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Abstract

Recently, MRFs with two-dimensional (2D) labels
have proved useful to many applications, such as
image matching and optical flow estimation. Due
to the huge 2D label set in these problems, existing
optimization algorithms tend to be slow for the in-
ference of 2D label MRFs, and this greatly limits
the practical use of 2D label MRFs. To solve the
problem, this paper presents an efficient algorithm,
named FastLCD. Unlike previous popular move-
making algorithms (e.g., α-expansion) that visit all
the labels exhaustively in each step, FastLCD opti-
mizes the 2D label MRFs by performing label co-
ordinate descents alternately in horizontal, vertical
and diagonal directions, and by this way, it does not
need to visit all the labels exhaustively. FastLCD
greatly reduces the search space of the label set and
benefits from a lower time complexity. Experimen-
tal results show that FastLCD is much faster, while
it still yields high quality results.

1 Introduction
Markov random fields have become an important tool for
many problems in computer vision and machine learning areas.
Recently, two-dimensional (2D) label MRFs have attracted
more and more attention in many AI tasks, such as image
matching [Shekhovtsov et al., 2007; Liu et al., 2014], optical
flow estimation [Lempitsky et al., 2008], object classifica-
tion [Duchenne et al., 2011], detection [Pedersoli et al., 2014;
Ladicky et al., 2012] and jointly segmentation and stereo
matching [Ladicky et al., 2010]. These tasks refer to assigning
a two-dimensional label (x

p

, y
p

) to every pixel p 2 P . For
example, the labels x

p

and y
p

in image matching represent the
displacements of pixels in horizontal and vertical directions,
respectively. In jointly segmentation and stereo matching, x

p

and y
p

denote the categories of objects and the disparities of
pixels, respectively.

In the last decades, many successful algorithms have
been proposed for the optimization of MRFs, such as α-
expansion

[Boykov et al., 2001; Kolmogorov and Zabin,
2004], sequential belief propagation (BPS) [Tappen and Free-
man, 2003], and sequential tree-reweighted message passing

(TRWS) [Kolmogorov, 2006]. State-of-the-art optimization al-
gorithms usually exhibit good optimality properties and yield
high-quality solutions on the MRF models. In fact, the ac-
curacy of the best known algorithms sometimes exceeds the
demand of the applications by a wide margin [Szeliski et al.,
2008]. However, these algorithms tend to be slow, and the
run time of most existing algorithms increase rapidly as the
size of the label set increases. For example, the run time
taken by α-expansion grows linearly with the increase of label
size [Lempitsky et al., 2007], because it needs to consider all
the labels exhaustively in the iterative optimization. Unfortu-
nately, the label space is usually huge in the applications of 2D
label MRFs. For example, [Lempitsky et al., 2008] formulates
the problem of optical flow estimation as solving an MRF with
2D discrete labels. There are about 1000 labels in the prob-
lem. It takes about an hour to process one single frame pair,
although state-of-the-art accuracy is obtained from this algo-
rithm. To optimize the 2D label MRFs efficiently, [Duchenne
et al., 2011] develops the curve expansion algorithm. However,
the applicability of curve expansion is limited because of two
major problems: (i) it is limited in the type of energies it can
handle (only convex energy functions); (ii) it still takes a lot
of time in the optimization because a huge graph is required
to compute a labeling in each iteration.

Therefore, it is a challenging problem to develop an efficient
algorithm that has a lower time complexity of label size, while
ensuring it is applicable to a large range of energy functions.
To solve this problem, this paper presents an efficient algo-
rithm named fast label coordinate descent (FastLCD).Unlike
previous move-making algorithms (e.g., α-expansion [Boykov
et al., 2001]) that consider the labels exhaustively, FastLCD
utilizes the fact that the label set is two-dimensional, and
restricts the pixels to change their labels along horizontal, ver-
tical and diagonal directions in the 2D label space. We call the
labeling updating along the fixed direction as a label coordi-
nate descent (LCD). By performing the LCD, FastLCD does
not need to visit all the labels exhaustively and greatly reduces
the search space in the iterative optimization. FastLCD ben-
efits from a lower complexity of O(m+n) in each iteration,
where m and n are the size of the 2D label set.

The FastLCD executes the label coordinate descent in each
direction by a series of moves. For example, in a horizontal
move, every pixel is allowed to change their horizontal labels
to a new one, while keeping their vertical label unchanged. In
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Figure 1: The run time taken by different algorithms when
they optimize the 2D label MRFs with different label sizes.

each move, FastLCD only needs to construct a binary graph
instead of a huge graph as in curve expansion. We construct
the binary graph using the graph cuts techniques developed
in [Kolmogorov and Zabin, 2004]. However, this method re-
quires the submodular condition, which is hard to be satisfied
in many popular energy functions. To allow FastLCD to han-
dle more general functions, we propose an approximate graph
construction for the cases where the submodular condition
is not satisfied. We also provide a theoretical guarantee for
this approximate construction, and show that it holds an upper
bound of the obtained energy. Unlike α-expansion which is
only applicable to metric1 energy functions or curve expansion
that is limited to only convex energy functions, the approxi-
mate graph construction allows FastLCD to handle arbitrary
semimetric energy functions.

The idea of our FastLCD is similar to coordinate de-
scent [Friedman et al., 2010] for convex optimization, which
performs line search along one coordinate direction. The dif-
ference is that FastLCD does line search in a discrete label
space instead of a continuous space, while the line search is
executed by a series of moves rather than gradient descent.

We evaluate FastLCD on both synthetic data and vision
problems of image matching and optical flow estimation. Ex-
periments show that FastLCD offers a great speedup over
related methods (e.g., it is 40 times faster than α-expansion
and 22 times faster than curve expansion when the label space
is 81⇥81 as shown in Fig. 1), while still yields competitive
solutions. We will publish the code for academic application.

2 2D label MRF optimization
Preliminaries An MRF is defined over an undirected graph
G = (P, E), where P is the set of pixels, and E is the set of
edges connecting neighboring pixels. The task of MRFs is to
assign every pixel p a label f

p

2 L. The goal of optimizing the
MRFs is to obtain the labeling f that minimizes the following
energy:

E(f) =
∑

p∈P

θ
p

(f
p

) +

∑

(p,q)∈E

θ
pq

(f
p

, f
q

) (1)

1Here, metric means that the pairwise function should satisfy
(i) ✓(↵,�) = 0 , ↵ = �; (ii) ✓(↵,�) = ✓(�,↵) � 0 and (iii)
✓(↵,�)  ✓(↵, �) + ✓(�,�). If the pairwise function satisfies only
(i) and (ii), it is called semimetric.

where θ
p

and θ
pq

denote the unary and pairwise potentials
respectively. Typically, if the label set L is one-dimensional,
we have
Theorem 1 ( [Schlesinger and Flach, 2006]). The minimum of

energy function E(f) can be exactly obtained via graph cuts,

if and only if θ
pq

(f
p

, f
q

) satisfies the submodular condition

θ(i, j) + θ(i + 1, j + 1)  θ(i + 1, j) + θ(i, j + 1) (2)

for any pair of labels i,j 2 L.

The task of 2D label MRFs is to assign every pixel p a
two-dimensional label f

p

= (x
p

, y
p

), and the label set is a
two-dimensional label space L=X⇥Y . Unfortunately, the
submodular condition is seldom satisfied in the energies of
the 2D label MRFs. These algorithms (e.g., [Ishikawa, 2003;
Shabou et al., 2009; Liu et al., 2015]) which are popular but
restricted to the case of one-dimensional labels cannot be used
for the optimization of 2D label MRFs.

Label coordinate descent To make the optimization of 2D
label MRFs easier, we consider a direction ϑ, and restrict the
labeling f to be updated along the fixed direction ϑ in the
label space. By this way, the optimization of 2D label MRFs
is naturally transformed to the one-dimensional case:

E(f#

) =

∑

p∈P

θ
p

(f#

p

) +

∑

(p,q)∈E

θ
pq

(f#

p

, f#

q

), (3)

where f#

p

2 L#

p

, and L#

p

denotes the label set along the fixed
direction ϑ at the current assignment f

p

.
We call the minimization of E(f#

) in (3) as a label coordi-
nate descent (LCD). Assume we start with an initial labeling
f (0), and get a sequence of labeling f (1), · · · , f (n) by per-
forming a series of LCD. Since each LCD minimizes the
energy E(f#

), we have

E(f (0)
) � E(f (1)

) � · · · � E(f (n)
).

Thus, a local minimum will be reached when there is no de-
scent can be found to decrease E(f). By this way, the opti-
mization of a 2D label MRF could be solved by a series of
subproblem over one-dimensional label case.

Let g(u, v) = θ(f
p

, f
q

) denote the pairwise function, where
u = |x

p

� x
q

| and v = |y
p

� y
q

|.
Theorem 2. If the pairwise function g(u, v) is a convex func-

tion, then E(f#

) satisfies the submodular condition in Theo-

rem 1. In other word, E(f#

) in (3) can be exactly optimized

via graph cuts

2
.

Theorem 1 specifies the cases when the label coordinate de-
scent over all directions ϑ can be exactly solved by via graph
cuts [Ishikawa, 2003]. However, it still requires a huge graph
needs to be constructed in the graph cuts method of [Ishikawa,
2003], while it takes a lot of time to perform all the possible
label coordinate descents. As the efficiency is vitally impor-
tant to real problems, this forces the development of efficient
approximate algorithms.

2Due to the limit of the space, we have to omit the proof here. We
would like to public it in the supplementary materials in the future.
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Figure 2: FastLCD optimizes 2D label MRFs by making a
series of horizontal, vertical and diagonal moves, each of
which provides the pixel a choice of two labels.

3 The FastLCD
In this section, we present the FastLCD algorithm, which
efficiently optimizes 2D label MRFs by iteratively performing
label coordinate descent in horizontal, vertical and diagonal
lines instead of all directions (see Fig. 2).

In the FastLCD, every label coordinate descent decreases
E(f) by making a series of moves, each of which provides
the pixels a choice of two labels. For example, one horizon-
tal move considers a label α 2 X , and it allows every pixel
p 2 P (assume its current label is (x

p

, y
p

)) to change its
horizontal label x

p

to α, while keeping its vertical label y
p

un-
changed. Within this move, the energy E(f) can be effectively
decreased by finding a better labeling.

We initialize FastLCD by minimizing θ
p

(f
p

), which can
be solved extremely fast. Each move updates the labeling
f if it yields a lower energy E(f ′

) < E(f). The FastLCD
reaches a local minimum and converges when no move can
be found to decrease E(f). The FastLCD algorithm is shown
in Algorithm 1, and we call the steps 2-5 a cycle of iterations.
In each cycle, the horizontal descent performs m horizontal
moves, while the vertical descent needs n vertical moves.
Therefore, FastLCD has a lower time complexity of O(m+n)
in each cycle instead of O(m · n) as in previous move-making
algorithm, e.g., α-expansion.

3.1 Horizontal and vertical moves
The label coordinate descents in horizontal and vertical direc-
tions optimize E(f) by performing a series of horizontal and
vertical moves, respectively. We explain only the horizontal
moves for brevity, and similar arguments apply to the vertical
moves.

In the FastLCD, each horizontal move considers a horizon-
tal label α 2 X , and allows every pixel p 2 P to retain its
current label (x

p

, y
p

) or change (x
p

, y
p

) to (α, y
p

). Let f↵h
p

represent (α, y
p

), where the superscript α
h

denote the horizon-
tal component of f↵h

p

is α. Each horizontal move minimizes
the following energy

E(fh

) =

∑

p∈P

θ
p

(fh

p

) +

∑

(p,q)∈E

θ
pq

(fh

p

, fh

q

), (4)

where fh

p

2 {f
p

, f↵h
p

}, and the energy E(fh

) has the follow-
ing property:

Algorithm 1 The FastLCD Algorithm
Initialization:
1: Initialize the labeling f .

Iteration:
2: repeat
3: Perform the horizontal moves for each label ↵ 2 X :

i. Find f

0 = arg minE(fh) by st-mincut, where
f

h
p 2 {(xp, yp), (↵, yp)};

ii. If E(f 0) < E(f), set f := f

0.
4: Perform the vertical moves for each label � 2 Y:

i. Find f

0 = arg minE(fv) by st-mincut, where
f

v
p 2 {(xp, yp), (xp,�)};

ii. If E(f 0) < E(f), set f := f

0.
5: Perform diagonal moves for each pair of labels (↵, �)

2 {(1, 1), (1,�1), (�1, 1), (�1,�1)}:
i. Find f

0 = arg minE(fd) by st-mincut, where
f

d
p 2 {(xp, yp), (xp + ↵, yp + �)};

ii. If E(f 0) < E(f), set f := f

0.
6: until No moves can be found to decrease E(f).

Output:
7: Return the labeling f .

Theorem 3. If the pairwise function θ(f
p

, f
q

) can be repre-

sented as θ(f
p

, f
q

) = θ1(xp

, x
q

) + θ2(yp, y
q

) (i.e. g(u, v) =
g1(u) + g2(v)), and θ1(xp

, x
q

), θ2(yp, y
q

) are metric, then

each term θ(fh

p

, fh

q

) satisfies the submodular condition, i.e.,

E(fh

) in (4) can be exactly minimized via graph cuts.

Proof. Since θ1(xp

, x
q

) is metric, we have
θ1(xp

, x
q

) + θ1(α, α)  θ1(xp

, α) + θ1(α, x
q

). (5)
Adding 2⇥ θ2(yp, y

q

) to both sides of (5), we obtain
θ(f

p

, f
q

) + θ(f↵h
p

, f↵h
q

)  θ(f
p

, f↵h
q

) + θ(f↵h
p

, f
q

),
which completes the proof.

Theorem 3 specifies the cases when the energy E(fh

) in (4)
can be exactly minimized via graph cuts (Fig. 3(a)).

Approximate move Unfortunately, many energy functions
which have been widely used in 2D label MRFs do not satisfy
the conditions in Theorem 3. To allow FastLCD to handle
more general energy functions, we provide an effective method
to approximate the optimal move.

Let (p, q) 2 ˆE denote the sets of edges whose pairwise term
θ
pq

(fh

p

, fh

q

) that does not satisfy the submodular condition.
We rewrite the pairwise potentials for (p, q) 2 ˆE :

a
pq

= θ(f
p

, f
q

), b
pq

= θ(f↵h
p

, f↵h
q

),
c
pq

= θ(f
p

, f↵h
q

), d
pq

= θ(f↵h
p

, f
q

).
If a

pq

+ b
pq

> c
pq

+ d
pq

, let
t
pq

= a
pq

+ b
pq

+ c
pq

+ d
pq

,
�

pq

= a
pq

+ b
pq

� c
pq

� d
pq

.
The submodular condition of Eq. (2) is satisfied by setting:

â
pq

= a
pq

(1� �

pq

t
pq

), ˆb
pq

= b
pq

(1� �

pq

t
pq

),

ĉ
pq

= c
pq

(1 +

�

pq

t
pq

), ˆd
pq

= d
pq

(1 +

�

pq

t
pq

).
(6)
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Figure 3: The graph construction of the horizontal (a), vertical
(b) and diagonal (c) moves in the FastLCD algorithm.

Then, we have â
pq

+

ˆb
pq

= ĉ
pq

+

ˆd
pq

. The new energy in the
follows can be exactly solved via graph cuts:

ˆE(fh

) =

∑

p∈P

θ
p

(fh

p

) +

∑

(p,q)∈E

ˆθ
pq

(fh

p

, fh

q

) (7)

where ˆθ
pq

(fh

p

, fh

q

) is defined by Eq. (6), if (p, q) 2 ˆE ; other-
wise, ˆθ

pq

(fh

p

, fh

q

) = θ
pq

(fh

p

, fh

q

).
Let λ

pq

=

∆pq

tpq
, where 0  λ

pq

 1, we have the following
guarantee

Theorem 4. Let f∗
be a global optimum of E(fh

), and

ˆf be

a global minimum of

ˆE(fh

). Then, we have E(

ˆf)  γE(f∗
),

where

γ =

1 + λ
max

1� λ
max

, (λ
max

= max

(p,q)∈Ê

�

pq

t
pq

). (8)

Proof. With equations in (6), we obtain

(1� λ
pq

)θ(fh

p

, fh

q

)  ˆθ(fh

p

, fh

q

)  (1 + λ
pq

)θ(fh

p

, fh

q

)

for any fh

p

2 {f
p

, f↵h
p

}, fh

q

2 {f
q

, f↵h
q

}, and then

(1� λ
max

)

∑

(p,q)∈E

θ
pq

(

ˆf
p

, ˆf
q

) 
∑

(p,q)∈E

ˆθ
pq

(

ˆf
p

, ˆf
q

).

Adding the unary potential to both sides of the inequality
above, we obtain (1� λ

max

)E(

ˆf)  ˆE(

ˆf),

∑

(p,q)∈E

ˆθ
pq

(f∗
p

, f∗
q

) 
∑

(p,q)∈E

(1 + λ
pq

)θ
pq

(f∗
p

, f∗
q

),

ˆE(f∗
)  (1 + λ

max

)E(f∗
).

Since ˆf is the global minimum of ˆE(fh

), we have ˆE(

ˆf) 
ˆE(f∗

), and thus, (1� λ
max

)E(

ˆf)  (1 + λ
max

)E(f∗
).

3.2 Diagonal moves
The diagonal descent updates the labeling f along the diago-
nal directions by a series of diagonal moves, each of which
considers a gradient from {(1, 1), (1,�1), (�1, 1), (�1,�1)}.
Without loss of generality, we explain the diagonal move with
the gradient of (1, 1), and similar arguments apply to other
cases. The diagonal move on gradient (1, 1) allows every

pixel p 2 P to either retain its current label (x
p

, y
p

) or change
(x

p

, y
p

) to (x
p

+1, y
p

+1).
Let f

p

denote (x
p

, y
p

), and f†
p

denote (x
p

+1, y
p

+1). The
diagonal move minimizes the following energy:

E(fd

) =

∑

p∈P

θ
p

(fd

p

) +

∑

(p,q)∈E

θ
pq

(fd

p

, fd

q

) (9)

where fd

p

2 {f
p

, f†
p

}.

Theorem 5. Assuming g(u, v) = θ(f
p

, f
q

), if g(u, v) is a

convex function, then each term θ(fd

p

, fd

q

) satisfies the sub-

modular condition, where fd

p

2 {f
p

, f†
p

}. In other words,

E(fd

) in (9) can be exactly minimized via graph cuts.

Proof. Because g(u, v) is convex, we have

2g(
u1 + u2

2

,
v1 + v2

2

)  g(u1, v1) + g(u2, v2) (10)

Let x1 =

|xp−xq−1|+|xp−xq+1|
2 and y1 =

|yp−yq−1|+|yp−yq+1|
2 .

We have |x
p

�x
q

|x1, and |y
p

�y
q

|y1. Using Eq. (10), we
obtain

2g(|x
p

�x
q

|, |y
p

�y
q

|)  2g(x1, y1) 
g(|x

p

�x
q

�1|, |y
p

�y
q

�1|)+g(|x
p

�x
q

+1|, |y
p

�y
q

+1|).

Thus, θ(f
p

, f
q

)+θ(f†
p

, f†
q

)  θ(f
p

, f†
q

)+θ(f†
p

, f
q

) is satisfied
for any term θ(fd

p

, fd

q

).

Theorem 5 implies that if g(u, v) is a convex function, the
diagonal moves can be exactly solved via graph cuts (Fig. 3(c)).
If the pairwise term θ(fd

p

, fd

q

) does not satisfy submodular
condition, the diagonal move can be approximately solved by
the method described in Sec. 3.1.

4 Experiments
In this section, we test the FastLCD algorithm on both syn-
thetic data and real vision problems of image matching and
optical flow estimation. We evaluate FastLCD on several
different energy functions to verify its effectiveness on dif-
ferent types of energy functions. In the implementation of
α-expansion, we use the approximate graph construction pro-
posed in Sec. 3.1 to allow it to handle arbitrary semimetric
energy functions.

4.1 Data and parameter setting
Image matching Given two images, the objective of image
matching is to get the feature correspondence between the two
images. To solve this problem, the first image (image1) is dis-
torted to match the second one (image2). This can be naturally
formulated as optimizing a 2D label MRFs [Shekhovtsov et

al., 2007], where P denotes the set of pixels in image1 and
the label (x, y) represents the 2D displacements of pixels.

In this experiment, we use two image pairs chosen from the
dataset of [Ling and Jacobs, 2005], and the image are shown
in Fig. 5. The size of label space is set as 25 ⇥ 25. For the
pairwise term, we choose g(u, v)=k(u2

+v2
), and set k = 1.
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(a) Pair1: energy vs. time (b) Pair1: time of per cycle vs. cycle numbers (d) Pair2: time of per cycle vs. cycle numbers(c) Pair2: energy vs. time

Figure 4: The results obtained on image matching using pairwise function g(u, v). (a) and (c) show the energy obtained by
different algorithms as a function of run time. The run time is plotted on a logarithmic scale, and the objective value of energy is
plotted in percentage, where 100% is set to be the lowest energy obtained by any algorithm. (b) and (d) show the time taken by
each cycle and the number of cycles taken by each algorithm.

(a) Image1 (b) Image2 (c) expansion (

Figure 5: The image matching results obtained by different algorithms. The first image (a) is distorted to match the second image
(b). (c)⇠(f) show the distorted image1 by α-expansion, curve-expansion, TRWS and FastLCD, respectively.

Figure 6: The energy obtained by different algorithms on 6
pairs of frames for optical flow estimation. (a) and (b) show
the energy obtained using functions h1 and h2 respectively,
and the energy is plotted in percentage, where 100% is set to
be the lowest energy achieved by all the algorithms.

Optical flow The task of optical flow estimation is to obtain
a two-dimensional flow vector at each pixel. In this prob-
lem, the continuous flows are represented by 2D discrete la-
bels [Glocker et al., 2008]. In the experiment, we use the
images from Middlebury dataset [Baker et al., 2011], which is
a public benchmark for optical flow estimation.

We evaluate the algorithms on two group of experiments:
• For the discrete label set L= X ⇥Y , we set X = Y =

{�8,�7, · · · , 8} (|L|=17⇥17). For the pairwise func-
tion, we use h1(u, v)= k1(u + v), where k1 = 0.5.

• For the label set, we set X =Y = {�8.5,�8, · · · , 8.5}.

For the pairwise function, we use h2(u, v) =

k2{min(u2, T 2
)+min(v2, T 2

)}, where k2=0.5, T =3.

Synthetic data The computation time of optimizing of 2D
label MRFs is greatly influenced by the label size of MRFs.
To provide a detailed evaluation on different label sizes, we
test FastLCD on the synthetic MRFs whose parameters are
generated randomly. Following [Kumar and Torr, 2008], the
data term θ

p

(f
p

) are sampled uniformly from the interval
[0, 10]. For the pairwise term, we use the function g(u, v)=
k(u+v) and set k =1. In the experiments, we quantify the
run time taken by the algorithms on MRFs with different label
sizes that range from 11⇥11 to 81⇥81.

4.2 Performance analysis and comparison
We demonstrate the effectiveness of FastLCD and show the
experimental analysis in this section. The performance of
FastLCD is compared with several state-of-the-art methods,
including ICM [Besag, 1986], α-expansion, αβ-swap, curve
expansion, BPS and TRWS.

Efficiency Fig. 4 and Tab. 1 show the run time taken by
different algorithms for image matching and optical flow. We
see that FastLCD runs 6-7 times faster than α-expansion on
image matching, and 5-8 times faster on optical flow estima-
tion. FastLCD runs much faster because α-expansion requires
m · n (|X |= m, |Y|= n) moves in each cycle of iterations,
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Figure 7: The results obtained on synthetic data. Each result is an average of the results obtained from 50 MRFs. (a) shows the
run time taken by different algorithms for optimizing MRFs with different label sizes. (b) shows the run time that each algorithm
takes in each cycle. (c) shows the energy obtained by different algorithms on an MRF whose label size is 71⇥ 71. (d) shows the
number of cycles and the run time for each cycle when the label set is 71⇥ 71.

Algorithm Army Mequon Schefflera Wooden Grove Urban
ICM 135.3 106.3 92.3 135.7 132.4 145.4

↵-expansion 167.6 192.3 148.6 128.2 315.8 323.9
↵�-swap 523.5 625.3 296.3 317.6 561.2 589.6

curve-expan. 116.6 201.3 124.7 143.6 235.9 168.2
BPS 1491.0 1429.6 1544.8 1632.9 2332.7 2161.5

TRWS 1916.9 1819.9 1950.4 2080.8 2735.5 2780.7
FastLCD 34.4 65.8 56.1 44.8 91.8 55.3

ICM 490.6 590.9 408.0 430.5 442.2 340.9
↵-expansion 265.8 525.3 360.8 656.1 993.4 578.1
↵�-swap 2066.1 2276.4 2083.1 2376.5 2777.4 2709.8
FastLCD 69.2 113.3 62.4 92.3 125.6 131.4

Table 1: The run time obtained in optical flow using pairwise
function g1(u, v). The 2-4 columns show the results obtained
on the first pair of images, while 5-7 columns show the results
on the second pair of images. In the table, ’T.C.’ denotes the
run time of each cycle of iterations, while ’N.C.’ denotes the
number of cycles performed in the optimization.

while FastLCD only needs m+n+4 moves. As shown in
Fig. 4(b) and (d), FastLCD takes much less time in each cy-
cle than α-expansion. Meanwhile, we see that FastLCD and
α-expansion take similar numbers of cycles to converge as
shown in Fig. 4(b) and (d). Therefore, FastLCD offers a great
speedup over α-expansion. Especially when the label space
is huge, the advantage of FastLCD will be more obvious. As
illustrated in Fig. 7, the run time of α-expansion increases
rapidly as the label size increases. In contrast, the run time
of FastLCD increases more slowly. For example, when the
label size increases from 11⇥11 to 81⇥81, the run time of α-
expansion increases more than 40 times (from 7.7s to 335.3s),
while FastLCD increases less than 8 times (from 1.7s to 8.1s).
We observe that FastLCD runs more than 40 times faster than
α-expansion when the label space is 81⇥81. Thus, FastLCD
benefits from the lower time complexity of O(m + n) per
cycle.

From Fig. 7, we see that curve expansion also increase much
more rapidly than FastLCD as the label size increases. From
Fig. 4 and Tab. 1, we also observe FastLCD runs much faster
than curve-expansion. This is because that curve-expansion
needs to construct a huge graph and it takes a lot of time to

solve the graph cuts in every cycle. As shown in Fig. 7(b),(d)
and Fig. 4(b),(d), FastLCD takes much less time for each
cycle than curve-expansion, while they take similar number of
cycles in the optimization. For example, when the label set is
81⇥ 81, FastLCD (1.3s) runs more than 40 times faster than
curve-expansion (57.6s) in each cycle of iterations.

From Fig. 4 and Tab. 1, we see that FastLCD runs about 45
times faster than BPS and 50 faster than TRWS. We did not
compare FastLCD with BPS and TRWS on MRFs with a larger
label set (such as the second group of experiments on optical
flow estimation), because both BPS and TRWS require too
much time to converge when the label size is huge. Compared
with αβ-swap, FastLCD also offers a great speedup, e.g., it
runs about 30 times faster than αβ-swap in the experiments of
optical flow estimation. We see that FastLCD even runs faster
than ICM, because it takes much fewer iterations to converge
than ICM as shown in Fig. 7(d).

Performance Fig. 4 and Fig. 6 demonstrate the energies
obtained from different algorithms on image matching and
optical flow estimation. We see that FastLCD obtains similar
energies compared to α-expansion and TRWS, and it obtains
much lower energy than ICM and αβ-swap. It can be seen that
FastLCD yield competitive results on different types of ener-
gies including not only metric but also semimetric functions
(Fig. 4(a),(c) and Fig. 6(c)), where the method of approximate
moves is required in the optimization. The competitive results
on smeimetric functions demonstrates the effectiveness of the
approximate graph construction method described in Sec. 3.1.

Besides the energies, we also evaluate the quality of solu-
tions obtained from the FastLCD algorithm. Fig. 5shows the
solutions on image matching.From the figures, we observe that
FastLCD yields comparable and similar solutions to the state-
of-the-art algorithms including α-expansion, curve expansion
and TRWS.

5 Conclusions
In this paper, we presented an efficient algorithm (called
FastLCD) for the optimization of 2D label MRFs. The
FastLCD utilizes the fact that the label set is two-dimensional,
and optimizes the MRF energy by alternately performing label
coordinate descents in horizontal, vertical and diagonal direc-
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tions. The main advantage is that the FastLCD does not need
to visit all the labels exhaustively as traditional algorithms,
and it benefits from a lower time complexity of O(m+n) for
each cycle. In the iterative moves, we propose an approximate
graph construction to allow FastLCD to handle arbitrary semi-
metric energies. Moreover, we provide a theoretical guarantee
for the approximate construction. The experimental results
show that the FastLCD offers a great speedup over previous
algorithms, while still yields competitive solutions.
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