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Abstract

In this paper, we employ simulation-based meth-
ods to study the role of a market maker in improv-
ing price discovery in a prediction market. In our
model, traders receive a lagged signal of a ground
truth, which is based on real price data from pre-
diction markets on NBA games in the 2014–2015
season. We employ empirical game-theoretic anal-
ysis to identify equilibria under different settings of
market maker liquidity and spread. We study two
settings: one in which traders only enter the market
once, and one in which traders have the option to
reenter to trade later. We evaluate welfare and the
profits accrued by traders, and we characterize the
conditions under which the market maker promotes
price discovery in both settings.

1 Introduction

Prediction markets offer a marketplace in which traders can
buy or sell securities whose payoffs are based on the real-
izations of unknown future events [Wolfers and Zitzewitz,
2004]. Whereas traditional financial markets exist to facilitate
investment, speculation, and hedging, the express purpose of
a prediction market is to forecast future events. Prices in a
prediction market have direct interpretations as event proba-
bilities, and therefore price discovery in this context becomes
synonymous with information aggregation.

The most common prediction market structure in the liter-
ature relies on a centralized market maker (MM) to provide
liquidity, or the prevalence of opportunities to trade at current
market prices. Central among these designs is the Logarith-
mic Market Scoring Rule (LMSR) devised by Hanson [2007],
which uses a cost function to assign charges to trades and
prices to securities. The cost function is parametrized by
a liquidity parameter to control the sensitivity of prices to
trade volume, and can be adapted to implement a spread be-
tween buy and sell prices. These parameters have an im-
portant effect on prediction performance and MM loss but
can be difficult to set in practice, especially given the chal-
lenge of anticipating trader behavior [Brahma et al., 2012;
Othman and Sandholm, 2010; Othman et al., 2013].

In this paper, we combine agent-based simulation, equi-
librium computation, and real-world data to characterize the

conditions that promote price discovery in a prediction mar-
ket. We introduce the use of empirical game-theoretic anal-

ysis (EGTA) in the context of prediction markets to uncover
trader strategies in equilibrium, which allows us to quantify
the impact of different market parametrizations and environ-
ments. EGTA has been used to study multi-agent systems in
financial markets [Wah and Wellman, 2015], and related ap-
proaches have examined continuous double auctions [Phelps
et al., 2004; Walsh et al., 2002]. Our study is the first to em-
ploy EGTA to study prediction markets, and offers a proof-
of-concept of the technique in this context.

In our model, there is a single security traded in a market
with an LMSR market maker. Our prediction market is popu-
lated by informed and less informed traders that each receive
a lagged signal of a ground truth, as well as noise traders who
create profit opportunities. The ground truth we use is based
on prediction market data from Betfair on NBA games in the
2014–2015 season. Strategic traders formulate a belief on the
value of the security by forming a convex combination of the
MM’s quoted price and their own information. We focus on
trader behavior in equilibrium, where market participants are
strategically responding to each other. We compare two dif-
ferent modes of market entry: one where traders enter only
once, and one where they are allowed multiple entries.

Our methodology is as follows. We first verify that our
ground-truth data is well-calibrated—that is, for any proba-
bility level, the proportion of price series at that level matches
the proportion of realized outcomes. This confirms that the
ground truth is a consistent signal of payout. To obtain pay-
off data for EGTA equilibrium computations, we simulate
our prediction market model using a discrete-event simula-
tion system that samples the ground truth with replacement.
Once we identify equilibria, we evaluate market performance
in terms of MM loss and price discovery on a hold-out sam-
ple of the ground truth, after confirming that in- and out-of-
sample metrics such as player profits closely agree.

As expected, our results show that price discovery is sensi-
tive to the liquidity and spread settings, as noted in practice.
Our analysis also reveals that the mode of trader entry (single
or multiple) impacts not only sensitivity, but also the overall
relationships between liquidity, spread, price discovery, and
MM loss. Informed traders prefer to trade as late as possible
to fully exploit their information advantage—which is more
valuable near the end of the trading horizon—but do not have
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this option in the single-entry setting. Price discovery there-
fore benefits from increased liquidity only in the multi-entry
setting; otherwise, low liquidity improves price discovery by
rapidly incorporating the information from trades.

2 Related Work

Much prior work examines different prediction market mak-
ing mechanisms [Abernethy et al., 2011; Hanson, 2003], in-
cluding extensions to ordinary prediction markets such as
incorporating limit orders [Chakraborty et al., 2015; Hei-
dari et al., 2015], employing pari-mutuel techniques for
payoffs [Pennock, 2004] and predicting combinations of
events [Dudı́k et al., 2012; 2013].

Price discovery is of primary interest in prediction mar-
kets, but the true probability of an event is unknown, ren-
dering evaluation of real-world information aggregation over
time near impossible. To address this, several studies employ
agent-based modeling (ABM) and simulation to study price
discovery, most using a random process as a basis for the
ground truth probability [Brahma et al., 2012; Chakraborty
et al., 2015; Slamka et al., 2013]. Jumadinova and Das-
gupta [2011] use prediction market data from the Iowa Elec-
tronic Market to run simulations characterizing the role of
information on trader behavior. Slamka et al. [2013] compare
price discovery under four automated MMs, including LMSR
and the dynamic pari-mutuel market [Pennock, 2004].

Other prior work focuses on deriving equilibria for hetero-
geneously informed traders, but many of these studies [Han-
son and Oprea, 2009] have been restricted to simple models
extending the classic model by Kyle [1985]. Pennock and
Sami [2007] describe how a market employing LMSR con-
verges to the rational expectations equilibrium price. Chen et
al. [2007] study incentives to bluff strategically when trader
information is conditionally dependent on the ground truth.
Dimitrov and Sami [2008] construct a model with partially
informed traders observing independent signals, showing that
the myopically optimal strategy profile is not a weak perfect
Bayesian equilibrium for an LMSR MM. Ostrovsky [2012]
demonstrates that information about separable securities in
certain markets with partially informed strategic traders is al-
ways aggregated in equilibrium.

To our knowledge, prior work does not explicitly com-
pare equilibrium outcomes under different entry schemes.
The theoretical literature typically relies on simple finite-
period models [Dimitrov and Sami, 2008; Gao et al., 2013];
previous ABM studies (which do not compare equilibrium
outcomes) generally implement single-entry schemes, with
agents arriving randomly [Chakraborty et al., 2015], sequen-
tially [Slamka et al., 2013], or on every time step [Jumadi-
nova and Dasgupta, 2011].

3 Market Maker

In our model, there is a single security traded in a prediction
market that operates as a continuous trading mechanism. The
security pays off $1 if event E occurs and $0 if it does not.
There are two possible outcomes: one where event E occurs
and one where it does not (i.e., event E). There is a single

market maker in our prediction market who acts as a counter-
party for all transactions. The MM uses the standard logarith-

mic market scoring rule (LMSR) to charge for trades and to
price securities [Hanson, 2007]. The MM has two available
parameters: spread δ and liquidity parameter b. Both spread
and the amount of liquidity are set a priori and are fixed for
the duration of trading. Smaller b reflects lower liquidity, as
prices will increase faster as traders buy shares from the mar-
ket maker. Larger b reflects higher liquidity, as prices will
increase slower as traders buy shares from the MM.

Cost Function We implement our model under a no-selling
scheme in order to prevent traders from arbitraging the MM
by selling a security paying out a guaranteed $1 for more
than $1 [Othman et al., 2013]. The two-element vector
qt = (qE,t, qE,t) represents the total number of shares traders
have bet at time t on event E and on E, respectively. From
the market maker’s perspective, qE,t is the number of shares
the MM has sold, whereas qE,t is the number of shares of the
security the MM has bought. All elements of qt are positive.

In the single-security setting where the LMSR market
maker can set a nonnegative spread δ, the cost function is

C(qt) = (1 + δ) · b · ln
(

e

qE,t/b
+ e

qE,t/b
)

.

The cost charged to a trader to buy x > 0 shares is

ρ(x) = C

(
qE,t−1 + x, qE,t−1

)
− C

(
qE,t−1, qE,t−1

)
.

Cost is negative for sellers, as the trader will be compensated
for its shares. The cost of selling x shares is

ρ(x) = C

(
qE,t−1, qE,t−1 + x

)
− C

(
qE,t−1, qE,t−1

)
.

Due to the spread, a trader cannot buy some quantity and sell
it back for zero cost: it pays (1+δ) per share to buy from and
sell back to the MM, receiving a guaranteed payout of $1.

Quoted Prices At time t, BID t corresponds to the price
at which the MM offers to buy the security on event E,
and ASK t is the quoted price at which the MM offers to
sell the security. The quote on complementary event E is
comprised of BID t and ASK t, with BID t < ASK t and
BID t < ASK t. The MM sets a spread δ ≥ 0, which is the
difference between the BID and ASK . The midpoint of the
spread can be interpreted as the market probability of event
E. The current instantaneous price at which a trader arriving
to the market can buy a share (i.e., bet on event E) is the cost
of buying an infinitesimal amount from the MM:

ASK t = p(qt) =
(1 + δ) exp(qE,t/b)

exp(qE,t/b) + exp(qE,t/b)

.

Similarly, ASK is the price at which an entering trader can
bet on event E (or equivalently, on event E not occurring):

ASK t =
(1 + δ) exp(qE,t/b)

exp(qE,t/b) + exp(qE,t/b)

.
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The BID price is defined as BID = ASK − δ, and BID
is defined similarly, with BID = ASK − δ. The ASK
prices for the two outcomes (E and E) are given by vector
pASK =

[
ASK t,ASK t

]
, with ASK t + ASK t = 1 + δ.

The BID prices are given by pBID =

[
BID t,BID t

]
, with

BID t + BID t = 1 − δ. Because these are complementary
events, offering to buy (sell) from incoming traders on event
E at price ASK t (BID t) is equivalent to offering to sell
(buy) on event E at BID t (ASK t). Therefore, the follow-
ing conditions hold for all times t: ASK t = 1 − BID t and
ASK t = 1 − BID t, and the no-arbitrage condition holds.

The MM liquidates its inventory at time T , which denotes
the end of the trading horizon. Its payoff is the revenue from
trading, minus the value of liquidation:

C(qT ) − C(q0) −

{
qE,T if the event occurs, or
qE,T if the event does not occur.

Here q0 = (0, 0) is the initial quantity, and C(qT ) − C(q0)
is the total amount paid to the MM.

4 Traders

We include strategic traders, whose payoffs are used in equi-
librium computation, and noise traders in our model. Trader
profit is the cash flow from trading.

4.1 Strategic Traders

Each strategic trader has an individual valuation for the se-
curity that is based on its private belief, which is a lagged
signal of the ground truth. We include two types of traders in
our model: informed traders receive information that is more
recent, on average, than less informed traders.

Ground Truth The ground truth vt is the underlying true
value of the security. It represents the probability at time t

that the underlying event E will ultimately occur at time T .
The probability of event E not happening is given by v

′
t, and

the true values of the two complementary events always sum
to 1: v

′
t = 1 − vt. At the end of the trading horizon, one of

the two states of the world will be realized, so vT ∈ {0, 1}.

Private Values Each trader j has an individual private be-
lief wj,t regarding the probability of event E, with wj,t ∈
(0, 1). An agent’s belief wj,t is a lagged signal of the true
value vt at time t, that is, wj,t = vt−∆t with lag drawn from
an exponential distribution, or �t ∼ Exp(λ). Less informed
traders have a lower lag rate (and higher mean lag time) than
informed traders. The lag rate of informed and less informed
traders is λINF and λLESS, respectively, with λINF > λLESS.

Utility Function The traders in our model are risk neutral.
The utility πj of a trader j who pays (receives) ρ to buy (sell)
qj shares is the surplus when liquidating at value vT :

πj =

{
vT qj − ρ(qj) for buy transactions, or
ρ(qj) − vT qj for sell transactions.

At time T , a trader who bought (sold) the security will receive
$1 ($0) per share if E occurs and $0 ($1) if it does not.

We impose a budget constraint c on the traders: the total
cost of any buy order and the total redemption value (or lia-
bility) of any sell order must not exceed c. More precisely,
the following conditions must hold for quantity qj > 0:

c ≥





C

(
qE,t + qj , qE,t

)
− C

(
qE,t, qE,t

)
if buying

C

(
qE,t, qE,t + qj

)
− C

(
qE,t, qE,t

)
if selling.

The maximum quantity for a buyer is therefore

q

∗
j = b · ln

(
exp

(
c + C(qt)

b · (1 + δ)

)
− exp

(
qE,t

b

))
− qE,t.

The quantity for a seller is analogous.

Single Entry vs. Multiple Entry There are two modes of
market entry: single and multiple. Regardless of entry mode,
each agent only participates in one trade. In the single-entry
mode, traders enter the prediction market once, with time of
entry te ∼ U [0, T − 1], where T is the length of the trading
horizon in time steps. In the multi-entry mode, traders arrive
to the prediction market over time, with time of arrival (and
subsequent reentries) determined by an exponential distribu-
tion with rate λr. If a potential trade may not be profitable
(i.e., BID t < wj < ASK t), the agent does not submit an or-
der and waits until its next reentry to reevaluate market con-
ditions. It continues to reenter until it has successfully traded.

Strategies Traders in our model play a parametrization that
we call the weighted belief update strategy, similar to that de-
scribed by Jumadinova and Dasgupta [2011]. Trader j com-
putes its belief as a convex combination of the current market
price (the midpoint of the BID-ASK spread) and its individ-
ual private signal of the ground truth:

xj,t = (1 − θ)
(
ASK t − BID t

2

)
+ θ wj,t.

Traders optimize the weighting parameter θ (which is se-
lected a priori and fixed for the entire trading duration) to
maximize their payoffs. If xj,t ≥ ASK t, the trader submits
a buy order; if xj,t ≤ BID t, the trader submits a sell order.
If BID t < xj,t < ASK t, then the trader does not submit an
order (but may have the opportunity to reenter later to trade,
depending on the type of market entry). To move the ASK to
its belief xj,t, the optimal quantity q

†
j > 0 for a buyer j is:

q

†
j = b · ln

(
xj,t

1 + δ − xj,t

)
+ qE,t − qE,t.

The optimal quantity for a seller is analogous. The trader ei-
ther exhausts its budget or the price exceeds its private belief,
so the actual quantity submitted is q = min{q

∗
j , q

†
j}.

4.2 Noise Traders

Noise traders determine a priori whether or not to buy or sell,
each with equal probability. They arrive into the market only
once, with entry times uniformly distributed across the trad-
ing horizon. They buy or sell as much as permitted by their
budget, so a buyer j computes quantity q

∗
j as above.
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5 Empirical Game-Theoretic Analysis

Empirical game-theoretic analysis (EGTA) is a methodology
for performing strategy selection by comparing the payoffs of
different combinations of trader-strategy assignments. EGTA
allows one to compare trader behavior in equilibrium under
different market conditions. We give a high-level overview of
EGTA here and refer to Wellman [2006] for complete details.

EGTA is an iterative process that involves discretizing the
strategy space and analyzing the empirical game model in-
duced by payoff data from simulations. Players are divided
into roles and strategies are symmetric within roles. We
generate equilibrium candidates by analyzing complete sub-

games, which are sets of strategies (one per role) for which
we have collected data for all profile combinations. This gives
us role-symmetric Nash equilibria (RSNE) of the subgames,
which are equilibrium candidates for the full game. A sub-
game RSNE is confirmed as a full-game equilibrium if there
are no beneficial deviations in the full strategy set. If devia-
tions are found, they are added to the candidate’s support, cre-
ating a new subgame. The process repeats until quiescence.

There are limitations that must be taken into consideration
given this methodology. As game size grows exponentially
with the number of players, we rely on deviation-preserving

reduction (DPR) to construct a reduced-game approximation
of the full game. DPR preserves payoffs from single-player
deviations and has been shown to produce good approxima-
tions in other problems [Wiedenbeck and Wellman, 2012],
but equilibrium estimates from DPR are not guaranteed. In
addition, as we are unable to evaluate all profiles given the
size of the game, we cannot guarantee that we have found all
equilibria (even in the reduced game), although our process
seeks to evaluate all promising equilibrium candidates.

There are two roles in our prediction market game, repre-
senting the informed and less informed traders, respectively.
For our simulations we used 42 players, with 21 in each
role. These specific numbers were chosen because they con-
veniently reduce via DPR to a (3, 3)-reduced game. We sim-
ulate our prediction market model using a discrete-event sim-
ulation system [Wah and Wellman, 2013] and we manage our
experiments via the EGTAOnline infrastructure [Cassell and
Wellman, 2013]. We mitigate sampling error by collecting
payoff data over many simulation runs: a minimum of 10,000
samples per strategy profile evaluated, with 20,000 for the
majority of profiles and at least 19,587 samples per profile
on average. We use the RSNE computed to characterize the
conditions under which the MM promotes price discovery.

5.1 Market Environment

We utilize real-world prediction market data from Betfair, an
Internet betting exchange based in the U.K., as a basis for the
ground truth, or the underlying true value of the security. We
include data on NBA games from the 2014–2015 season, in-
cluding the post-season. The price series for a given game is
constructed by querying Betfair prices approximately every 2
to 3 minutes for the duration of the game. Excluding the price
series with incomplete data, we have price information from
1126 NBA games. Each basketball game is associated with
two price series: one reflecting the price of the security on
the event the home team wins, and one for the security on the
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Figure 1: Calibration of the Betfair NBA game price series.

event the home team loses. Each simulation run entails draw-
ing a sample ground truth (with replacement) from a pool of
ground-truth price series.

We assess calibration of our data by binning forecasts to
the nearest 10% mark according to the price at each time step
(Figure 1). For each bin, we determine the percentage of time
series for which the team in question wins. Since each bin
represents a forecast, the data is perfectly calibrated when the
average fraction of teams that win for every bin is equal to the
average forecast probability of winning. We observe that the
Betfair NBA data is well calibrated over time, which is typi-
cal of real betting markets. This confirms that traders in our
model have a reason to take into account their signals when
trading, since the ground truth correctly reflects the probabil-
ity of a payoff at different time steps.

There are 14 noise traders in our prediction market, each
with a budget of $0.10, which permits a maximum change in
price of $0.05 when the market midquote price is $0.50 and
the liquidity parameter is 1. Strategic traders (informed and
less informed) have a budget of $0.50. There are 21 informed
traders and 21 less informed traders. In the multi-entry set-
ting, strategic traders arrive to the market according an expo-
nential distribution with rate λr = 0.125. We set the trading
horizon T to 80 time steps to incorporate price data from the
full duration of the game. The informed-trader lag rate is
λINF = 0.5; the less-informed lag rate is λLESS = 0.1.

5.2 Experiments

We characterize performance of our prediction market pri-
marily via out-of-sample price discovery, which we measure
using the root-mean-square deviation (RMSD) between the
midquote price from the MM and the ground truth at every
time step [Brahma et al., 2012; Chakraborty et al., 2015].
Lower RMSD indicates better price discovery. We also ex-
amine how price discovery changes relative to MM loss, total
welfare, and trader profit. We use four liquidity settings b ∈
{1, 2, 5, 10} and four spread settings δ ∈ {0, 0.01, 0.05, 0.1}
for the MM, giving a total of 16 games for each market entry
mode, or 32 games total.

We separate the Betfair data into an in-sample dataset of
845 games, or approximately 75% of the full dataset, and
an out-of-sample dataset of 281 games. We use data from
the in-sample set for the empirical game-theoretic analysis.
We analyze price discovery and welfare for the out-of-sample
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Figure 2: Regret of strategies by role, aggregated across all
RSNE found, in the two market entry settings. The five boxes
in each group shows from left to right the regret for θ increas-
ing from 0 to 1. Plots show medians (solid horizontal line),
first and third quartiles (box outline), 90th percentile values
(whiskers), and outliers (dots).
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Figure 3: Trader profits at spread δ = 0.01 for varying levels
of liquidity. There is a pair of stacked bars for each liquidity
setting: the stacked bar on the left is comprised of the profits
of informed traders (bottom) and less informed traders (top);
the stacked bar on the right is comprised of MM loss (bottom)
and total welfare (top). Welfare is equivalent to noise trader
losses. The bars are always of equal height, reflecting the fact
that total welfare equals trader profits net of MM loss. For
games with multiple equilibria, we plot the profits from the
maximum-welfare equilibrium.

dataset via 10,000 simulation runs over the mixture probabil-
ities in the role-symmetric equilibria found. Mixed-strategy
RSNE are approximated by profiles with trader population
proportions corresponding to the strategy probabilities. Our
out-of-sample profit results are very close to those achieved
on the in-sample dataset. The mean absolute error (MAE)
between the in- and out-of-sample informed trader profits is
0.068 and 0.038 for the single and multiple entry cases, re-
spectively (with profit values ranging from 0.158 to 2.247);
the less-informed MAE is 0.063 for single-entry and 0.060
for multiple entries (with values between 0.026 and 0.944).
The MAE in RMSD is 0.002 for both types of market entry;
single-entry RMSD ranges from 0.099 to 0.158 and multi-
entry RMSD ranges from 0.123 to 0.184. As such, we focus
our evaluation on out-of-sample profit and RMSD.
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Figure 4: RMSD plotted against MM profit. The O’s repre-
sent single-entry equilibria; the X’s are multi-entry equilibria.
The light blue dotted line is the trend line (R2

= 0.603) for
single-entry games; the dark blue dashed line is the trend line
(R2

= 0.147) for multi-entry games.

Equilibrium Analysis We find at least one and up to three
RSNE1 within each game. In cases with multiple RSNE, dif-
ferences in trader and MM performance, as well as price dis-
covery, are generally not significant. Figure 2 provides a vi-
sual summary of the regret for each strategy, which is defined
as a player’s loss in utility if deviating from a Nash equilib-
rium to the given strategy. We see that informed traders in the
single-entry case generally minimize regret with θ = 0.75,
whereas those in the multi-entry case weigh their own infor-
mation less heavily, with θ in equilibrium of 0.25. These val-
ues correspond to the most common pure-strategy RSNE. In
both the single- and the multi-entry cases, the regret is higher
for informed than less informed traders, indicating that the
informed traders stand to lose more by deviating from equi-
librium. The equilibrium strategies of less informed traders
are similar across the two market entry scenarios.

The computed equilibria reveal substantially different be-
havior depending on the possibility of reentry. When traders
only enter once, informed traders almost universally weigh
their own lagged signal more than or equivalent to the less in-
formed traders. This makes sense, as informed traders receive
a more accurate signal of the ground truth than less informed
traders. When traders can reenter, however, informed traders
do not weigh their own information more heavily in equilib-
rium. This is because informed traders do not have a sig-
nificant information advantage over the less informed traders
early on: the ground truth price series tend to be most volatile
near the end of the trading horizon, and in many cases, the
price is fairly stable at the beginning. Consequently, informed
traders are incentivized to trade as late as possible, and they
avoid trading on their first entry into the market by weighing
the market quote more heavily than their own information.

Trader Profit, MM Loss, and Welfare Figure 3 shows
trader profits, MM loss, and overall welfare at spread 0.01;
the qualitative trends here as liquidity increases are the same

1Full details of all RSNE found are available in an online ap-
pendix (http://hdl.handle.net/2027.42/117580).

514



0.05

0.1

0.15

0.2

1 2 5 10

RM
SD

liquidity (b)

δ=0 δ=0.01
δ=0.05 δ=0.1 0.05

0.1

0.15

0.2

0 0.01 0.05 0.1

RM
SD

spread (δ)

b=1 b=2
b=5 b=10

(a) Single entry

0.05

0.1

0.15

0.2

1 2 5 10

RM
SD

liquidity (b)

δ=0 δ=0.01
δ=0.05 δ=0.1 0.05

0.1

0.15

0.2

0 0.01 0.05 0.1

RM
SD

spread (δ)

b=1 b=2
b=5 b=10

(b) Multiple entry

Figure 5: RMSD vs. liquidity and spread for the two market
entry settings.

for the other spread settings. In all games, regardless of mar-
ket entry type, informed traders have higher aggregate profit
in equilibrium than less informed traders. Traders generate
the highest profits when liquidity is high (i.e., for high b).
Multi-entry traders obtain the highest profits when spread is
0.05; single-entry traders do the best when spread is 0. For
both entry settings, the MM incurs the greatest losses at high
levels of liquidity, and maximum welfare is obtained with the
widest spread and the lowest liquidity.

Aggregate trader profit and welfare is similar across the
two market entry modes when the MM spread is large. In the
single-entry case, trader profits decline as spread increases,
for fixed liquidity. This is consistent with what might be ex-
pected, as a wider spread results in less trade. In the multi-
entry setting, however, aggregate trader profits improve as the
spread widens. This is because the larger the spread, the more
likely agents will be able to defer trading to a later entry into
the market, and information closer to the end of the trading
horizon is more valuable, as previously mentioned.

Price Discovery We find that market conditions and trader
reentry play a significant role in price discovery. Figure 4
illustrates the relationship between price discovery and MM
profit (which is negative as the MM incurs a loss in all RSNE
found). MM loss is typically around 10% of the maximum
possible subsidy (b log 2), which increases with liquidity. In
the multi-entry case, improvement in price discovery (i.e.,
lower RMSD) comes at additional cost to the MM, as traders
are compensated for providing information to the market.
The single-entry setting runs counter to this intuition, how-
ever: price discovery improves as MM profit increases.

In the multi-entry case, price discovery improves as liq-
uidity increases. This follows intuition since higher liquidity
means that prices do not change as quickly, so market prices
are not as sensitive to noise trader activity. Optimal price dis-
covery is achieved with spread δ = 0.05 and with liquidity
setting b = 5, as we see from Figure 5(b). In fact, δ = 0.05

is the optimal spread at all liquidity levels. Price discovery is
particularly sensitive to spread: RMSD deteriorates by 15%
to 35% when moving from δ = 0.05 to δ = 0 (for all liquidity
settings). In contrast, Figure 5(a) shows that spread has little
impact on price discovery in the single-entry case. Nonethe-
less, RMSD remains sensitive to the liquidity setting, with an
improvement of up to 6% when moving from b = 2 to b = 5.

In the single-entry setting, price discovery is improved
when liquidity is low. RMSD worsens with liquidity, regard-
less of spread setting. To understand why, note that when
traders only enter once, they are forced to trade on their in-
formation irrespective of entry time. As a result, price discov-
ery is best when liquidity is low and prices change quickly to
reflect the information incorporated by any new trades.

6 Conclusions

In this paper, we employed empirical game-theoretic anal-
ysis to compare price discovery, as well as trader and mar-
ket maker performance, in equilibrium. Our model was com-
prised of informed and less informed traders, who submit or-
ders to a prediction market mediated by an LMSR market
maker. We considered two market entry schemes: one where
traders arrive once, and one where traders can reenter.

Our results demonstrate that trader reentry and market con-
ditions are pivotal in promoting price discovery in a predic-
tion market. When traders are allowed multiple entries, price
discovery improves (up to a point) as liquidity increases—
but contrary to what might be expected, this relationship is
inverted when traders can only enter once. Forecasting ac-
curacy only benefits from higher liquidity when traders can
be strategic about when they submit an order, as an informa-
tion advantage near the end of the trading horizon is more
valuable. The equilibria found also reflect this phenomenon:
single-entry informed traders weigh their private information
more, but are incentivized to postpone trading to a later entry
in the multi-entry scenario.

The simulation-based methodology we use to elucidate
the drivers behind price discovery offers a promising ap-
proach for evaluating other market design choices, such as
a liquidity-adaptive MM [Othman et al., 2013] or a mar-
ket making mechanism that learns from historical activ-
ity [Brahma et al., 2012; Das, 2005]. While our results de-
pend on our specific modeling choices, in general we based
our model on prior works in the literature. We explored a
limited set of trader strategies in this study, and our equilib-
rium findings could be altered by the inclusion of additional
strategies such as Zero-Intelligence [Gode and Sunder, 1993]
or other types of traders and utility functions. Another open
question regards the market maker parameters in equilibrium,
and the impact of a strategic MM on price discovery.

Acknowledgments

We are grateful to Dean Foster and Michael Wellman for
valuable discussions, David Rothschild for providing the Bet-
Fair data, and the anonymous reviewers for helpful feedback.

515



References

[Abernethy et al., 2011] Jacob Abernethy, Yiling Chen, and Jen-
nifer Wortman Vaughan. An optimization-based framework for
automated market-making. In 12th ACM Conference on Elec-

tronic Commerce, pages 297–306, 2011.

[Brahma et al., 2012] Aseem Brahma, Mithun Chakraborty, San-
may Das, Allen Lavoie, and Malik Magdon-Ismail. A Bayesian
market maker. In 13th ACM Conference on Electronic Com-

merce, pages 215–232, 2012.

[Cassell and Wellman, 2013] Ben-Alexander Cassell and
Michael P. Wellman. EGTAOnline: An experiment man-
ager for simulation-based game studies. In Multi-Agent-Based

Simulation XIII, volume 7838 of Lecture Notes in Artificial

Intelligence. Springer, 2013.

[Chakraborty et al., 2015] Mithun Chakraborty, Sanmay Das, and
Justin Peabody. Price evolution in a continuous double auction
prediction market with a scoring-rule based market maker. In
29th AAAI Conference on Artificial Intelligence, pages 835–841,
2015.

[Chen et al., 2007] Yiling Chen, Daniel M. Reeves, David M. Pen-
nock, Robin D. Hanson, Lance Fortnow, and Rica Gonen. Bluff-
ing and strategic reticence in prediction markets. In Internet and

Network Economics, pages 70–81. Springer, 2007.

[Das, 2005] Sanmay Das. A learning market-maker in the Glosten–
Milgrom model. Quantitative Finance, 5(2):169–180, 2005.

[Dimitrov and Sami, 2008] Stanko Dimitrov and Rahul Sami. Non-
myopic strategies in prediction markets. In 9th ACM Conference

on Electronic Commerce, pages 200–209, 2008.

[Dudı́k et al., 2012] Miroslav Dudı́k, Sébastien Lahaie, and
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