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Abstract
This paper studies a search problem involving a
robot that is searching for a certain item in an un-
certain environment (e.g., searching minerals on
Moon) that allows only limited interaction with hu-
mans. The uncertainty of the environment comes
from the rewards of undiscovered items and the
availability of costly human help. The goal of the
robot is to maximize the reward of the items found
while minimising the search costs. We show that
this search problem is polynomially solvable with a
novel integration of the human help, which has not
been studied in the literature before. Furthermore,
we empirically evaluate our solution with simula-
tions and show that it significantly outperforms sev-
eral benchmark approaches.

1 Introduction
Robots are increasingly used to perform search tasks, espe-
cially under the extreme environments that are hard to ap-
proach. Furthermore, there is often uncertainty about the na-
ture of the environment which is another barrier stopping hu-
mans directly access the environment [Liu and Nejat, 2013].

For example, a rover may search valuable minerals under-
neath the ground of a planet and the quality of each mineral
is uncertain before revealing it. In a disaster response sce-
nario, an unmanned ground vehicle (UGV) may look for an
important piece of plane debris in a flight crash region. In
such scenarios, it is costly for the robot (e.g., the energy/time
to reveal a mineral or the risk to visit a location) to become
aware of the exact reward of a search option (e.g., the qual-
ity of a mineral or whether the expected piece of plane de-
bris can be found at a certain location). Crucially, humans
may help robots to reduce the uncertainty of the rewards of
each search option (e.g., provide some information based on
snapshots and crowdsourced reports about the environments).
However, humans may not always available and asking hu-
mans for help might be costly as well [Fogarty et al., 2005;
Schmidt-Rohr et al., 2008].

Given the uncertainties of both the environment and the
availability of human help, the challenges in planning the
actions of the robot are twofold. Firstly, at each time step,
the robot needs to decide whether to search to acquire more

knowledge about the environment or to select one of the
known options to complete the search. Secondly, to reveal the
value of a search option/action, the robot needs to decide to
whether ask human for help or to discover it by itself. There-
fore, for optimal decision making, the robot should balance
the values of different actions.

Previous work in human-robot community has mainly con-
sidered the architecture mechanisms of interactions between
humans and robots [Murphy, 2004; Nourbakhsh et al., 2005;
Goodrich and Schultz, 2007; Gao et al., 2014]. Recently,
state-of-the-art planning technologies, both under certainty
and uncertainty, have been adapted to decision making for
human and robot teams [Bresina and Morris, 2007; Tala-
madupula et al., 2010; Rosenthal and Veloso, 2011; 2012;
Rosenfeld et al., 2015]. However, algorithms for these gen-
eral planning models cannot be effectively applied to our
search problem which has many (possibly infinite number of)
possible values on the reward of each action.

To combat this challenge, we focus on a class of the robot
search problem where costs of visiting potential locations
are independent with each other, and expect to find polyno-
mial time optimal solutions. Compared with general mod-
els in [Rosenthal and Veloso, 2011; 2012], this independence
assumption narrows the generality of our model, but it still
covers an important part of problems regularly faced in robot
search. For example, an autonomous rover explores among
items that are not far from each other where the energy/time
cost of physical movements is much less than that of reveal-
ing minerals, or an UGV looks for an important piece of plane
debris where the more important cost is the risk of visiting
the search area and these risks at different locations can be
regarded independent with each other.

Against this background, we propose a new model of
robot-human search (RHS), and propose a novel optimal al-
gorithm to solve it. Specifically, similar with other search or
planning approaches [Hazon et al., 2013; Kang and Ouyang,
2011; Rosenthal and Veloso, 2011; 2012], our robot’s deci-
sion making problem can also be formulated as a dynamic
programming instance. Instead of using their typical approx-
imation algorithms as a solution concept, we design an index
based search algorithm. In more detail, we define indices for
each possible action and design a search rule that always exe-
cutes the action with the highest index. In particular, we show
that, given the assumption of independence of costs, our in-
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dex based search algorithm is polynomial time complex and
provably optimal. This paper advances the state-of-the-art in
the following ways:

• We propose a new formal model of a robot searches an
item with uncertain knowledge of the environment and
costly human help. The model not only accounts for
searching with proactively asking human help, but also
explicitly captures the uncertainties of both the rewards
of items and the availability of human.

• We design a polynomial time algorithm to solve the
search problem and theoretically prove its optimality.
Compared with the algorithms proposed in [Rosenthal
and Veloso, 2011; 2012] for more general settings, our
approach improves the computation significantly.

• Furthermore, we empirically evaluate our search solu-
tion in simulations and show that it significantly outper-
forms several benchmark approaches.

2 Formal Model
In this section, we first present the model of robot-human
search (RHS) and then give an example to explain it.

We consider a robot searching for an item among n desig-
nated locations in an environment with human help and the
interactions among the robot, the human and the environment
are shown in Figure 1 (a). For each location i, 1  i  n,
there is an item with a potential reward xi with probability
distribution function Fi(xi), and the rewards of these items
are independent with each other. The reward of each item
is uncertain (a priori), and the robot can observe the true re-
ward by revealing the item or asking humans to check it. The
revealing cost is denoted by creveal

i , while asking humans for
help takes the robot a cost cask

i . We denote availability p as
the probability that a human may provide the expected infor-
mation when the robot is asking for help. The robot keeps on
revealing these items with the help from the human, and then
selects one of the revealed items to collect. Therefore, the
goal of the robot is to maximize the reward of the obtained
item while minimizing the sum of search costs.

Specifically, we define the states of an item, which are
illustrated in Figure 1 (b). All possible states of an item
are denoted by (Unknown, Unavailable), (Known, Unavail-
able) and (Known, Available), where Known/Unknown in-
dicates that the reward of an item is Known/Unknown by
the robot, and Available/Unavailable is that the item could
be collected or not yet. Initially, an item is at the state
of (Unknown, Unavailable), which means its reward is un-
known and the item can not be obtained unless some phys-
ical barriers are removed.1 First, it costs the robot creveal

i to
reveal an item and make this item known and available for
the robot, i.e., (Unknown, Unavailable) ! (Known, Avail-
able). Then, the robot may select one of known items to col-
lect, which also means that the search task is ended. More-
over, the human may provide the robot some knowledge of
the reward of an item to the robot. In practice, the human

1Note that, in this paper, “available” of an item indicates that the
item is ready and a robot can collect it at any time, while “available”
of a human means that the human can help a robot at a time step.
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Figure 1: (a) The interactions among the robot, the human
and the environment. (b) The transition states of an item.
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Figure 2: A rover searches an mineral on Moon with human
help, where green spots are the search locations.

is not always available or interruptible [Fogarty et al., 2005;
Rosenthal et al., 2012] and can not always respond. It takes
the robot a cost cask to ask the human for help. For example,
it takes 2.7 seconds for transmitting a signal from Moon to
Earth and 14 minutes from Mars to Earth. If the human is
available, she then checks the reward of the item, i.e., (Un-
known, Unavailable) ! (Known, Unavailable); otherwise,
the state does not change. In addition, for a checked item
at location i, the robot still have to pay the cost creveal

i to make
it available to collect, i.e., (Known, Unavailable) ! (Known,
Available).

We now provide a simple example to explain how the robot
would operate in this scenario. As shown in Figure 2, an
autonomous rover searches to collect a mineral on the land of
Moon with the help from a person who is stayed on Earth. In
order to assess the amount of reward xi at a specific location
i, the robot is able to ask help from the person with a cost
cask or physically excavate the covered soil and measure the
item directly by itself with a cost creveal

i . The parameters of
the minerals at different locations are listed in Figure 2. By
analysing this, we can find that different actions with different
minerals should be handled differently. For example:

• The expected utilities of mineral 1 and mineral 2 are the
same. For instance, if the robot reveals x1 and it turns
out to be 0.9 (higher than the supremum of x2), there is
no need to visit mineral 2 anymore. However, this does
not hold for the action of revealing mineral 2. Therefore,
even for two items with equal expected utilities, different
sequences of revealing them may have different results.

• Compared with mineral 2, mineral 3 associates with a
higher expected reward and a higher reveal cost. If the
robot asks the person to check x3 and it turns out to be
0.6, the robot should give up mineral 3 (because it will
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be x3 � creveal
3  x2 � creveal

2 , i.e., 8x2 2 [0.4, 0.6], 0.6�
0.2  x2 � 0.1). Thus, a cost 0.2 of revealing mineral
3 has been avoided. Therefore, checking an item before
revealing it may reduce the total search cost.

• For a mineral with a reveal cost that less than cask
=

0.02, such as mineral 4 with creveal
4 = 0.01, the action

of the robot revealing x4 is prior to asking the person to
help to check x4. Therefore, it is unhelpful to check an
item with a less reveal cost.

The robot’s utility is thus subject to not only the rewards
of items but also the costs of actions. Consequently, a robot’s
strategy should maximize the overall benefit resulting from
the search process, defined as the value of the option eventu-
ally collected, minus the costs accumulated along the process,
rather than merely finding the best valued option.

Having defined RHS, we now need an approach for the
robot to plan its search actions based on the current states and
knowledge of items. Hence, in what follows, we propose a
dynamic programming formulation for the robot’s decision
making and then design algorithms to solve it.

3 Robot’s Dynamic Programming Model
Given the proposed formal model, in this section, we formu-
late the robot’s decision making in RHS as a dynamic pro-
gramming problem.

We denote the collection of the n items by I =

{1, 2, . . . , n} and partition I into two sets: a growing set of
known items S ✓ I and its complement ¯S of unknown items.

At each time, the robot may choose whether to ask the hu-
man to check an unknown item from ¯S, to autonomously re-
veal an unknown item from ¯S, or to stop the search and select
one of the known items from S to collect.

First, we can denote the collect reward of collecting a
known item i 2 S as follows:

ri =

⇢
xi if i was revealed by robot,
�creveal

i + xi if i was checked by human. (1)

When the robot decides to collect an item, its optimal strategy
is simply to select the item with the highest current known
collect reward:

y = max

i2S
ri. (2)

We then denote the state at any time by (

¯S, y) and define
 ( ¯S, y) as the expected present value of following an optimal
policy from this time on when the set of unknown locations is
¯S and the maximum known reward is y. Note that, we do not
explicitly incorporate the availability of the human into the
state. Instead, we consider the human’s uncertain availability
in the recursive relation of valuation function of each state.

For each subset ¯S and y, the valuation function must satisfy
the fundamental recursive relation:

 ( ¯S, y) = max

�
y, reveal

(

¯S, y), ask
(

¯S, y)
 
, (3)

where

 

reveal
(

¯

S, y) = max

i2S̄

⇢
�creveal

i +  (

¯

S � {i}, y)
Z y

�1
dFi(x)

+

Z 1

y

 (

¯

S � {i}, x)dFi(x)

�
,

 

ask
(

¯

S, y) = p

ˆ

 

ask
(

¯

S, y) + (1� p)

⇣
 

ask
(

¯

S, y)� c

ask
⌘

=

ˆ

 

ask
(

¯

S, y)� (1� p)c

ask

p

= max

i2S̄

⇢
� c

ask

p

+  (

¯

S � {i}, y)
Z y

�1
dF ask

i (x)

+

Z 1

y

 (

¯

S � {i}, x)dF ask
i (x)

�
,

where  reveal
(

¯S, y) and  ask
(

¯S, y) are the values of reveal and
ask respectively, and F ask

i (x) = Fi(x+ creveal
i ) is the cumula-

tive distribution function for x = xi�creveal
i , which stands for

the reward that the robot obtains if it collects the item at loca-
tion i. In more detail, for each state (

¯S, y), the robot should
compare the values of different actions.2 For revealing an
item, we should take the following into account:

• If reward x  y, y does not change and we have ex-
pected utility �creveal

i +  ( ¯S � {i}, y);
• Otherwise, y is updated to x and the expected utility is
�creveal

i +  ( ¯S � {i}, x).
When asking the human to check an item, we should take the
human availability into account as follows:

• If no help is available (with a probability 1� p), nothing
changes and we have expected utility �cask

i +  ( ¯S, y);
• Otherwise, we denote the value when the human is avail-

able as ˆ ask
(

¯S, y), whose recursive relation is similar
with  reveal

(

¯S, y) as analysed above.
Thus, we can sum up the optimal solution for RHS as fol-

lows: for current state (

¯S, y) of RHS, an optimal solution
maximizes the value  ( ¯S, y) that computed by Equation (3).

We have thus formulated the robot’s decision making as
a dynamic programming. However, in this form, the recur-
sive value function is computationally intractable for prob-
lems with large n. Specifically, the computation time and
storage requirement of this dynamic programming are the
same as those for traditional travelling salesman problems
with n visiting nodes, i.e., of complexity O(n2

2

n
)

[Bellman,
1962]. Therefore, we design an index-based policy that can
optimally solve the problem in polynomial time in the next
section.

4 Search Strategy
Inspired by Pandora’s rule [Weitzman, 1979] for elicitation
problems [Baarslag and Gerding, 2015], we define indices
for each reveal and ask action. Specifically, for location i, we
define two indices with respect to each reveal and ask action,
which are denoted by reveal index zreveal

i and ask index zask
i

and computed by:

z

reveal
i = �creveal

i + z

reveal
i

Z zreveal
i

�1
dFi(x) +

Z 1

zreveal
i

xdFi(x), (4)

z

ask
i = � c

ask

p

+ z

ask
i

Z zask
i

�1
dF ask

i (x) +

Z 1

zask
i

xdF ask
i (x). (5)

2To note, in our model, creveal
i is considered as part of the action

cost when the robot takes the reveal action whereas cask is the action
cost when the robot asks the human. In the latter case, creveal

i has
been put in as part of the collect reward function (Equation (1)).
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Given state (

¯S, y) and the set of indices {zreveal
i , zask

i |i 2
¯S}, we design the following simple (but optimal) policy,
called Search Rule as follows:

Search Rule:
ASK/REVEAL RULE: If a location is to be asked for help
(or revealed by the robot), it should be an unknown loca-
tion with the highest ask index (or reveal index) . Whether
to ask the human to check or to reveal a location is deter-
mined by the overall highest index.
COLLECT RULE: Terminate search whenever the maxi-
mum known collect reward exceeds both the ask index and
reveal index of every unknown location. Then select the
item with the highest known collect reward to collect.

Given the above search strategy, we next analyse its com-
putational complexity and prove its optimality.
Theorem 1. The complexity of the Search Rule is O(n log n).

Proof. In Algorithm 1, as the robot chooses actions based on
the orders of index values of all items and this order does not
need to be updated during the search process, the complex-
ity of our strategy depends on computing the order of these
indices and it then is O(n log n).

Theorem 2. The Search Rule is an optimal strategy for RHS.

Proof. To prove our Search Rule optimal for RHS, we fol-
low the proof of [Baarslag and Gerding, 2015] to show that
RHS can be mapped to Pandora’s problem [Weitzman, 1979],
which is an economic-based search model about opening
boxes. In Pandora’s problem, each closed box contains a po-
tential reward with a probability distribution function and fea-
tures a cost to open it and learn its contents. First, each known
location with its item in S can be seen as an opened box with
a reward ri. Then, as shown in Figure 3, we can view each
unknown location i holding two independent copies of boxes
ireveal and iask: ireveal contains a potential reward xi with the
probability distribution function Fi(xi) and its opening cost
is creveal

i ; iask contains xi � creveal
i with the probability distri-

bution function Fi(xi) and its opening cost is cask

p . Once a
box is opened, it moves from the set of closed boxes ¯S to
the set of opened boxes S, and the other box at the same lo-
cation is deleted from the world. The index based policy is
as follows: (1) if a box is to be opened, it should be that
closed box with highest index; (2) terminate search when-
ever the maximum sampled reward exceeds the index of any
closed box. It has been proven in [Weitzman, 1979] that
this type of strategy is optimal in terms of expected reward.
Therefore, RHS is mapped to a Pandora’s problem with boxes
{ireveal, iask | i 2 I} and our Search Rule is optimal in terms
of expected reward (Equation (3)).

Next, we design the algorithm (see Algorithm 1) of exe-
cuting the search strategy. First, compute the highest col-
lect reward of known items (line 2-3) and compute the reveal
indices and ask indices of unknown items (line 4-7). Then,
compare these indices (line 8) and select an item to collect
(line 9-10), reveal (line 11-12) or ask for help (line 13-14).

Location i
reveali

( )ix F x( )i (i

reveal
ic

aski
askc
p

ask ( )ix F xask ( )i
ask (i

Figure 3: Mapping from a reveal or ask action to opening a
box in Pandora’s problem.

Algorithm 1 Executing search policy
1: procedure SEARCH(S, ¯S)

. Find the highest collect reward of known items.
2: y = maxi2S ri

3: ˆ

i = argmaxi2S ri

. Calculate the reveal indices and ask indices.
4: for i 2 ¯

S do
5: z

reveal
i  Solve c

reveal
i =

R1
zreveal
i

(x� z

reveal
i )dFi(x)

6: z

ask
i  Solve cask

p =

R1
zask
i
(x� z

ask
i )dF ask

i (x)

7: end for
. Compare all indices and perform the optimal action.

8: i

⇤
= argmaxi2S max{zreveal

i , z

ask
i }

9: if y � max{zreveal
i⇤ , z

ask
i⇤ } then

10: return COLLECT(S, ¯S,ˆi)
11: else if zreveal

i⇤ � z

ask
i⇤ then

12: return REVEAL(S, ¯S, i⇤)
13: else
14: return ASK(S, ¯S, i⇤)
15: end if
16: end procedure

When asking for help, if the human is not available, it is not
feasible to repeatedly execute ask actions until response is re-
ceived at a time step because the availability always can not
change immediately. Therefore, if the human is not available
at a time step, the robot will then select a known item to col-
lect or select an unknown one to reveal.

Given our designed Search Rule and Algorithm 1, we
can derive some desirable properties of the optimal solution.
Firstly, if the human with a higher availability p, the action of
asking the human to check an item’s reward then associates a
higher index.
Property 1. For any unknown item i 2 ¯S, its ask index zask

i
increases with the human availability p, while its reveal index
zreveal
i is independent of p.

Secondly, we can derive that the reveal index and ask index
satisfies a property as follows:

Property 2. For any unknown item i 2 ¯S, if creveal
i < cask

p ,
then zreveal

i > zask
i , i.e., the action of asking the human to

check i is dominated by the action of revealing it.

Proof. We prove this property by reductio ad absurdum, i.e.,
if zreveal

i  zask
i , then creveal

i � cask

p . Specifically, first, for
any item with a potential reward x with probability distribu-
tion function F (x), the function

R1
z (x� z)dF (x) decreases

with z (because its derivative function is �(x� z) ˙F (x)  0,
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where x 2 {z,1}). Next, if zreveal
i  zask

i , then zreveal
i 

zask
i + creveal

i . Then
R1
zreveal
i

(x � zreveal
i )dFi(x) �

R1
zask
i
(x �

zask
i )dFi(x+ creveal

i ) � 0. Given this, from Equation (4)
and (5), we get that creveal

i � cask

p . Thus, we derive that if

creveal
i < cask

p , then zreveal
i > zask

i .

5 Experiments
To evaluate the performance of our Search Rule (called “Op-
timal” for short in this section) for RHS, we design five base-
line benchmark strategies for comparison in terms of average
utilities and interactions of robot, human and environment.

5.1 Setup and Benchmarks
We define the statistics as follows: (1) Average utilities:
Given the objective defined in Section 2, the utility of an sim-
ulation is the reward of the obtained item minus the accu-
mulated costs; (2) n Ask: Average times that the robot tries
to ask for help; (3) n Check: Average times that the robot
receives help from the human; (4) n Reveal: Average num-
ber of items that revealed by the robot; (5) n Known: Av-
erage number of known items, which are either revealed by
the robot or checked by the human. In particular, we use av-
erage utilities generated by different algorithms to evaluate
their performance and use other four statistics to analyse the
interactions during search processes.

We then design two experiments as follows:
Experiment A: We first design scenarios of searching

among 4 items based on the example defined in Section 2, and
construct these scenarios by using their parameters. We vary
the human availability p as a parameter of the experiments,
choosing values between 0 and 1 with 0.05 increments.

Experiment B: We next design more general scenarios to
evaluate the performance of different algorithms with varying
reveal costs. In particular, we construct 400 scenarios with
10 items. In each scenario, the reward probability function of
each item is setted a uniform distribution U(a, b), with a < b
uniformly sampled from U(0, 1). Other parameters are setted
as: p = 0.75, cask

= 0.02. We vary the reveal costs creveal
i as a

parameter of the experiments, choosing values between 0 and
0.2 with 0.02 increments.

We compare our optimal search strategy with five bench-
mark strategies that are listed as follows:

Random: The robot randomly selects an item to reveal,
check or collect at every time step.

All: The robot asks the human to check or reveals all of
the items before collecting any of them. For each unknown
item i, the robot decides to reveal it if creveal

i  cask, other-
wise asks the human to check it. Once all items are known,
select the one with highest reward to collect. This algorithm
is worthwhile for low ask or reveal costs.

Highest expected value: Instead of using index to eval-
uate an unknown item, a reasonable strategy may uses the
policy of selecting an item with the highest expected value
(i.e., maxi2S̄{E(xi)� creveal

i }) to reveal.
Optimal without Human: Without considering human

help, the robot searches by itself using our optimal policy
that deletes the actions of asking the human for help from
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Figure 4: Average utilities for different human availabilities
in Experiment A.
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Figure 5: Average (a) asked times, (b) checked times, (c) re-
vealed times and (d) final number of known items for different
human availabilities in Experiment A.

the action space. On one hand, this strategy can be used to
compare the optimality with “Highest expected value”, both
of which do not consider human help. On the other hand, by
comparing this strategy with “Optimal”, we can evaluate the
improvements by introducing the mechanism of human-robot
interaction to our robot search problems.

Upper bound: An upper bound represents a solution for
situations where we assume that the robot is aware of the
true information about the human and all the items, includ-
ing whether the human is available or not at each time step,
and the true utility of each item. Note that, this is not a tight
upper bound of our solution as the robot is assumed to have
more information beyond the basic model.

5.2 Results and Discussion
In Experiment A, for each human availability, we make 1000
simulations. The average utilities obtained by different search
strategies are shown in Figure 4 and Figure 5 shows the statis-
tics of n Ask, n Check, n Reveal and n Known. In these
figures, the error bars depict the 95% confidence intervals
around the means and non-overlapping error bars invalidate
the null hypothesis with ↵ = 0.05. As we can see from Figure
4, our optimal search policy (“Optimal”) significantly outper-
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forms all others. Specifically, the average utilities obtained by
“Optimal” and “All” gradually increase with human availabil-
ity p and approach the result of “Upper Bound” when p = 1,
while “Optimal” performs much better than “All” for low hu-
man availabilities. This is because that, for a higher human
availability, the robot has a higher probability to receive help
from the human when asking the human with a cost cask (as
shown in Figure 5 (a) and (b)). Furthermore, for high avail-
abilities (p > 0.6), both “Optimal” and “All” perform better
than other algorithms as for some items with high reveal costs
they may ask human to check the exact rewards of these items
(as we can see in Figure 5 (b) and (c) that for “Optimal” and
“All”, n Check increases and n Reveal decreases with hu-
man availability). Moreover, for the algorithms without con-
sidering human help, our “Optimal without human” performs
better than “Highest expected value” as our search rule con-
siders the expected reward of whole search process, instead of
only the expected reward of each action. In addition, we can
see from Figure 5 (d) that “Optimal” stops search at a proper
number of known items, which is more than “Optimal with-
out human” and “Highest expected value” but less than “All”
and “Random”, i.e., “Optimal” performs well on “effectively
using resources to search key items”. Finally, “Random” per-
forms much worse than all other strategies, which is because
that any search action is costly and some items may have a
bad reward and “Random” not only performs bad on average
utilities but also may get a randomly bad result.

In Experiment B, for each reveal cost, we make 1000 sim-
ulations. The average utilities obtained by different search
strategies are shown in Figure 6 and Figure 7 shows the statis-
tics of n Ask, n Check, n Reveal and n Known. Although
the average utilities obtained by all the strategies decease with
the reveal cost, our “Optimal” strategy outperforms all others
and is quite close to the “Upper bound”. Specifically, if reveal
costs are zero, the results of “Optimal”, “Optimal without hu-
man” and “All” approach that of “Upper Bound”, which is
because that all the three strategies may reveal all unknown
items with zero costs and then select the one with highest re-
ward to collect (as shown in Figure 6). However, “Highest
expected value” stops the search if there exists a known item
whose collect reward is higher than all the expected values
of unknown items (some of them may hold a higher exact
reward). Moreover, as shown in Figure 7 (c), n Reveal of
“Highest expected value” and “Upper Bound” are indepen-
dent with reveal costs creveal

i , 8i 2 I , and the average utilities
generated by “Highest expected value” and “Upper Bound”
linearly decease with reveal costs creveal

i , 8i 2 I (as shown
in Figure 6), which can be easily deduced from their options
of actions (i.e., based on E(xi) � creveal

i and xi � creveal
i re-

spectively). In addition, the generated utilities of “Optimal”
and “Optimal without human” decease with reveal costs more
rapidly than “Highest expected value”. This is because that,
as reveal costs increase, the former two strategies will reveal
less items and the difference between the sequences of solu-
tions of these strategies deceases.

Given these results, we conclude that our strategy “Opti-
mal” significantly outperforms the benchmarks and the per-
formance of the robot is improved by using the strategies with
human-robot interaction.
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Figure 6: Average utilities for different reveal costs in Exper-
iment B.
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Figure 7: Average (a) asked times, (b) checked times, (c) re-
vealed times and (d) final number of known items for different
reveal costs in Experiment B.

6 Conclusion
In this paper, we formulate a new model for robot search tasks
with some prior knowledge and human help. In particular, we
consider the situation in which a robot searches an item to col-
lect, while the item’s utility is unknown until the robot reveals
it or asks a human to perform further checks on it. We pro-
pose a polynomial optimal strategy and empirically show that
our approach is efficient and significantly outperforms other
baseline strategies. Moreover, instead of aiming to obtain the
best item, our approach can be extended to a more general
formulation in which the objective is a function of all found
items. Specifically, we can extend our search rule based on
the technique in [Olszewski and Weber, 2015] in which Pan-
dora’s rule is extended to solve more general problems. For-
tunately, after the extension, the complexity and optimality
will remain the same. Future work will consider how to deal
with mixed types of costs that the robot can incur (e.g., time,
distance, etc). For example, in some cases, a human oper-
ator is available, but the time to wait for the answer can be
too long. Therefore, besides the cost of asking a person, the
wait-cost for a possibly-delayed response should also be con-
sidered. Moreover, in some environments, items with high
reward may be impossible to pick up, and the cost of picking
them up should be separated from their rewards.
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