened(u2, f2),¬opened(u3, f2)}

3.2 Action Prediction

As defined above, the NM has limited capabilities for observ-
ing agent actions, so it should decide which agents will be
monitored in the next step to make the most of its capabili-
ties. In this paper, we propose that the NM makes this de-
cision based on the actions that can be performed by agents
according to the current state of the word. In particular, the
NM predicts the actions agents may execute and ranks agents
according to the chances of violating/fulfilling a norm in the
next time step. In the following, we introduce full and ap-
proximate methods for predicting agent actions.
Full Action Prediction. Full prediction searches exhaus-
tively the actions that can be performed by all the agents.

Definition 5. Given a partial state description p (current
state); we define search as a function that computes sets of
solutions S = {S1, ..., Sn} such that each solution Si in S is
a set of mutually consistent actions such that:

• each agent executes one action in Si;
• the action set Si is consistent with the current state (i.e.,
g, p, pre(Si) 6` ?);

• the final state induced by the action set Si is consistent
(i.e., g, post(Si) 6` ?).

The NM does not require that the preconditions of actions in
a solution are met in the current state, since it is possible that
the preconditions are true, but the NM is unaware of it.

Once all solutions are found, the NM calculates the predic-
tion collection as follows:

P = {P
↵

: 8↵ 2 G}

where actions predicted for agent ↵ 2 G are defined as:
P

↵

= {a : a 2 S

i

^ S

i

2 S ^ actor(a) = ↵}

The problem with full prediction is that finding all the se-
quences of mutually consistent actions is exponential, as it
requires to recursively search for all the sequences of mutu-
ally consistent actions that may be executed by agents. In the

worst case, the temporal cost of this search is O(|G||D|⇥ID),
where G is the set of agents, D is the set of action descriptions
and ID is the maximum number of instantiations per action
(i.e., the number of ways in which variables in an action pre-
condition can be instantiated). This situation arises when all
actions are applicable for all agents. Thus, full prediction is
only feasible for small scale scenarios.

Approximate Action Prediction. Approximate prediction
performs an approximate search for the actions performed by
agents that are consistent with the current state, but the NM
relaxes the condition that actions are mutually consistent.

Definition 6. Given a partial state p (current state); we define
approximate search as a function that calculates the approxi-
mate solution set eS = {ai, ..., ak} such that:

• the preconditions of each action in eS are consistent with
the current state (i.e., 8a 2 eS : g, p, pre(a) 6` ?).

Once all solutions are found, the NM calculates the predic-
tion collection as follows:

P = {P
↵

: ↵ 2 G}

where: P
↵

= {a : a 2 eS ^ actor(a) = ↵}

EXAMPLE 6. Given the partial state p0 (defined in Exam-
ple 5), the approximate search predicts the actions of agents
u1, u2 and u3. In particular, the NM infers that u1 will per-
form action start(u1) —this action is the only one consistent
with p0. The NM infers that u2 can perform three different ac-
tions upload(u2, f1), download(u2, f1) and close(u2, f1)
—these three actions are the only ones consistent with p0.
Finally, the NM infers that u3 can perform three different ac-
tions end(u3), open(u3, f1) and open(u3, f2) —these three
actions are the only ones consistent with p0. The approximate
solution set for this problem is defined as:

e
S = {start(u1), upload(u2, f1), download(u2, f1),

close(u2, f1), end(u3), open(u3, f1), open(u3, f2)}

and the sets of predicted actions are:
P

u1 = {start(u1)}
P

u2 = {upload(u2, f1), download(u2, f1), close(u2, f1)}
P

u3 = {end(u3), open(u3, f1), open(u3, f2)}

Approximate prediction can be computed in polynomial
time by a filter algorithm that searches for each agent the ac-
tions it can perform in a given state. The temporal cost of this
algorithm is O(|G|⇥ |D|⇥ ID).

3.3 Selection of Agents to be Monitored

Once the actions of agents have been predicted, the NM
should select which agents will be monitored in the next step.
When the NM predicts that an agent is only able to perform
one action, the NM can be sure about the action that will be
performed by the agent and there is no need to observe it as
it can be taken for granted. In this case, the agent is deleted
from the prediction collection and the action is added to the
set of observations. The rest of the agents are ranked accord-
ing their interest from a norm monitoring point of view. In

210

particular, o agents with the highest rank are selected to be
monitored.

The rank of a particular agent is calculated considering the
chances it violates or fulfils a norm3. Given an agent ↵ 2 G,
the rank function (R : G ! [0, 1]) is calculated as a combi-
nation of two factors as follows:

R(↵) = CF (↵)
| {z }

Confidence Factor

⇥ IF (↵)
| {z }

Interest Factor

The interest factor estimates the probability of the action ex-
ecuted by ↵ being of interest to norm monitoring; i.e., the
probability of this action being an action that may violate
or fulfil a norm4. Recall that the NM has partial knowledge
about the state of the world and, as a result, the NM cannot
be sure about the norms that are active at a given moment.
To represent this, the rank function also considers the confi-
dence factor, which is related to how certain the NM is about
the interest factor. The rank function is defined as a product
to ensure that it is: 0 when any of the factors is 0 (e.g., when
the agent is not interesting for norm monitoring), increasing
wrt. both factors and continuous5.

Definition 7. Given an agent ↵ 2 G, a set of predicted
actions for that agent P↵, a partial state description p (current
state), and a set of norms N ; the interest set for agent ↵ is
calculated as the set of predicted actions that could violate a
prohibition or fulfil an obligation:

I

↵

=

⇢
a

����
a 2 P

↵

^ 9hdeontic, condition, actioni 2 N^
9� : ((g, p,� · condition 6` ?) ^ (� · action = a)

�

The interest factor is defined as the ratio of the number of
actions in the interest set to the number of actions in the agent
predicted set:

IF (↵) =
|I

↵

|
|P

↵

|

Definition 8. Given an agent ↵ 2 G, a set of predicted
actions for that agent P↵, a partial state description p (current
state), and a set of norms N ; the confidence set for agent ↵ is
calculated as the set of predicted actions that surely violate a
prohibition or fulfil an obligation:

C

↵

=

⇢
a

����
a 2 P

↵

^ 9hdeontic, condition, actioni 2 N^
9� : ((g, p ` � · condition) ^ (� · action = a)

�

3Note we do not require that the NM has previous knowledge
about agents’ behaviour and it assumes all agents violate norms with
the same probability (e.g., Intrusion Detection Systems [Hu et al.,
2008] cannot know a priori if an IP is malicious as IPs may change
dynamically). However, if the NM observes that a particular agent
tends to violate (vs. fulfil) norms more than others, then the chances
it violates (vs. fulfil) norms could be weighted with these observed
tendencies.

4We assumed all norms are of equal importance. If this is not
the case, then the chances each agent violates/fulfils a norm could
be pondered with the norm importance.

5The aim of this paper is not to analyse combination operations
for data fusion, as this has been done in [Bloch, 1996]. In this paper,
we make use of a well-known combination operator with character-
istics suitable for selecting monitored agents.

The confidence factor is defined as the ratio of the number of
actions in the confidence set to the number of actions that can
be executed by the agent:

CF (↵) =
|C

↵

|
|P

↵

|

Once the NM selects the agents to be monitored (denoted
by T), then it observes their actions and calculates the list of
predicted actions for unobserved agents as follows:

L =
[

8P↵2P:
↵ 62T

P
↵

EXAMPLE 7. Considering the sets of predicted actions for
all agents (which have been calculated in Example 6), the
action of user u1 can be taken for granted. Thus, Pu1 is
deleted from P . Then, the NM calculates the rank for users
u2 and u3:

I

u2 = C

u2 = {} R(u2) = 0
3 ⇥ 0

3 = 0
I

u3 = C

u3 = {open(u3, f1)} R(u3) = 1
3 ⇥ 1

3 = 0.17

In this case, the interest and confidence factors are the
same as the NM has complete knowledge of the initial state
(p0 ⌘ s0). Assuming that only one agent can be monitored
(i.e., o = 1), the NM decides to observe actions of user u3
as it is the one with the highest rank. In this case the list of
predictions for unobserved agents is defined as follows:

L = {upload(u2, f1), download(u2, f1), close(u2, f1)}

3.4 State Update

As the NM only observes a subset of the actions performed
by agents, the NM updates its representation of the world (pt)
based on a partial sequence of observed actions. At time t the
NM carries out a monitoring activity and observes some of
the actions performed by agents (Actt). These actions have
evolved st into the next state st+1. If all actions have been
observed (|Actt| = |G|), then the next partial state pt+1 can
be constructed by considering the effect of actions in Actt
on pt and the dynamic properties on pt that have not been
modified by these actions. A different case arises when the
NM observes a subset of the actions performed by the agents
(|Actt| < |G|). In this case, the NM cannot be sure about
the effects of unobserved actions. Thus, the new partial state
pt+1 is constructed by considering the postconditions of the
observed actions (i.e., positive postconditions are positive lit-
erals in pt+1 and negative postconditions are negative literals
in pt+1), the dynamic properties that have not been modified
by the observed and predicted actions, and that the rest of dy-
namic propositions are unknown. Partial states in the general
case are defined as:

Definition 9. Given a partial state description pt correspond-
ing to time t, and a sequence of observed actions Actt ex-
ecuted by agents at time t and the list of predicted actions
for unobserved agents L; the new partial state pt+1 resulting
from executing actions Actt in pt is obtained as follows:

211

p

t+1 =

⇢
e↵ (Act

t

)
S

inv(p
t

, Act

t

) if |Act

t

| = |G|
post(Act

t

)
S

inv(p
t

, Act

t

[L) otherwise

where e↵ is the set formed by the effects of a set of ac-
tions; i.e., the effects are the postconditions of actions and the
preconditions not invalidated by these postconditions. More
formally, given a set of actions A = {a1, ..., an} its effects is
a set of grounded literals as follows:

e↵ (A) =

[

8pre2pre(A):
pre,post(A) 6`?

pre

!
[

[

8post2post(A)

post

!

and inv is the set formed by invariant literals; i.e., literals
of pt that have not been modified by actions. More formally,
given a partial state p and a set of actions A = {a1, ..., an},
the invariant literals are defined as follows:

inv(p,A) =
[

8l2p:
l,post(A) 6`?

l

Besides that, the actions observed can also be used to in-
crease the knowledge about the current state. In particular,
the current state pt is updated considering the preconditions
of observed actions Actt as follows:

p

t

= p

t

[
pre(Act

t

)

EXAMPLE 8. The NM decides to observe action of user u3
and it can take for granted the action executed by u1 (i.e.,
Act0 = {start(u1), open(u3, f1)}). The NM infers the dy-
namic propositions that are known in p1 as follows:

p1 = post(Act0)
[

inv(p0, Act0 [L)

where:
post(Act0) = {session(u1), opened(u3, f1)}

inv(p0, Act0 [L) ={session(u2), session(u3),
¬opened(u1, f1),¬opened(u1, f2),
¬opened(u2, f2),¬opened(u3, f2)}

State p0 remains unaltered as it was already complete.

3.5 Norm Monitoring

Once all the information about the actions performed by the
agents has been analysed, the NM checks which instances
have been violated or fulfilled. Given that the NM has par-
tial knowledge about the current state of the world, the NM
should control norms only when it is completely sure that the
norms are relevant to ensure that the norm monitoring pro-
cess is sound (e.g., the NM cannot indicate that a violation
has occurred when it has not in fact occurred). In particular,
we define that a norm is relevant to a partial situation when
the norm condition is satisfied by the partial situation —i.e.,
a norm hdeontic, condition, actioni is relevant to a partial
situation represented by a partial state p, and the static prop-
erties g; if 9� such that p, g ` � · condition.
EXAMPLE 9. In state p0 the norm that forbids users to open
files already opened is relevant and instantiated:

hF , open(U1, f1)i where � = {F/f1 , U2/u2}

Once the NM has determined the instances that are rele-
vant, it checks compliance with these instances. If the NM
has partial knowledge about the actions performed by agents,
it can only determine that an obligation (vs. prohibition) in-
stance has been fulfilled (vs. violated). If the NM knows all
the actions performed by agents, it can determine whether an
obligation or prohibition has been fulfilled or violated.

Definition 10. Given an norm instance hD, action0i and a
set of actions Act, the instance is defined as:
8
>><

>>:

fulfilled iff (D = O ^ 9� : � · action0 2 Act) or
(D = F^ 6 9� : � · action0 2 Act ^ |Act| = |G|)

violated iff (D = F ^ 9� : � · action0 2 Act) or
(D = O^ 6 9� : � · action0 2 Act ^ |Act| = |G|)

unknown otherwise

EXAMPLE 10. Given that Act0 =
{start(u1), open(u3, f1)}, the NM detects that u3 has
violated the prohibition norm instantiated in p0; i.e., it
opened file f1 while it was opened by u2.

4 Evaluation

This section compares experimentally a NM with full predic-
tion and a NM with approximate prediction to a traditional
norm monitor. None of the existing norm monitoring ap-
proaches selects the agents to be monitored and they only
monitor what they can see by chance. Therefore, in order
to be able to compare our proposal with a traditional one,
we model a traditional monitor as selecting agents randomly.
Also, note that, due to the lack of space, we do not include
the execution time as the cost of full or approximate predic-
tion (exponential and polynomial, respectively) will always
have to be added on top of any cost incurred by a traditional
monitor, so we focus on whether this cost would actually be
worth the increase in the detection of violations/fulfilments.

Extensive Simulation. We implemented a simulator in
Java in which there is a set of agents that perform actions
in a monitored environment described below. We conducted
experiments in which the number of agents G took a random
value within the J1, 100K interval. Besides that, to be able
to compare with the full NM, we also considered small sce-
narios only, in which the number of agents G took a random
value within the J1, 5K, as the full prediction has an exponen-
tial cost and it is intractable for most of the cases with the
default intervals. The number of actions A took a random
value within the J1, 20K interval. The simulation is executed
100 steps.

We modelled different agent types with different capabil-
ities to perform actions. To model these capabilities, a set
of roles is created at the beginning of each simulation. The
number of roles created took a random value within the J1, AK
interval. For each role, a subset of actions are randomly se-
lected as capabilities. To avoid that all roles have similar ca-
pabilities, the number of actions selected as role capabilities
took a random value within the J1, d0.1 ⇤ AeK interval (i.e.,
at maximum each role is capable of performing 10% of the
actions). Each agent is defined as enacting a random subset
of the roles. In each step of the simulation, each agent selects
randomly one action to execute.

212

The environment is described in terms of different prop-
erties (grounded propositions) that can be true or false. The
number of propositions P took a random value within the
JA, 2 ⇤ AK interval (i.e., there is at least one proposition per
each action). Actions allow agents to change the state of
the environment. At the beginning of each simulation, a set
of actions is randomly generated. Besides these actions, a
NOP action, which has no effect on the environment, was
created. Agents’ actions are regulated by a randomly-created
set of norms. In particular the number of norms took a ran-
dom value within the J1, AK (i.e., there is at maximum one
norm per each action). To avoid that norms (actions) have
too many constraints, which would be unrealistic and make
norms (actions) to be only instantiated (executed) on very few
situations, the number of propositions in the conditions took
a random value within the J1, d0.1 ⇤ P eK interval.

To analyse the performance of monitors w.r.t. their capa-
bilities to observe actions, we varied the ratio of observed
actions, which is the number of agents that can be observed
divided by the total (o/|G|). Table 1 shows the 99% con-
fidence intervals for the percentage of detected violations6.
The approximate NM offers on average a 57% performance
improvement over a traditional monitor under partial observ-
ability conditions. A Kruskal-Wallis test also confirmed that
there is a significant difference between the violations de-
tected by the traditional monitor and the approximate NM
(↵ = 0.01). When compared to full NM in small scenar-
ios, the full NM offers on average a 11% performance im-
provement over an approximate NM. The performance of tra-
ditional and approximate monitors is slightly worse in small
scenarios because the number of agents is low w.r.t. the num-
ber of actions.

Obs. Traditional Approx.
Ratio Monitor NM
0% 0± 0% 0±0%
20% 13±1% 26±3%
40% 26±1% 43±3%
60% 40±2% 61±3%
80% 52±3% 76±4%

100% 100±0% 100±0%
G 2 J1, 100K and A 2 J1, 20K

Obs. Traditional Full Approx.
Ratio Monitor NM NM
0% 0±0% 0±0% 0±0%
20% 2±1% 22±3% 18±3%
40% 5±1% 30±3% 26±3%
60% 25±3% 52±4% 48±4%
80% 47±4% 73±3% 68±3%
100% 100±0% 100±0% 100±0%

G 2 J1, 5K and A 2 J1, 20K

Table 1: Observability Experiment

Case Study. We considered a real data set of patient con-
fidentiality laws in the US, which are state-specific laws that
forbid health departments to release personally identifiable
information for specific causes when patients have commu-
nicable diseases. Confidentiality laws in the US7 cover 51
states with an average of over 57 regulations per state (for
a total over 2900 laws). Doctors receive requests to release
patients’ data to other health departments and institutions for
different causes (e.g., research). Depending on the state, the
cause, and patient’s diseases, the release of personally identi-
fiable information without patient consent may be illegal. To
comply with state laws, doctors should verify if a patient is
affected by a law and, if need be, manually anonymise the

6Similar results are obtained in case of fulfilments.
7http://lawatlas.org/query?dataset=

public-healthdepartments-and-state-patient-confidentiality-laws

patient textual data before sending it. Norm monitoring in
this domain is extremely challenging, as health records are
mostly free text written by doctors [Meystre et al., 2008] and
it is infeasible to have human operators investigating all data
exchanges, so there will be incomplete observations for mon-
itoring compliance with patient confidentiality laws.

We implemented this case study in Java so that compli-
ance with the state norms is controlled by an NM. In each
simulation, we randomly generate doctors J1, 100K based on
each state, randomly assign J1, 100K patients to each doctor,
and patients are assigned randomly some of 235 distinct dis-
eases [Lozano et al., 2013]. In each step of the simulation, re-
quests of information are generated and each doctor chooses
randomly to verify compliance with the confidentiality laws
stated above or to send the data straight-away8. Table 2 shows
the 99% confidence intervals for the percentage of detected
violations per observation ratio. Due to the size of the prob-
lem, we could not get results for the full prediction in rea-
sonable time. The approximate NM offers on average a 32%
performance improvement over a traditional monitor under
partial observability conditions.

Observation Ratio Traditional Monitor Approximate NM
0% 0 ±0% 0±0%

20% 20±✏% 33 ±✏%
40% 40±✏% 57±2%
60% 60±✏% 77±2%
80% 80±✏% 95±✏%
100% 100±0% 100±0%

Table 2: Patient Confidentiality Laws Case Study

5 Discussion

Most of the existing proposals on norm monitoring [Gaert-
ner et al., 2007; Minsky and Ungureanu, 2000; Modgil et al.,
2009] assume that monitors have complete observations. Ex-
ception to these approaches are two recent proposals [Bulling
et al., 2013; Alechina et al., 2014]. In [Bulling et al., 2013],
the partial observability problem is addressed by combining
different norm monitors to build ideal monitors (i.e., moni-
tors that together are able to monitor actions of all agents).
In [Alechina et al., 2014], the authors propose to synthesise
an approximate set of norms that can be monitored given the
observation capabilities of a monitor. However, there are cir-
cumstances in which norms cannot be modified (e.g., contract
and law monitoring) or ideal monitors are expensive and/or
not feasible. We take a different approach in which norms
and monitors’ observation capabilities remain unchanged and
monitors select which agents are monitored based on two dif-
ferent prediction processes: full and approximate. This ob-
viously adds a cost to traditional norm monitoring. How-
ever, our experiments demonstrate that a NM selecting agents
to be monitored using any of these prediction processes de-
tects significantly more violations than a traditional monitor,
and in particular, it shows the polynomial cost that approx-
imate would introduce is well worth the 32%-57% gain on

8We sought to study the performance of different norm monitors
ceteris paribus (i.e., without the noise introduced by specific doctor
behaviour, law enforcement, etc.).

213

detected violations as shown in the evaluations, which would
be missed by a traditional monitor.

References

[Alechina et al., 2014] Natasha Alechina, Mehdi Dastani,
and Brian Logan. Norm approximation for imperfect mon-
itors. In Proc. of AAMAS, pages 117–124, 2014.

[Bloch, 1996] Isabelle Bloch. Information combination op-
erators for data fusion: a comparative review with classi-
fication. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 26(1):52–67, 1996.

[Boutilier and Brafman, 2001] Craig Boutilier and Ronen I
Brafman. Partial-order planning with concurrent interact-
ing actions. Journal of Artificial Intelligence Research,
14(1):105–136, 2001.

[Bulling et al., 2013] Nils Bulling, Mehdi Dastani, and Max
Knobbout. Monitoring norm violations in multi-agent sys-
tems. In Proc. of AAMAS, pages 491–498, 2013.

[Fitting, 1996] Melvin Fitting. First-order logic and auto-
mated theorem proving. Springer, 1996.

[Gaertner et al., 2007] Dorian Gaertner, Andres Garcia-
Camino, Pablo Noriega, J-A Rodriguez-Aguilar, and
Wamberto Vasconcelos. Distributed norm management in
regulated multiagent systems. In Proc. of AAMAS, pages
624–631, 2007.

[Hu et al., 2008] Weiming Hu, Wei Hu, and Steve Maybank.
Adaboost-based algorithm for network intrusion detection.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 38(2):577–583, 2008.

[López y López et al., 2006] Fabiola López y López,
Michael Luck, and Mark d’Inverno. A normative
framework for agent-based systems. Computational &
Mathematical Organization Theory, 12(2-3):227–250,
2006.

[Lozano et al., 2013] Rafael Lozano, Mohsen Naghavi, Kyle
Foreman, Stephen Lim, Kenji Shibuya, Victor Aboy-
ans, Jerry Abraham, Timothy Adair, Rakesh Aggarwal,
Stephanie Y Ahn, et al. Global and regional mortality from
235 causes of death for 20 age groups in 1990 and 2010: a
systematic analysis for the global burden of disease study
2010. The Lancet, 380(9859):2095–2128, 2013.

[Meystre et al., 2008] Stéphane M Meystre, Guergana K
Savova, Karin C Kipper-Schuler, John F Hurdle, et al. Ex-
tracting information from textual documents in the elec-
tronic health record: a review of recent research. Yearb
Med Inform, 35:128–44, 2008.

[Minsky and Ungureanu, 2000] N.H. Minsky and V. Un-
gureanu. Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems.
ACM Transactions on Software Engineering and Method-
ology, 9(3):273–305, 2000.

[Modgil et al., 2009] S. Modgil, N. Faci, F. Meneguzzi,
N. Oren, S. Miles, and M. Luck. A framework for moni-
toring agent-based normative systems. In Proc. of AAMAS,
pages 153–160, 2009.

[Vasconcelos et al., 2007] Wamberto Vasconcelos, Martin J
Kollingbaum, and Timothy J Norman. Resolving conflict
and inconsistency in norm-regulated virtual organizations.
In Proc. of AAMAS, pages 632–639. ACM, 2007.

214

