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Abstract
In biology, the construction of plasmids is a rou-
tine technique, yet under-optimal, expensive and
time-consuming. In this paper, we model the Plas-
mid Cloning Problem (PCP) in constraint program-
ing, in order to optimize the construction of plas-
mids. Our technique uses a new propagator for
the AtMostNVector constraint. This constraint al-
lows the design of strategies for constructing mul-
tiple plasmids at the same time. Our approach rec-
ommends the smallest number of different cloning
steps, while selecting the most efficient steps. It
provides optimal strategies for real instances in
gene therapy for retinal blinding diseases.

1 Introduction
Construction of plasmids is one of the most commonly used
techniques in molecular biology. Invented 40 years ago,
this technique led to impressive applications in medicine and
biotechnologies, such as the production of large amounts of
insulin and antibiotics in bacteria, as well as the manipula-
tion of genes in host organisms. In most cases, plasmids are
constructed by cutting and assembling DNA fragments from
different sources [Brown, 2010]. However, the physical as-
sembly of DNA parts is a time-consuming process for the ex-
perimenter, as it requires a multitude of steps. Minimizing the
number of different steps that are necessary to build multiple
plasmids at the same time can significantly reduce laboratory
work time and financial costs.

In this paper, we introduce a Constraint Programming (CP)
approach to the Plasmid Cloning Problem (PCP). The ob-
jective of the PCP is to recommend the smallest number
of different cloning steps, while selecting the most efficient
steps. For this purpose, we design a constraint model and
we introduce a new propagator for the AtMostNVector con-
straint [Chabert et al., 2009]. We show that no dominance
properties exist between our technique and state-of-the-art
propagators. This complementarity is confirmed empirically.
We demonstrate the relevance of using an Artificial Intelli-
gence framework for modeling the PCP by successfully solv-
ing real instances in gene therapy for retinal blinding diseases.

⇤This work was partially supported by the Fulbright-Fondation
Monahan, Fondation de France and AFM Téléthon fellowships.

The remainder of this paper is organized in the following
manner. Section 2 describes the PCP. Section 3 introduces
a CP model for the PCP and a new propagator for AtMost-

NVector, theoretically and empirically evaluated. Section 4
presents experiments on real PCP instances.

2 The Plasmid Cloning Problem
Construction of plasmids refers to the isolation of an oriented
DNA sequence containing a gene of interest, insert, and its in-
sertion into a circular molecule, plasmid, which can be used
to generate multiple copies of the DNA when introduced into
host cells (Fig. 1, next page). Each insert i is typically en-
closed into two different plasmids, z test and z cont (con-
trol), to yield two final plasmids z test [i] and z cont [i].

Inserting the insert into a plasmid is generally performed
using a cut and paste approach (Fig. 1A). First, the insert and
the plasmid are cut with commercially available restriction
enzymes (e.g., [Biolabs, 2015c]) at specific restriction sites
in order to generate compatible ends. Then, digested DNA
fragments are mixed together to allow their compatible ends
to anneal to each other. A DNA ligase is added to the solution
to covalently join the two fragments.

The most crucial part of the experiment is to determine how
the insert is introduced into the plasmids, i.e., which pairs of
restriction enzymes will be used to cut the insert and the plas-
mids to facilitate the cloning. The PCP considers the con-
struction of multiple plasmids at the same time. We cannot
select enzymes recognizing restriction sites that are already
present within the insert or present more than once in the plas-
mid. Using an enzyme recognizing any of these sites would
provoke fragmentation of DNAs. The list and positions of re-
striction sites present within each DNA sequence can be gen-
erated by several analysis DNA software tools, e.g., [ApE,
2015]. Let z be either z test or z cont , and z[i] the result-
ing final plasmid. Let the integer identifiers x[i].before and
x[i].after be the restriction sites located at ends of insert i to
allow its cloning into z. Five constraints apply:

(A) Enzymes used to cut the insert i and the plasmid z need
to create identical or equivalent ends, as only physically
compatible ends can be covalently ligated (Fig. 1A).
Therefore, the restriction sites x[i].before and x[i].after
should be compatible with the restriction sites of z[i].
The list of enzymes creating compatible ends is freely
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Figure 1: Construction of plasmids using the digestion/ligation method. (A) General procedure for cloning an insert into a
plasmid. Using polymerase chain reaction, restriction sites (SpeI and EcoRV in this example) are added at both ends of an
oriented insert i (arrow). The insert and the plasmid are digested by restriction enzymes to generate sticky and complimentary
ends. With the addition of DNA ligase, the insert and the plasmid recombine at the sticky end sites. The result is a new plasmid
containing the insert. (B)-(D) Orientation and compatibility constraints for the cloning of an insert into a final plasmid, in one
step (B), (C), or when an intermediate plasmid is required (D). Restricted sites that are excluded are in grey. Restriction site
position in the plasmid is given in parenthesis.

provided by suppliers, e.g., [Biolabs, 2015a]. Moreover,
in some cases, ligation of two compatible ends can de-
stroy both original restriction sites in the hybrid DNA
sequence. These sites are excluded from the list to allow
the experimenter to easily remove or exchange the insert
from the final plasmid, should this be required.

(B) The insert must be enclosed into the plasmid in the right
orientation to allow its expressivity. As restriction sites
present in the plasmid z are totally ordered by their posi-
tion, the two enzymes used to cut the insert i, x[i].before
and x[i].after , should recognize restriction sites with
identical orientation on the plasmid z[i] (Fig. 1B). In
addition, in z[i], the restriction sites should be separated
by d (a positive integer), as many restriction enzymes do
not cut DNA efficiently at the end of a DNA sequence.
Therefore, we must have z[i].before + d < z[i].after .

(C) Enzymes used to cut the two ends of the insert and plas-
mid should raise two different and not compatible ends.
Otherwise, the insert could be assembled to the plasmid
in either the correct or incorrect orientation. Addition-
ally, the plasmid may self-ligate omitting the insert (Fig.
1C). Consequently, x[i].before should not be compatible
with x[i].after ; the same for z[i].before and z[i].after .

(D) Many assembling strategies cannot be done in only one
cloning step. If and only if no direct solutions exist, a
plasmid y containing different restriction sites will be
used to generate an intermediate construct y[i]. The in-
sert i can be fused in either orientation into the interme-
diate plasmid y, but the correct orientation of the insert i

needs to be restored when cloned into the final plasmid z
(Fig. 1D). Note that in this case four steps are necessary:
1) digest insert i to generate ends compatible with y, 2)
assemble i and y, 3) extract i from y[i] to generate ends
compatible with z and 4) ligate i and z to get z[i].

(E) As using an intermediate plasmid is very time consum-
ing task for the experimenter, we constrain x[i].before
and x[i].after to be identical for the construction of both
z test and z cont when an intermediate plasmid is re-
quired for the construction of both z test and z cont .

Optimization criteria. When multiple plasmids are con-
structed at the same time, sharing the same cloning strat-
egy reduces the total step count, associated laboratory work
and reagent costs, because plasmid digestion and purification
steps can be done in parallel. Therefore, our primary objec-
tive is to minimize the number of distinct pairs of enzymes
(z[i].before, z[i].after ) used to construct all final plasmids. In
addition, not all pairs of restriction enzymes (before, after )
are equivalent in practice. Restriction enzyme cost is stem
from buffer and temperature compatibility, as well as cloning
efficiency. In particular, it is highly desirable that at least one
of the restriction enzyme generates a sticky-end DNA frag-
ment because the ligation is easier when there are overhangs.
Our second objective is to determine optimized pairs of re-
striction enzymes to perform the selected cloning steps. Pref-
erence is given to low costs. Properties of each enzyme are
provided by the supplies, e.g., [Biolabs, 2015b].
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Related work. To our knowledge, no existing software can
solve the PCP. We emphasize that emerging techniques and
software have been designed for optimizing the construc-
tion of genetic composites from a set of predefined DNA
parts [Appleton et al., 2014; Casini et al., 2015; Densmore
et al., 2010]. Although the research area is common with our
application, constraints fundamentally differ from the PCP.
In related studies, the authors assemble multiple DNA frag-
ments together, but restriction sites are predefined and fixed.

3 Constraint Model
In Constraint Programming (CP), constraints state relations
between variables. A set of constraints forms a model of a
constraint problem. Each variable has a finite domain of pos-
sible values. In this paper we consider exclusively integer do-
mains. An assignment of values to variables is an instantia-
tion if and only if each value belongs to the domain of its vari-
able. Constraints are associated with propagators. Through
embedded filtering algorithms, a propagator removes domain
values that cannot be part of a solution to a constraint. Do-
main reduction can be more or less effective. A propagator is
GAC (Generalized Arc Consistent) if and only if it removes
all the values that cannot satisfy the constraint. In this paper,
we use the AtMostNVector constraint [Chabert et al., 2009].
Definition 1 (AtMostNVector). Let V be a collection of k
vectors of variables, V = [X(0), X(1), . . . , X(k�1)

]. Let
obj be an integer variable. Each X(a) contains p variables,
X(a)

= {x(a)
0 , x

(a)
1 , . . . , x

(a)
p�1}. Two vectors X(a) and X(b)

are distinct if and only if 9 j 2 {0, 1, . . . , p � 1} such that
x
(a)
j 6= x

(b)
j . We use the notation nb 6=(V ) for the number of

distinct vectors within an instantiation of all variables in V.
AtMostNVector(V, obj ) , nb 6=(V )  obj .

As many CP problems are NP-Hard, a search procedure is
required. The search process can be systematic, e.g., a Branch
and Bound scheme, or not, e.g., Large Neighborhood Search.

3.1 Constraint model for the PCP
CP is a good candidate for the PCP because efficient prop-
agators exist for table constraints [Lecoutre et al., 2015;
Perez and Régin, 2014; Mairy et al., 2014]. They can be
combined with more specific constraints, such as AtMost-

NVector. A table constraint is defined by the set of combi-
nations of values that satisfy it (or, respectively, violate it),
called tuples. In our model, due to intricate rules on enzyme
pairs, all constraints except objective constraints are tables.
The issue is to find the good tradeoff between arity (number
of variables in each table) and propagators running time. Do-
main reduction is better with a high arity but the number of
tuples may become huge and the filtering algorithms exces-
sively time consuming. We present the best found model, in
terms of solving capabilities. We provide solutions with sites
that were initially present in their plasmid. A component c is a
triplet of variables hc.before, c.after , c.costi. We distinguish
three “layers” of components. For each insert i we state:

• One component x[i]. If at least one intermediate is re-
quired to ligate the final plasmids test and/or control, this
component represents the pairs of enzymes used to cut

the insert, with respect to test and/or control. We can de-
termine whether at least one direct solution exists or not
before solving the problem by comparing all site pairs.
This modeling structurally guarantees that constraints
(E) of Section 2 is satisfied, as if there are two inter-
mediate they share the same component x[i]. Domains
of x[i].before and x[i].after are generated from lists of
candidate sites. In agreement with biologists, cost do-
main is D(x[i].cost) = {0, 1, 2, 4, 6}.

• Two components y p test [i] and y p cont [i] that repre-
sent site pairs that will match to x[i] in the intermediate
plasmid when no direct solution exist for i, and site pairs
used to cut the insert otherwise. In the case of use of an
intermediate plasmid, more than one intermediate can-
didate may exist in data. We merge in the domains the
sites of all candidates. Cost domains are {0, 1, 2, 4, 6}.

• Two integer variables, ind y test [i] and ind y cont [i],
whose domains are the set of all unique identifiers for
plasmid candidates, plus value �1 to deal with the case
where no intermediate plasmid is used.

• Two components z test [i] and z cont [i] that represent
the pair of sites selected in the target plasmid. Domains
are generated similarly to x[i].

In addition, we define two objective variables, one for the
number of distinct vectors in target plasmids, obj nvector ,
and one for the sum of costs, obj sumcost .

The table constraints are the following. Recall that
consistent pairs of enzymes and their cost and position are
data. Suffix C is used to state a constraint on costs and
string test for test inserts/plasmids. We present only test
plasmids constraints: to add constraints on control plasmids
in the model, just duplicate all constraints with string test

and replace test by cont. For each i we define:

X C(x [i ].before, x [i ].after , x [i ].cost)
Yp test C(y p test [i ].before, y p test [i ].after , y p test [i ].cost)
Yc test C(y c test [i ].before, y c test [i ].after , y c test [i ].cost)
Z test C(z test .before[i ], z test [i ].after , z test [i ].cost)
XY test(x [i ].before, x [i ].after , ind y test [i ],

y p test [i ].before, y p test [i ].after )
YY test(ind y test [i ], y p test [i ].before, y p test [i ].after ,

y c test [i ].before, y c[i ].test after )
YZ test(y c test [i ].before, y c.test [i ].after ,

z test [i ].before, z test [i ].after )

We now summarize the generation of allowed tuples in
tables, according to the PCP constraints A,B,C,D and E
detailed in Section 2, and describe the optimization scheme.
Cost constraints. Concerning X C, if no intermediate plas-
mid is used both for test and control (E), tuples (v, w, 0) are
generated for each (v, w) in D(x[i].before) ⇥D(x[i].after).
Otherwise, cost c of each pair is stem from data and the tuple
(v, w, c) is added accordingly. Yp test C is similar to X C.
Tables Yc test C and Z test C are similar to X C but simpler,
as exclusively tuples of the form (v, w, c) are added.
Transition constraint XY test. If no intermediate is re-
quired, we add all tuples (v,w,-1,t,u) to the table, according
to the variable domains. Otherwise, depending on the
intermediate plasmid identifier id , we generate valid tuples
(v,w,id ,t,u) restricted so as: t and u must be enzymes of the
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intermediate plasmid id ; v and w must not be compatible
or equal (C); t and u must not be compatible or equal (C);
v and t must be compatible or equal (A); w and u must be
compatible or equal (A); t and u must be distant from d (B).
Transition constraint YY test. If no intermediate is re-
quired, we add all valid possible tuples (-1,t,u,t,u) subject to
the following rules: t and u must not be compatible (C); t
and u must belong to the insert domain (E). Otherwise, we
add tuples (id ,t,u,r,s). t,u,r and s must be enzymes of the
intermediate candidate id ; t and u must not be compatible
or equal (C); r and s must not be compatible or equal (C);
Moreover, two cases should be considered. (1) position of t
< position of u. The direction is correct and position of r
should be  position of t, while position of s should be �
position of u (B and D). (2) position of t > position of u. A
re-inversion is required, position of r should be  position of
u, while position of s should be � position of t (B and D).
Transition constraint YZ test. Tuples should preserve ends
compatibility (A) and distance between enzymes in each
component (B), similarly to XY test.
Objective constraints and optimization scheme. An
instance of AtMostNVector(V, obj nvector ) defines the first
objective, such that V = {(z test [0].before, z test [0].after ),
(z test [1].before, z test [1].after ),. . .} [ {(z cont [0].before,
z cont [0].after ),(z cont [1].before, z cont [1].after ),. . . }.
We minimize obj nvector , fix this variable to the best
found value and then minimize the sum of all cost variables,
obj sumcost . Then, increase obj nvector by one and
minimize again obj sumcost . Other points in the Pareto can
be obtained by relaxing more obj nvector , if needed. Best
obj nvector value can be found using a bottom-up scheme:
try to find a solution with one distinct vector, if there is no
solution then try with two distinct vectors, and so on. The
solution is optimal providing that proofs of lack of solutions
with lower objective values have been made.

3.2 Propagating AtMostNVector

AtMostNVector was introduced in the context of simultane-
ous localization and map building (SLAM) [Chabert et al.,
2009] and can be used in many contexts, including biol-
ogy [Graça et al., 2009; Backeman, 2013]. Proving that the
minimum value in the domain of obj variable can be part of a
solution of AtMostNVector is NP-Hard [Chabert et al., 2009].
Therefore, enforcing GAC on AtMostNVector is NP-Hard,
as well as Bounds-consistency1 [Backeman, 2013]. With
respect to AtMostNValue, the particular case of AtMost-

NVector with vectors of one variable, filtering algorithms
lighter than GAC have been introduced, using Linear Pro-
gramming and Lagrangian Relaxation [Bessière et al., 2006;
Cambazard and Fages, 2015] and Favaron et al.’s approxi-
mation of a maximum independent set on the compatibility
graph [Favaron et al., 1993; Bessière et al., 2006]. In the
compatibility graph G of a set of vectors V of size k, each
node represents a vector from V and there is an edge between
two nodes if and only if the corresponding vectors can be
equal, given the current domains. An independent set is a set

1i.e., considering that domains are represented by their minimum
and maximum value and have no holes.

1 card := Cardinalities of values in each row of vec;
2 scard := Sort each row of card in ascending order;
3 int res := 1;
4 for j 2 {0, 1, . . . , p� 1} do
5 nbco := 0; cur := 0; i := scard[j].length� 1;
6 while nbco < k do
7 nbco := nbco + scard[j][i];
8 i := i� 1; cur := cur + 1;
9 res := max(res, cur);

10 return res;
Algorithm 1: NVECTORLB.

of nodes where no two nodes in the set are connected by an
edge. A maximum independent set is an independent set of
maximum cardinality. Finding this set is NP-Hard. The car-
dinality can be approximated, given m the number of edges in

G: obj �
l
2k� 2m

d2m/ke
d2m/ke+1

m
. Backeman has shown that the filter-

ing techniques based on this lower-bound of obj for the con-
straint AtMostNValue

[Bessière et al., 2006] can be adapted
to the case of AtMostNVector

[Backeman, 2013].

Cardinality-Based Propagator. We suggest a new tech-
nique for improving G-based propagators. Researchers in bi-
ology should not have to determine the appropriate parame-
ters or combination of algorithms, e.g., the sub-gradient algo-
rithm in a Lagrangian relaxation based technique. We must
consider a black-box approach. Whereas existing propagators
are based on pairwise comparisons of vectors, through the
edges of G [Backeman, 2013], we consider the set of variables
at a given vector position. For each j 2 {0, 1, . . . , p� 1}, we
consider the variables {x(0)

j , x
(1)
j , . . . , x

(k�1)
j }. Every vari-

able in this set belongs to a different vector.
Definition 2. Let X be a set of variables and v a value. The
cardinality #v of v is the number of domains of variables in
X that contain v.

If the maximum cardinality among all values in the union
of domains of variables {x(0)

j , x
(1)
j , . . . , x

(k�1)
j } is strictly

less than k, then at least two vectors will be distinct. If the
sum of the two maximum cardinalities is strictly less than k,
then at least three vectors will be distinct, and so on. Among
all j 2 {0, 1, . . . , p � 1}, the maximum required distinct
vectors is a lower bound for obj . Let minv the minimum
value among all domains and maxv the maximum one. Let
r = maxv � minv + 1. To compute this lower-bound, Al-
gorithm 1 uses the global variables: card : p ⇥ r integers
matrix that is used to store cardinalities of values (sorted
in scard ); vec: k ⇥ p matrix of variables that represents
[X(0), . . . , X(k�1)

]; We assume that the solver raises an ex-
ception when a domain is emptied. As a consequence, in Al-
gorithm 1 we cannot have a sum of occurrences of the values
in domains strictly less than the number of variables.
Property 1 (Correctness). Let vec be a k⇥p integer variable
matrix. Algorithm 1 returns a lower bound of the number of
distinct vectors in the matrix.

Proof. scard[j] is the set of value cardinalities of column j
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1 obj := NVECTORLB(vec, card); // Fill card
2 for i 2 {0, 1, . . . , k � 1} do
3 for j 2 {0, 1, . . . , p� 1} do
4 for v 2 D(vec[i][j]) do
5 Decrease by 1 v cardinality in card [j];
6 scard [j] := Sort card [j] in ascending order;
7 nbco := 0; lb := 0; idx := scard[j].length� 1;
8 while nbco < k and idx > 0 do
9 nbco := nbco + scard[j][idx];

10 lb := lb +min(1, scard[j][idx]);
11 idx := idx� 1;

12 if lb > obj _ (lb = obj ^ nbco < k) then
13 for v 2 D(vec[i][j]) do
14 once := True;
15 nbco := 0; cur := 0;

idx := scard[j].length� 1;
16 while nbco < k do
17 nbco := nbco + scard[j][idx];
18 if scard[j][idx] = cardinality of v in

card [j] and once then
19 nbco := nbco + 1;
20 once := False;
21 idx := idx� 1; cur := cur + 1;

22 if cur > obj then remove v;

23 for v 2 D(vec[i][j]) do
24 Increase by one v cardinality in scard

Algorithm 2: NVCARDINALITYPROPAGATOR.

of vec, j 2 {0, 1, . . . , p�1}, sorted in ascending order. Start-
ing from the last cell in scard[j], while nbco < k, the algo-
rithm (line 6) iterates on maximum cardinalities and counts
covered variables in column j of vec, through nbco (line 7).
The number of iterations is by construction a lower bound of
the number of distinct values in any instantiation of column j
of vec. As all columns will finally be assigned, the maximum
res is a lower bound of the number of distinct vectors.

Property 2 (Non dominance). There are no dominance rela-
tions between the lower-bound of Algorithm 1 and the value
of a maximum independent set in the compatibility graph G.

Proof. Let LBIS be the cardinality of a maximum in-
dependent set (IS) on G and LB# be the lower bound
of Algorithm 1. We can have LBIS > LB#. Let
(x1, y1), (x2, y2), (x3, y3) be three vectors with the domains
D(x1) = D(x2) = {0}, D(x3) = {1, 5}, D(y1) =

{1}, D(y2) = {2} and D(y3) = {2, 6}. LBIS =

3 and LB# = 2. We can have LBIS < LB#:
D(x1) = {0, 1}, D(x2) = {1, 2}, D(x3) = {0, 2}, D(y1) =
{1, 2}, D(y2) = {2, 3} and D(y3) = {1, 3}. All vectors are
pairwise compatible, LBIS = 1. Any value appears twice in
[iD(xi): LB# = 2.

We now introduce the propagator. The principle is to tem-
porarily reduce the domain of vector variables to each single
value and update the lower-bound of Algorithm 1 on the fly,
in order to determine whether this value should be removed

or not, given the current upper-bound of obj domain. Al-
gorithm 2 applies this idea while keeping a reasonable time
complexity. Given any variable x, x and x are the minimum
and maximum value in its domain D(x). After simulating
that a domain is emptied, to compute the lower bound inde-
pendently from the current variable, the algorithm checks if
the assignment of each value v would lead to a number of dis-
tinct vectors strictly greater than obj . In this case value v is
removed. As removed values do not participate to the initial
lower-bound computation, removals do not change the lower-
bound. It is sufficient to run the filtering algorithm once at
each call of the propagator. Algorithm 2 uses the two global
data scard and vec, as well as the objective variable obj .

We point out that Property 2 is valid for any algorithm
based on a maximum independent set of G, including the
lower bound obtained using the exact (and NP-Hard) com-
putation. Therefore, theoretically, our propagator can be
complementary to any approach based on the compatibility
graph that might be derived from AtMostNValue propaga-
tors [Bessière et al., 2006; Cambazard and Fages, 2015].
Property 3 (Time complexity). Let

P
Di be the sum of do-

mains sizes of the k ⇥ p variables in the vectors matrix.P
Di  k ⇥ p ⇥ d, where d is the maximum domain size.

Algorithm 2 runs in O(max(
P

Di ⇥k, p⇥ r)) time.

Proof. (Sketch) Algorithm 1 computes all cardinalities in
O(max(

P
Di, p ⇥ r)) by traversing domains, in each row

ccard [j]. In card [j], the minimum cardinality is 0 and the
maximum one is k. A linear sort of card [j] can be performed
using an array of size k + 1. As each domain contains at
least one value, the sum of domain sizes in scard [j] is greater
than or equal to k. The whole matrix scard can be sorted
in O(max(

P
Di, p ⇥ r)). Algorithm 2 calls Algorithm 1

once and then loops on all variable domains. If lb > obj (or
nbco < k) then each value is assessed and the while loop (line
16) can have an order of magnitude of k, giving a worst-case
result of O(

P
Di ⇥k). Other statements are dominated.

Experimental Assessment of Algorithm 2. We benched
our propagator independently from the PCP, using Choco
3.3.3 [Prud’homme et al., 2014] on a I7-4720HQ linux lap-
top with 16GB of RAM. Minimizing the objective of a single
AtMostNVector constraint is a NP-Hard problem [Chabert et
al., 2009]. We compared the number of nodes and time re-
quired to find an optimal solution and to prove optimality on
randomly generated domains, using a bottom-up scheme. We
used a search strategy that does not require a random pro-
cess: select the variable with the largest domain and split this
domain at each choice point2. We generated series of 100
instances with 24 variables and domains of 10/15/20 values,
randomly generated from shuffled arrays of 20/30/40 values.
We compared two propagators: (IS), a propagator based on
the state-of-the-art lower bound (maximum independent set),
where values are filtered similarly to Algorithm 2 but using
the Favaron’s approximation instead of Algorithm 1; (ISC),
the IS propagator used in combination with Algorithm 2.

2Results are similar using a lexicographic order of variables. The
instances are harder to solve and ISC always leads to less nodes.
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Nb. Domain Number of Average Average
variables size: range Optimal proofs Nodes Time (sec.)
24 (6⇥4) 10: [0,19] 99 / 100 111840 / 13769 0.92 / 0.53
24 (8⇥3) 10: [0,19] 100 / 100 93468 / 72560 13.9 / 10.91
24 (6⇥4) 10: [0,29] 93 / 94 1555719 / 77518 7.67 / 2.9
24 (8⇥3) 10: [0,29] 100 / 100 217880 / 99161 16.36 / 11.8
24 (6⇥4) 15: [0,39] 100 / 100 1074183 / 70814 11.39 / 7.65
24 (6⇥4) 20: [0,39] 99 / 100 636983 / 16450 3.6 / 1.23

Table 1: IS / ISC. Results on 100 instances, 5 min. time
limit.

Table 1 provides the number of instances where the opti-
mal solution is proved in less than 5 minutes. Average time is
computed with instances that are both solved by the two tech-
niques. Average nodes are computed on all solved instances.
The average number of nodes is reduced using ISC. A few
instances are solved using ISC and not using IS.

Figure 2: Gain and loss in nodes and time using ISC. The
graph represents gain/loss in number of nodes for each of the
100 instances. Dots represent the gain/loss in time per in-
stance.

Figure 2 shows gain and loss in % when ISC is used, in
comparison with IS. The black graph represents gain/loss in
number of nodes of each of the 100 instances for the data set
where we observed the lowest benefit using ISC, 24 variables
(8⇥3) with domains generated from a range of 20 values.
Dots represent the gain/loss in time per instance. Figure 2
shows that ISC is the more robust technique. Almost all in-
stances with a loss are easy. The maximum loss in time using
ISC (-25%) occurs for an instance (85) that is solved in less
than 0.04 sec., which has not a lot of meaning in Java.

In a last experiment, we computed average time for a first
solution on 100 backtrack-free instances, in order to check
Algorithm 2 scalability, using Choco 3. Results are 75.1 sec.
for 10000 variables (2500⇥4) and 10 values per domain and
40.7 sec. for 100 variables and 1000000 values per domain.

4 Experimental results on PCP instances
We solved three real instances of the PCP in the field of
gene therapy for retinal blinding diseases. The first one is
related to the development of a gene addition therapy [Boye
et al., 2012] in three animal models of inherited photorecep-
tor dystrophies: a dog model of PDE6�-retinitis pigmentosa,
a dog model of RPGRIP1 -leber congenital amaurosis and a
rat model of RDH12 -retinitis pigmentosa. In each model,
one dog/rat sequence as well as one human sequence gene

are evaluated. The problem considers the cloning of six in-
serts (number of candidate sites between 31 and 56), with the
use of six intermediate plasmids (number of candidate sites
between 14 and 16). The second one is related to the de-
velopment of a neuro-protective strategy to delay cone pho-
torecetor degeneration in a mouse model of retinitis pigmen-
tosa [Punzo et al., 2012]: 6 inserts (39 to 54 sites) and 3
intermediate plasmids (18 to 20 sites). The third one refers
to an optogenetic therapy to restore visual perception at late
stages of retinal degeneration [Sahel and Roska, 2013]: 7 in-
serts (47 to 56 sites) and 2 intermediate plasmids (3 and 14
sites). Table constraints involve up to millions of tuples. We
used the solving scheme described in section 3.1, with LastK-
Conflicts [Lecoutre et al., 2009]. This “meta-mechanism”
allows to guide search toward sources of conflicts. Using
LastKConflicts, the best variable strategy was to assign first
the final plasmid vars, and then the remaining vars for each
insert successively, and then the costs, simply using the lexi-
cographic order within each subset, with minimum value se-
lection. The LastKConflicts best parameter is 2, probably be-
cause the model is strongly structured along variable pairs.

Inst. Nb.
P

Opt. Opt. Nodes Time
vect. costs vect. cost. (sec.)

Full1 1 24 yes yes 205 / 188 2.4 / 2.3
2 24 - yes 905 / 723 2.6 / 2.3

Real1 1 24 yes yes 66 / 66 1.4 / 1.4
2 24 - yes 97 / 84 0.8 / 0.8

Simu1 4 38 yes yes 2.1K / 2.1K 5 / 4.5
5 35 - yes 10.6K / 10.6K 7 / 7.2

Full2 1 24 yes yes 100 / 100 2.8 / 2.8
2 24 - yes 3.3K / 3.1K 8.6 / 8.3

Real2 3 35 yes yes 30.7K / 21.4K 33.9 / 26.1
4 26 - yes 42.5K / 39K 29.5 / 29.3

Simu2 4 24 yes yes 34.8K / 21.1K 24.6 / 17.3
5 24 - yes 4.7K / 4.6K 3.1 / 3.1

Full3 1 44 yes yes 293 / 293 4.2 / 4.2
2 35 - yes 4.2K / 3.4K 8.9 / 6.9

Real3 2 38 yes yes 508 / 508 4.6 / 4.7
3 33 - yes 6.5K / 5.7K 9.5 / 8.1

Simu3 3 37 yes yes 955 / 937 6.3 / 6.2
4 33 - yes 3.3K / 3.3.K 5.7 / 6.2

Table 2: IS / ISC. Results on full, real and simulated in-
stances. Instance, number of vectors, sum of costs, proof
of optimality for vectors and costs, nodes and time. Size of
instances: 1 and 2: 141 variables, 80 constraints. 3: 164
variables, 96 constraints. Proof of optimality of cost sum is
considered given the current value of the number of vectors
(2 Pareto points: the second row corresponds to the best cost
result when the number of vectors is relaxed by 1).

Table 2 shows the results, following the solving scheme
presented in Section 3.1. Fulli are the three real instances
considered in a perfect world where all existing enzymes are
available in the laboratory. Reali are the same instances but
with enzymes available in collaborator’s laboratory. Simui
are instances derived from Reali by randomly modifying 30%
of enzymes in components. The time limit was 5 minutes for
each minimization step. LastKConflicts turned out to be of
major importance in the solving process. All solutions were
proved to be optimal for the two points of the Pareto front
that make sense in practice. The results demonstrate the rel-
evance of our constraint model for solving real instances of
the PCP. They confirm a gain of solving robustness when
AtMostNVector is propagated using Algorithm 2 (ISC), al-
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though this gain is mitigated by the use of LastKConflicts.

5 Conclusion
We provided a solution technique to the Plasmid Cloning
Problem (PCP) in molecular biology. Our approach optimally
solved real instances in the domain of gene therapy for retinal
diseases. In addition, from a generic point of view in Con-
straint Programming, we proposed a new propagator for the
AtMostNVector constraint, proved to be complementary to
the existing ones. Future work includes the development of
a user-friendly software product for biologists, based on the
proof of concept offered by this research work.
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