
External Memory Bidirectional Search

Nathan R. Sturtevant

Department of Computer Science
University of Denver

Denver, USA
sturtevant@cs.du.edu

Jingwei Chen

Department of Computer Science
University of Denver

Denver, USA
jingwei.chen@du.edu

Abstract

This paper studies external memory bidirectional
search. That is, how bidirectional search algorithms
can run using external memory such as hard drives
or solid state drives. While external memory algo-
rithms have been broadly studied in unidirectional
search, they have not been studied in the context
of bidirectional search. We show that the primary
bottleneck in bidirectional search is the question of
solution detection – knowing when the two search
frontiers have met. We propose a method of de-

layed solution detection that makes external bidi-
rectional search more efficient. Experimental re-
sults show the effectiveness of the approach.

1 Introduction

There is a long history of research into bidirectional search
algorithms [Nicholson, 1966; Pohl, 1969], justified by the
potential for an exponential reduction in the size of a bidi-
rectional search over a unidirectional search. Despite this,
bidirectional search is not the dominant approach for solving
many search problems. There are many reasons behind this
having to do with the quality of heuristics, the understand-
ing of search algorithms, and the properties of the domains.
Recent theoretical work has explained this in more detail.

Barker and Korf [Barker and Korf, 2015] suggested that
the distribution of states in a search can be used to predict
whether a bidirectional brute-force search should be used ver-
sus a unidirectional heuristic search. If the majority of states
expanded are deeper than the solution midpoint, then the
heuristic is weak and a bidirectional brute-force search should
be used. If the majority of states expanded have depth that is
prior to the solution midpoint, then the heuristic is strong, and
unidirectional heuristic search should be used.

Holte et. al. [Holte et al., 2016] refined this model, pro-
viding deeper insights into conditions under which different
search algorithms will be successful. Their results suggest
that there is a middle ground of problems where bidirectional
heuristic search will be effective. Scaling the difficulty of a
problem or the strength of a heuristic will alter the best ap-
proach — that is, what algorithm and heuristic will solve the
problem most efficiently.

More research is needed to resolve these theoretical issues
surrounding heuristics and the selection of the best algorithm
to solve a particular problem. But, there is general agreement
that on the largest problems, or those with weak heuristics,
bidirectional search provides the best performance. So, if we
wish to study and improve the state of the art in bidirectional
search, it is important to develop techniques that scale the size
of problems that can be solved.

Main memory is the primary bottleneck to solving larger
problems with bidirectional search; algorithms are needed
that can use external memory. External memory resources,
such as hard drives and solid state drives, are often an order of
magnitude or more larger than RAM, but require different al-
gorithmic approaches since random access is not effective on
these devices. When designed well, external memory algo-
rithms have the potential to scale the size of problems solved
without significant overhead from the external memory.

This paper makes the following contributions. First, this
is, to our knowledge, the first paper that studies external
memory bidirectional search, where the data structures for
the bidirectional search are stored in external memory such
as disk. Our work reveals that solution detection (testing
whether the search frontiers have met) is an important com-
ponent of external memory bidirectional search. We formal-
ize the idea of delayed solution detection (DSD), which is
necessary for efficient external-memory search. While our
approach to external-memory search is general, we apply it
specifically to the MM algorithm [Holte et al., 2016], build-
ing parallel external-memory MM (PEMM) which can per-
form external-memory heuristic or brute-force search. We
use PEMM to solve the Rubik’s cube ‘superflip’ position [Ro-
kicki et al., 2014], one of the positions that is maximally dis-
tant (20 moves) from the goal. This is the first time, to our
knowledge, that a 20-move Rubik’s cube position has been
solved with brute force search.

This paper combines ideas from two bodies of work. The
first body of work includes algorithms for performing exter-
nal memory search. The second body of work looks at algo-
rithms for bidirectional search. We begin with background in
these areas.

2 Background

To understand the challenges of external memory search, we
can begin with a simple look at best-first search algorithms.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

676

Algorithm 1 Generic Best-First Search
1: procedure BEST-FIRST SEARCH(start, goal)
2: Push(start, OPEN)
3: while OPEN not empty do

4: Remove best state s from OPEN
5: if s == goal then return success

6: end if

7: Move s to closed

8: for each successor si of s do

9: if si on OPEN then

10: Update cost of si on OPEN if shorter
11: else if si not on closed then

12: Add si to OPEN
13: end if

14: end for

15: end while

16: return failure

17: end procedure

A generic best-first search algorithm is illustrated in Algo-
rithm 1. Best-first search uses some measure of ‘best’ that is
used to order state expansions. Example measures of best are
low g-cost (Dijkstra’s algorithm) and low f -cost (A*).1

Best-first searches maintain two data structures: an
OPEN list which holds states which have been generated but
not yet expanded and a CLOSED list which holds states which
have already been expanded. OPEN is usually a priority queue
enhanced with a hash table for constant-time lookups, while
CLOSED is also typically a hash table. (The same hash table
can be used for both OPEN and CLOSED.)

The common operations on OPEN are to (1) check to see
if a state is already on OPEN (line 9), (2) updates states on
OPEN when a shorter path is found to a state already on
OPEN (line 10), and (3) add new states to OPEN (line 12).
The first operation is performed most often, motivating the
need for hash tables and constant-time lookups.

Similarly speaking, common operations on CLOSED are to
(1) check to see if a state is on CLOSED (line 11) and (2)
add a state to CLOSED (line 7). With inconsistent heuris-
tics [Felner et al., 2011] states may also have to be moved
from CLOSED back to OPEN, something we do not address.

For a best-first search to be efficient, the operations on
OPEN and CLOSED must be efficient, which usually means
constant-time random access to look up states. This is prob-
lematic if we run out of internal memory and want to use disk
or other external memory to increase the size of a search, as it
is not efficient to perform random access on external memory
devices, even on solid state drives.

The primary bottleneck to using external memory is ac-
cess latency; the time to start loading data. The latency of
hard disks is currently at least an order of magnitude slower
than RAM. But, once we begin reading, throughput is gen-
erally faster than we can perform computations. Thus, exter-
nal memory access is usually batched so that the cost of the
computation performed on the data retrieved from disk far
outweighs the latency of loading that data.

1We assume the reader is familiar with the definitions of g-cost,
h-cost, f -cost and node/state expansion and generation.

There are two general approaches that have been used to
achieve this in practice. The first is delayed duplicate de-
tection [Korf, 2004]. The second is a method of divid-
ing the state space into buckets that fit into memory so that
memory-sized chunks of the state space can be handled inde-
pendently [Korf, 2004]. These approaches work together as
follows.

Delayed duplicate detection works by skipping the dupli-
cate detection steps in lines 9-13 of Algorithm 1. Instead of
immediately performing duplicate detection, states are writ-
ten to temporary files after being generated. Then, after all
states of a given cost have been generated, they are loaded
into memory and duplicate detection is performed. The du-
plicate detection can be done via sorting [Korf, 2004], hash
tables [Korf, 2004], or other structured approaches that use
RAM [Zhou and Hansen, 2004; Sturtevant and Rutherford,
2013]. Algorithms like frontier search [Korf et al., 2005]
make this process more efficient by eliminating the need to
perform duplicate detection against the closed list.

Hash-based delayed duplicate detection has two general re-
quirements. First, there needs to be a sufficient number of
states with each cost to make it efficient to process each layer
of the search independently. With a large number of states at
each depth, the cost of the latency of reads is amortized over
all of these states. If each layer in the search is small, the la-
tency of reading the states may dominate the cost of the dupli-
cate detection. In this case the best-first nature of the search
can be relaxed to maintain efficiency [Hatem et al., 2011].
The second requirement is that there be sufficient memory
to perform the duplicate detection. Structured duplicate de-
tection and hash-based delayed duplicate detection both use
in-memory hash tables to find duplicates. Clearly, we can-
not use these techniques on the whole state space at once, as
this would eliminate the need for external memory. Instead,
the state space must be divided into smaller buckets which
can be processed independently. The bucket for a given state
is usually determined via a hash function. The lower 5 bits
of the hash, for instance, can be used to determine a state’s
bucket, dividing the whole state space into 32 buckets. Us-
ing such a schema, all duplicates will be written to the same
bucket, guaranteeing that only a single file need be analyzed
to find duplicates. Buckets can be further subdivided by other
metrics such as g-cost.

2.1 Bidirectional Search

We consider a generic bidirectional search in Algorithm 2.
This algorithm has the same overall structure as a best-
first search, with the following changes. First, it maintains
OPEN and CLOSED lists for each direction, which we distin-
guish with a subscript f (forward) or b (backward). States
originating from the start are in the forward direction, while
those originating from the goal are in the backwards direction.
Second, it must check for solutions by finding the same state
on the opposite open list, instead of performing a goal test
against a goal state. Third, it does not always terminate im-
mediately upon finding a solution. The search must continue
until the best solution found thus far has been proven to be
optimal. Example algorithms that follow this general struc-
ture include BS* [Kwa, 1989] and MM [Holte et al., 2016].

677

BS* has other enhancements to prevent the search frontiers
from passing through each other, which we do not show here.

Algorithm 2 Generic Bidirectional Search
1: procedure BIDIRECTIONAL SEARCH(start, goal)
2: Push(start, OPENf)
3: Push(goal, OPENb)
4: while OPENf and OPENb not empty do

5: Remove best state s from OPENf / OPENb

6: if Can terminate search then return success

7: end if

8: if s was on OPENf then

9: Move s to CLOSEDf

10: for each successor si of s do

11: if si on OPENf then

12: Update cost of si on OPENf if shorter
13: else if si not on CLOSEDf then

14: Add si to OPENf

15: end if

16: if si on OPENb then // ISD
17: Update best solution
18: end if

19: end for

20: else

21: // Analogous code in backwards direction
22: end if

23: end while

24: return failure

25: end procedure

The key difference from the point of view of the data struc-
tures used during search is the lookup that is required in
OPEN in the opposite direction to check for solutions (Alg. 2
line 16). This lookup requires random access to the open list,
which is fine for in-memory search, but will require changes
for external-memory search. We call this approach immedi-

ate solution detection (ISD). We contrast this with delayed

solution detection (DSD), which can span a broad range of
different approaches. DSD refers to any approach that does
not immediately check for solutions, but checks for solutions
by the time a state is expanded and written to CLOSED.

Several previously proposed bidirectional search algo-
rithms [Nicholson, 1966; Arefin and Saha, 2010; Sadhukhan,
2012] already perform DSD, checking for a solution when a
state is expanded. This mimics how best-first search algo-
rithms do not terminate until the goal is expanded. However,
checking for a solution earlier in the search can allow earlier
termination and improve performance [Holte et al., 2016].
There is no reason not to use ISD when it can be implemented
efficiently, because it can only cause the search to terminate
earlier. As we will discuss, however, ISD is not efficient in
external-memory search, and thus we must use DSD.

3 External Memory Bidirectional Search

As noted above, the key algorithmic difference between best-
first and bidirectional search is that the bidirectional search
must perform an additional lookup to check for states that are
in OPEN in both the forward and backwards directions. If
OPEN is stored on disk, this latency of this check will be too
expensive to perform on a state-by-state basis.

Since, in general, the successors of a state can be found in
any bucket of the state space, we design an external-memory
algorithm to perform solution detection for many states at
once to amortize the latency of reading from disk. Thus, the
best time to perform solution detection is not when succes-
sors are being generated, as the successors will fall into many
different buckets (and thus require solution detection across
many files on disk). Instead, solution detection should be per-
formed when a bucket of states is expanded, as we can per-
form DSD on all of these states simultaneously against the
appropriate buckets in the opposite direction.

3.1 Parallel External-Memory MM (PEMM)

We can now describe our external-memory bidirectional
search algorithm in detail. We base this algorithm on
the recently introduced meet in the middle (MM) algo-
rithm [Holte et al., 2016], but similar modifications could
be made to other external-memory bidirectional search algo-
rithms. MM expands states by their priority, but uses a pri-
ority of max(f, 2g) to ensure that each of the bidirectional
searches do not expand any states past the midpoint of the
search.2 This priority function eliminates the need for BS*’s
enhancements that ensure that a state is never expanded in
both directions, because the MM search frontiers cannot pass
through each other.

MM terminates when one of four termination conditions
are met with respect to the best solution found thus far. If U
is the cost of the best solution so far, the search can terminate
when:

U max(min(prminF , prminB),

fminF , fminB , gminF + gminB + ✏)

where prminF and prminB are the minimum priority on
OPEN in each direction, fminF and fminB are the mini-
mum f -cost in each direction, gminF and gminB are the
minimum g-cost in each direction, and ✏ is the smallest edge
cost in the state space. The final termination condition is
novel to MM, but cannot be applied with DSD; we will ex-
plain this in more detail later in the paper.

We call our algorithm Parallel External-Memory MM
(PEMM). The changes required for MM to search efficiently
with external memory are as follows. First, we divide
OPEN and CLOSED into buckets and use hash-based delayed
duplicate detection (DDD) [Korf, 2004] to detect and remove
duplicates when a bucket is loaded into RAM. The buck-
ets for OPEN and CLOSED are stored in files on disk; writes
to OPEN are buffered and then appended to the appropriate
bucket when the buffer is full. We only write to CLOSED once
– after expanding the associated OPEN bucket.

PEMM stores a summary of the states in OPEN and
CLOSED in an array in RAM. This array has one entry for
each bucket on disk, and also maintains file pointers and other

2Roughly speaking, all states exactly half-way between the start
and goal will have priority equal to the cost of the optimal solution
due to the 2g component of the priority. Thus, all such states will be
expanded, and the goal found, before states with higher priority (past
the midpoint) are expanded. See [Holte et al., 2016] for complete
details.

678

structures. The array summarizing the OPEN list is mono-
lithic, containing information about buckets for both direc-
tions of search. States are divided into buckets by (1) the
priority of a state, (2) the g-cost of the state, (3) the search
direction, (4) the lower i bits of the state hash function, and
(5) the h-cost of a state. Every state in a bucket will have the
same values for each of these attributes. Bucket expansions
are ordered by priority (low to high), g-cost (low to high),
search direction (forward then backward), and then by the
hash function and h-cost. The ordering by hash and heuristic
value does not influence correctness or efficiency of search.
Ordering buckets by low to high g-cost may seem counter-
intuitive, since it is the opposite of a typical A* ordering. This
is important for PEMM, however, as it ensures that once we
expand a bucket we will not generate any new states back into
that bucket. Without this ordering we would be forced to pro-
cess buckets multiple times as new states were re-added to the
bucket, which is inefficient.

The second major change of PEMM from MM is the use
of DSD in PEMM. Instead of performing ISD when a state is
generated, PEMM performs solution detection when a bucket
of states are expanded. DSD is performed by comparing
against states in the open list in the opposite direction. We
provide more details on this in the next section.

The final modifications of PEMM are that we cannot use
the ✏ in MM’s termination condition (see section 3.3). Also,
while MM can search with inconsistent heuristics, the re-
opening of closed nodes and f -cost reductions associated
with inconsistent heuristics may be inefficient with external
memory search. Similarly, MM can handle 0-cost actions,
which will be inefficient for PEMM (for the same reason why
we process buckets from low to high g-cost). We leave a
deeper study of these issue to further work; our implementa-
tion assumes a consistent heuristic and positive edge costs.

Algorithm 3 Parallel External-Memory MM
1: procedure PEMM(start, goal)
2: Push(start, OPEN)
3: Push(goal, OPEN)
4: while OPENf and OPENb not empty do

5: Choose best bucket b from OPEN
6: if Can terminate search then return success

7: end if

8: Remove b from OPEN
9: ReadBucket(b);

10: RemoveDuplicates(b); // DDD
11: WriteToClosed(b);
12: CheckForSolution(b) // DSD done in parallel
13: ParallelExpandBucket(b)
14: end while

15: return failure

16: end procedure

The basic pseudo-code for PEMM can be found in Algo-
rithm 3. We begin by pushing the start and the goal onto
the OPEN list (on disk and in the summary data structure in
RAM). In the primary search loop, the best bucket is chosen
first. When selecting this bucket, we update the conditions for
termination, and thus may discover that we can terminate with
the best solution found thus far. (We may, for instance, dis-

cover that the minimum priority, f - or g-costs have changed.)
If the search does not terminate, we load the states from

the best bucket into RAM, perform duplicate detection, and
write the states back to the closed list. Duplicate detection
within a bucket occurs when the bucket is loaded into a hash
table, since the hash table will only store one copy of each
state. Previous layers of the closed list are read sequentially,
and any duplicate states are removed from the hash table.

We then, in parallel, expand all the states in the bucket,
writing their successors to their respective buckets on disk3,
and perform solution detection on the states in the bucket (Al-
gorithm 4). The expansion process uses multiple threads,
with each thread using a simple hash function to determine
what states from the bucket to expand. An additional en-
hancement, not shown in the pseudo-code, is that we can per-
form DDD for the next bucket concurrently with the expan-
sion of the previous bucket. We do this as long as the g-cost
and search direction of the buckets are the same. This ap-
proach is correct because the successors of the states in each
of these buckets will have higher g-cost, and thus we will not
fall into any bucket with the same g-cost as their parent.

Algorithm 4 Parallel Bucket expansion pseudo-code (Exe-
cuted in parallel by many threads)
1: procedure PARALLELEXPANDBUCKET(b)
2: for every state s in b do

3: if current thread should expand s then

4: for each successor si of s do

5: add si to open cache
6: end for

7: if open cache is full then

8: flush cache to disk
9: end if

10: end if

11: end for

12: flush cache to disk
13: end procedure

3.2 Delayed Solution Detection

Our pseudo-code does not provide the details of how DSD
is performed; we provide these details here. Recall that our
buckets are, in addition to other measures, determined by both
the g-cost and a hash of the states in the bucket. We have a
monolithic OPEN that stores this bucket information (but not
the states) for all states in both the forward and backward
direction. Given a particular bucket we only need to perform
DSD with other buckets that are (1) in the opposite frontier,
(2) have the same bucket hash, and (3) would form a complete
path that is at least as long as the current lower-bound on
the solution. For example, if the current priority is 10 and
we are looking at a state with g-cost of 5, we only need to
perform DSD with states in the opposite frontier with g-cost 5
or higher. Any bucket with g of 4 can be ignored during DSD;
a duplicate between these buckets would lead to a solution
cost 9, which is not possible given the current priority.

During DSD we have the current bucket stored in RAM
in a hash table that we can use to test for membership. We

3States are first cached in memory.

679

a

e c

b

d

1
1

1

31

Figure 1: Failure of MM’s ✏ rule in PEMM.

then load the states in the bucket in the opposite frontier that
we are testing for DSD and individually check if they are in
the current bucket. If they are, we have found a potential
solution. One drawback of this approach is that we might not
have performed DDD on the opposite frontier, so there may
be duplicates or states from previous depths in the frontier,
increasing the cost of DSD. Our experimental results suggest
that it is better to wait and perform DDD later in the search.

DSD can be performed in parallel to node expansion while
ensuring that all states have DSD performed appropriately.
When the search is expanding in one direction we have two
guarantees. First, since we expand from low to high g-cost
and assume a consistent heuristic and non-zero edge costs,
there cannot be new states added to the current bucket being
expanded. Thus, when the current bucket is chosen for ex-
pansions, it contains all states that will ever be in that bucket.
Second, because we only expand one direction at a time,
the opposite frontier is completely static. Thus, DSD, which
compares the current bucket to the opposite frontier, can be
performed in parallel to the expansion process.

3.3 Termination

MM introduced a new termination condition that allows the
search to stop early based on the minimum edge cost (✏) and
minimum g-cost in OPEN in each direction. Unfortunately,
this rule does not work in general with DSD. We illustrate
this in Figure 1, where states a and b are the start and goal.
All edges are marked with their costs; no heuristic is used.

In this example the search begins with a and b on OPEN.
After each of these states are expanded, e and d will be on
OPEN in the forward direction and c and d will be on OPEN in
the backwards direction. Although d is on both OPEN lists,
this has not yet been detected. Suppose we then expand e and
then d in the forward direction. DSD will find the potential
solution a-d-b with cost 4. At this point the minimum g-cost
in the forward direction is 2 (c), and the minimum g-cost in
the backward direction is 1 (also c). Using the ✏ rule we would
conclude that we could terminate with an optimal solution
cost 4, which is incorrect. The ✏ rule is justified with ISD
because there are no paths through OPEN that have not been
discovered already. Thus, new paths can only be found by
adding new edges to existing paths. With DSD there can be
undiscovered solutions on OPEN with cost gminF + gminB

such as c in this example, hence the ✏ rule cannot be used.

4 Proof of Correctness

We analyze the correctness of DSD here. While previous
work has used DSD, MM has only been proven to be cor-
rect with ISD [Holte et al., 2016]. Thus, we begin with the

assumption of MM’s correctness, and then show that delay-
ing the solution detection cannot lead to termination with a
suboptimal solution.

It is clear that for each direction of a bidirectional
search, a state will pass monotonically through three phases:
ungenerated ! open ! closed. We assume that solution
detection will be performed at some point during the open

phase, but do not distinguish when.
Consider all such states, s⇤, such that s⇤ has optimal g-cost

in both directions, s⇤ is on an optimal path, and s

⇤ is found on
OPEN in both directions. Performing solution detection on s

⇤

would find the optimal solution immediately. MM performs
solution detection at the earliest possible moment - when s

⇤

is first placed on OPEN. We show that until s⇤ is removed
from OPEN and a state with higher priority is expanded, MM
(without the ✏ termination condition) cannot terminate with
a suboptimal solution. Since we perform solution detection
on s

⇤ before it is placed on CLOSED, MM with DSD will
terminate with the optimal solution.

Recall the PEMM termination conditions:

U max(min(prminF , prminB),

fminF , fminB , gminF + gminB)

Let C⇤ be the cost of the (optimal) solution through s

⇤.
We show that as long as s

⇤ is on OPEN in both directions,
the search cannot terminate with a solution cost > C

⇤. We
examine the termination conditions one at a time and show
that they will not be met.

Since the heuristic is admissible and s

⇤ is on OPEN,
fminF , fminB C

⇤. This handles the second and third
termination conditions. Given that s⇤ has optimal g-cost in
each direction gF (s

⇤
) C⇤

2 or gB(s⇤) C⇤

2 where gF and
gB are the respective g-costs in the forward and backward di-
rections. (This holds because any state on an optimal path
must be closer to the start, the goal, or exactly half way in
between.) Without loss of generality, assume gF (s

⇤
) C⇤

2 .
In this case s

⇤’s bucket in the forward direction must have
prminF C

⇤. (Because 2gF (s⇤) C

⇤ and fF (s
⇤
) C

⇤.)
This handles the first termination condition. Finally, since s

⇤

is on OPEN in both directions, gminF + gminB C

⇤.
Thus, until s⇤ is removed from OPEN, we cannot terminate

with a suboptimal solution. Since we will perform solution
detection when removing s

⇤ from OPEN, we are guaranteed
to find the optimal solution even when performing DSD.

5 Experimental Results

It is an ongoing research question to study the performance
of bidirectional search and to build algorithms and heuris-
tics that can be used for efficient bidirectional search. Holte
et. al. [Holte et al., 2016] discuss the conditions under
which a bidirectional search will be preferred to a unidirec-
tional search. Our goal is to demonstrate that we can per-
form large searches and to study the characteristics of these
searches. Our experimental results are in the domain of Ru-
bik’s Cube. In addition to solving the standard 10 Korf in-
stances [Korf, 1997], we also solve the ‘superflip’ position,
one of the known problems at depth 20. Our bidirectional

680

Table 1: PEMM results on Rubik’s cube instances from Korf (0-9) and the superflip position (S).
No heuristic 888 PDB Heuristic

Depth Time(s) % Exp % I/O % DSD # Exp. Disk Time(s) % Exp % I/O % DSD # Exp. Disk
0 16 1,063 78.19 21.81 12.28 1.00 133GB 415 92.03 7.97 7.09 0.10 13GB
1 17 3,683 45.93 54.07 47.12 2.13 281GB 3,256 95.62 4.38 2.53 0.87 116GB
2 17 6,031 36.47 63.53 58.86 2.78 367GB 4,412 92.54 7.46 5.61 1.14 151GB
3 17 3,362 48.32 51.68 44.03 2.02 266GB 1,452 94.98 5.02 3.62 0.37 50GB
4 18 11,681 49.70 50.30 36.06 5.77 774GB 15,761 68.58 31.42 29.83 2.89 382GB
5 18 8,245 40.33 59.67 49.37 3.69 487GB 15,495 67.74 32.26 30.60 2.87 278GB
6 18 8,031 44.19 55.81 43.57 3.85 506GB 18,715 66.18 33.82 32.18 3.23 428GB
7 18 8,276 45.78 54.22 42.85 3.98 539GB 19,457 66.86 33.14 31.51 3.41 450GB
8 18 6,386 38.42 61.58 55.00 2.88 388GB 17,745 62.31 37.69 36.01 2.99 396GB
9 18 22,643 56.69 43.31 17.33 12.23 1.6TB 16,154 66.15 33.85 32.23 2.90 382GB
S 20 100,816 33.04 66.96 56.97 38.08 5.0TB 321,827 40.59 59.41 22.26 38.08 5.0TB

search does not use any special enhancements that are spe-
cific to Rubik’s cube, and thus is, to our knowledge, the first
fully general purpose algorithm to solve a depth 20 Rubik’s
cube instance. Our experiments are run on a 2.4 GHz Intel
Xeon E5 with dual 8-core processors. The machine has 128
GB of RAM and has two 8TB disk drives on which the ex-
periments are performed.

We solved all of these instances using PEMM as both a
bidirectional breadth-first search (h = 0 for all states) and
a bidirectional heuristic search. Our heuristic was the maxi-
mum value of three pattern databases [Culberson and Scha-
effer, 1996]. The first is the 8-corner PDB, while the sec-
ond two use 8-edges each (four of the edges overlap). While
we could have exploited the symmetry in the Rubik’s cube
problem to only build the forward heuristics, we built sepa-
rate reverse heuristic as well. So, a total of 10GB of RAM
was used for the heuristics. The time to build the heuristic
is not included in the results. The brute-force results all use
128 buckets, except for the superflip position which used 512.
The heuristic search had a baseline of 128 buckets that were
further divided by heuristic values, so the exact number of
buckets varied on each problem instance.

The results are found in Table 1. For each Korf instance (0-
9) and the superflip position (S), we report the solution depth,
the total time required to solve the problem, the percentage of
time spent doing node expansions (% Exp), the percentage of
time spent doing all I/O operations including DDD and DSD
(% I/O), the percentage of time doing DSD not in parallel
with node expansions, but possibly parallel with other I/O (%
DSD), the total number of node expansions in billions, and
the disk space used at the end of the search.

There are several trends in the data. First, the brute force
search expands states significantly faster than the heuristic
search. This is because there are costs associated with look-
ing up heuristics that slow the search down. Furthermore,
the heuristics are not strong enough on hard problem to lead
to significant amounts of pruning; in PEMM only heuristic
values greater than the solution depth are useful for prun-
ing [Holte et al., 2016]. Finally, using too few buckets during
the search has a significant impact on performance. Our ini-
tial experiments on the superflip position used only 128 buck-
ets and took over twice as long to solve. Using 512 buckets

on the other problem instances does not significantly impact
performance.

There is an important point of comparison here. Our par-
allel implementation of AIDA* [Reinefeld and Schnecke,
1994] using the 888 heuristic required 215,800 seconds to
solve this same problem with 116 billion node expansions.
This is 3x more node expansions than PEMM and more
than 2 times slower. Using a 9-edge heuristic (19 GB) the
AIDA* search required 166,231 seconds and 104 billion node
expansions. It is only with the 114 GB 10-edge heuristic
that AIDA* performance surpasses the brute-force PEMM
results, requiring 40,048 seconds and 24.6 billion node ex-
pansions. As more research is performed, the efficiency of
PEMM can be expected to grow significantly, especially as
we build better heuristics for PEMM.

One question we looked into was whether it would be more
efficient to perform DDD and DSD between the priority lay-
ers of the PEMM search. (That is, after expanding all nodes
of a given priority and before starting the next priority.) While
this does reduce the number of nodes expanded, it is not
faster. On Korf problem 3, PEMM expanded 30% more states
but was 8.5 times faster. There are two reasons for this. First,
DDD and DSD are I/O bound and do not parallelize well,
so this reduces the overall efficiency. More importantly, it
is more efficient to load a small frontier into memory than a
large frontier. If a solution exists in the existing frontiers, we
should load the smaller frontier into RAM to do this check.
PEMM does this as part of its DSD when expanding the op-
posite frontier.

6 Conclusion and Future Work

This paper presents PEMM, a parallel external-memory bidi-
rectional search algorithm. We identify that efficient solu-
tion detection is important for external memory bidirectional
search and show that the PEMM can be used to solve large
search problems, such as the depth 20 Rubik’s cube superflip
position. There is significant work to be done, including ex-
periments in different domains, improving the parallelism of
node expansions and disk I/O, finding the best ways to per-
form DSD, and investigating how more effective heuristics
can be built for solving large problem instances.

681

7 Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1551406.

References

[Arefin and Saha, 2010] Kazi Shamsul Arefin and Aloke Ku-
mar Saha. A new approach of iterative deepening bi-
directional heuristic front-to-front algorithm (IDBHFFA).
International Journal of Electrical and Computer Sciences

(IJECS-IJENS), 10(2), 2010.
[Barker and Korf, 2015] Joseph Kelly Barker and Richard E.

Korf. Limitations of front-to-end bidirectional heuristic
search. In Proc. 29th AAAI Conference on Artificial Intel-

ligence, pages 1086–1092, 2015.
[Culberson and Schaeffer, 1996] Joseph Culberson and

Jonathan Schaeffer. Searching with pattern databases. In
Proceedings of the 11th Biennial Conference of the Cana-

dian Society for Computational Studies of Intelligence,
volume 1081 of Lecture Notes in Computer Science, pages
402–416. Springer, 1996.

[Felner et al., 2011] A. Felner, U. Zahavi, R. Holte, J. Scha-
effer, N. Sturtevant, and Z. Zhang. Inconsistent heuristics
in theory and practice. Artificial Intelligence (AIJ), 175(9-
10):1570–1603, 2011.

[Hatem et al., 2011] Matthew Hatem, Ethan Burns, and
Wheeler Ruml. Heuristic search for large problems with
real costs. In Proceedings of the Twenty-Fifth AAAI Con-

ference on Artificial Intelligence, AAAI 2011, San Fran-

cisco, California, USA, August 7-11, 2011, 2011.
[Holte et al., 2016] Robert C. Holte, Ariel Felner, Guni

Sharon, and Nathan R. Sturtevant. Bidirectional search
that is guaranteed to meet in the middle. In AAAI Confer-

ence on Artificial Intelligence, 2016.
[Korf et al., 2005] Richard E. Korf, Weixiong Zhang, Igna-

cio Thayer, and Heath Hohwald. Frontier search. J. ACM,
52(5):715–748, 2005.

[Korf, 1997] Richard Korf. Finding optimal solutions to Ru-
bik’s Cube using pattern databases. In Proceedings of

the 14th AAAI Conference on Artificial Intelligence, pages
700–705, 1997.

[Korf, 2004] Richard E. Korf. Best-first frontier search with
delayed duplicate detection. In Proceedings of the Nine-

teenth National Conference on Artificial Intelligence, Six-

teenth Conference on Innovative Applications of Artificial

Intelligence, July 25-29, 2004, San Jose, California, USA,
pages 650–657, 2004.

[Kwa, 1989] James B. H. Kwa. BS*: An admissible bidirec-
tional staged heuristic search algorithm. Artificial Intelli-

gence, 38(1):95–109, 1989.
[Nicholson, 1966] T. A. J. Nicholson. Finding the shortest

route between two points in a network. The Computer

Journal, 9(3):275–280, 1966.
[Pohl, 1969] Ira Pohl. Bi-directional and heuristic search in

path problems. Technical Report 104, Stanford Linear Ac-
celerator Center, 1969.

[Reinefeld and Schnecke, 1994] Alexander Reinefeld and
Volker Schnecke. AIDA*-Asynchronous Parallel IDA*. In
Proceedings of the Biennial Conference-Canadian Society

for Computational Studies of Intelligence, pages 295–302.
Canadian Information Processing Soceity, 1994.

[Rokicki et al., 2014] Tomas Rokicki, Herbert Kociemba,
Morley Davidson, and John Dethridge. The diameter of
the rubik’s cube group is twenty. SIAM Review, 56(4):645–
670, 2014.

[Sadhukhan, 2012] Samir K. Sadhukhan. A new approach
to bidirectional heuristic search using error functions. In
Proc. 1st International Conference on Intelligent Infras-

tructure at the 47th Annual National Convention Com-

puter Soceity of India (CSI-2012), 2012.
[Sturtevant and Rutherford, 2013] Nathan R. Sturtevant and

Matthew J. Rutherford. Minimizing writes in parallel ex-
ternal memory search. In Proc. 23rd International Joint

Conference on Artificial Intelligence (IJCAI), 2013.
[Zhou and Hansen, 2004] Rong Zhou and Eric A. Hansen.

Structured duplicate detection in external-memory graph
search. In Proceedings of the Nineteenth National Confer-

ence on Artificial Intelligence, Sixteenth Conference on In-

novative Applications of Artificial Intelligence, July 25-29,

2004, San Jose, California, USA, pages 683–689, 2004.

682

