
An ASP Semantics for Default Reasoning with Constraints

Pedro Cabalar,1 R̃oland Kaminski,2 Max Ostrowski,2 Torsten Schaub2,3

1University of Corunna, Spain 2University of Potsdam, Germany 3INRIA, France

Abstract
We introduce the logic of Here-and-There with
Constraints in order to capture constraint theories
in the non-monotonic setting known from Answer
Set Programming (ASP). This allows for assign-
ing default values to constraint variables or to leave
them undefined. Also, it provides us with a se-
mantic framework integrating ASP and Constraint
Processing in a uniform way. We put some em-
phasis on logic programs dealing with linear con-
straints on integer variables, where we further intro-
duce a directional assignment operator. We elabo-
rate upon the formal relation and implementation of
these programs in terms of Constraint ASP, sketch-
ing an existing system.

1 Introduction
Although Answer Set Programming (ASP; [Lifschitz, 2008])
has become a prime candidate for knowledge representa-
tion and reasoning, it falls short of succinctly represent-
ing variables over large numeric domains. So far, this was
addressed by hybridizing ASP with Constraint Processing
(CP; [Dechter, 2003]), leading to the subarea of Constraint
ASP (CASP; [Lierler, 2014]). In fact, the design of most
CASP approaches is inspired by the algorithmic framework
of Satisfiability modulo Theories (SMT; [Nieuwenhuis et al.,
2006]) and thus leads to hybrid semantics combining non-
monotonic aspects of ASP with monotonic ones of CP. This
yields an inevitable blind spot, namely, the incapacity of pro-
viding defaults for constraint variables (or even leaving them
undefined). Such features must be addressed on the ASP side,
which brings us back to the aforementioned problem.

We address this dilemma by introducing a new approach
that integrates ASP and CP in the uniform semantic frame-
work of the logic of Here-and-There (HT ; [Heyting, 1930]),
extending the Equilibrium Logic [Pearce, 1997] characteri-
zation of ASP to theories with constraint atoms. This puts
both ASP and CP on the same semantic footing, being non-
monotonic in nature. The new logic of Here-and-There with
constraints, HT

C

for short, is built from variables over asso-
ciated domains, whose valid valuations are determined by the
interpretation of constraint atoms. HT

C

is not only a proper

generalization of HT , and hence also ASP, but it also toler-
ates undefined constraint variables and lets them take default
values. Moreover, the logic programming fragment of HT

C

also subsumes the CASP approach of [Gebser et al., 2009].
Interestingly, the monotonic nature of constraint variables in
CASP can be obtained by adding simple axioms, similar to
tertium non datur in HT (or choice rules in ASP). Finally,
we elaborate upon the fragment of logic programs with lin-
ear constraints on integer variables, LC , and introduce direc-
tional assignments in rule heads in order to guarantee found-
edness in the presence of undefinedness. Furthermore, we
develop a translation of LC -programs into CASP that forms
the backbone of our implementation by means of off-the-shelf
CASP solvers.

2 Here-and-There with Constraints
In this section, we introduce the logic of Here-and-There with
Constraints, HT

C

for short.
We begin by recalling the definition of a constraint sat-

isfaction problem as a triple hX ,D, Ci where X is a set of
variables, D a domain of values, and C a set of constraints.
Each constraint is a pair hx,Ri where x is an n-tuple of vari-
ables and R an n-ary relation on D. A valuation of the vari-
ables is a function from the set of variables to the domain
of values v : X ! D. A valuation v satisfies a constraint
h(x1, . . . , xn

), Ri if (v(x1), . . . , v(xn

)) 2 R. A solution of
hX ,D, Ci is a valuation v that satisfies all constraints in C.

The syntax of HT
C

starts from a similar signature
hX ,D,Ai where, as before, X are variables and D domain
values, but A are now constraint atoms, or just atoms for
short. The syntax of a constraint atom is left open and de-
pends on the respective type of constraints. We assume that
it always has a set of associated variables from X and some-
times refers to elements in D. Examples of constraint atoms
are x + y  3, x = y, all di↵ ({x, y, z}), or x 2 {t,f}
where x, y, z are variables and 3, t,f are values. We some-
times refer to a subset of variables P ✓ X as propositions
and let the subset {t,f} ✓ D of values stand for Boolean
truth values. Also, for each proposition p 2 P , we include
a constraint atom (p = t) 2 A that we call regular atom
and usually abbreviate by p. We also allow for atoms of form
(p = f) 2 A, standing for the strong negation of p, and al-
ternatively write them as ⇠p. A formula is any propositional
combination of atoms and logical connectives ?,^,_,!.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1015

We define negation as ¬' def
= ' ! ? and double implica-

tion as '$ def
= ('!) ^ (! ').

The semantics of HT
C

is defined as follows. A partial
valuation v is a function v : X ! D [{u} assigning to each
variable in X either a domain value from D or the special
value u 62 D standing for “undefined.” A partial valuation
can be alternatively represented as a set v ✓ X ⇥D that does
not contain two different pairs (x, c) and (x, d) with c 6= d for
the same variable x and that does not include any pair (x, ·)
when v(x) = u. With this set representation, we use the
standard✓ relation to compare partial evaluations. We define
VX,D as the set of all possible partial valuations for X and D
and remove the subindices when clear from the context. We
use letters v, v0 to denote elements of V . The closure of a set
S of partial valuations is defined as S" def

= {v | v ◆ v0, v0 2
S}. A set S of partial valuations is said to be closed if S" =
S . Given two variables x, y 2 X and a domain D = {1, 2},
an example of a non-closed set of valuations is {v 2 V |
v(x) = v(y)} since v = ; satisfies v(x) = v(y) = u but its
superset v0 = {(x, 1), (y, 2)} does not satisfy v0(x) = v0(y).
On the other hand, {v 2 V | v(x) = v(y) 6= u} is closed.

Satisfaction of formulas is defined wrt a fixed function,
called atom denotation, J · K : A ! 2V that maps each atom
to a closed set of partial valuations. As examples of atom
denotations, we have the following:

J |x� y| = d K def
= {v 2 V | v(x), v(y) 2 Z,

|v(x)� v(y)| = d}
Jx = y K def

= {v 2 V | v(x) = v(y) 6= u}
Jx 6= y K def

= {v 2 V | u 6= v(x) 6= v(y) 6= u}
J all di↵ (X) K def

= {v 2 V | for any pair x, y 2 X

u 6= v(x) 6= v(y) 6= u}
Jx 2 D K def

= {v 2 V | v(x) 2 D}
J some zero(x, y) K def

= {v 2 V | v(x) = 0 or v(y) = 0}

As mentioned, denotations must be closed. For instance,
all above examples satisfy JA K" = JA K. This property al-
lows us to prove the following result. Given a denotation J · K
and a partial valuation v, we define the set of atoms that hold
in v as AtJ · K(v)

def
= {A 2 A | v 2 JA K} or At(v) for short.

Proposition 1 Let v ✓ v0 be a pair of partial valuations and
J · K a denotation for atoms in A. Then At(v) ✓ At(v0).

The denotation for regular atoms is fixed as expected:

J p K = J p = t K def
= {v | v(p) = t}

J⇠p K = J p = f K def
= {v | v(p) = f}

Let X = {x1, . . . , xn

} be a subset of variables X ✓ X .
A constraint C = h(x1, . . . , xn

), Ri can be understood as the
following set of partial valuations:

{v | {(x1, d1), . . . , (xn

, d
n

)} ✓ v and (d1, . . . , dn) 2 R} .

These are all valuations fixing variables in X to some tuple
in R while varying the remaining variables X \X in all pos-
sible ways (including being undefined). Notice that v(x

i

) is
always defined for all variables in X and any valuation v in
the constraint. A set of partial valuations is said to be strict

if it corresponds to some constraint C. Otherwise, it is said
to be non-strict. For instance, the denotation Jx = y K pro-
vided before is strict because we can represent it as a con-
straint h(x, y), Ri where R = {(d, d) | d 2 D}. How-
ever, J some zero(x · y) K is non-strict because we may have
v(x) = 0 but v(y) undefined or the other way around. This
cannot be captured by a constraint: we cannot cover this set
of valuations as any h(x, y), Ri, h(x), Ri or h(y), Ri because
we must include both v1 = {(x, 0)}, where y is undefined,
and v2 = {(y, 0)}, where x is undefined. In this paper, we
focus on strict denotations for atoms.

An interpretation in HT
C

is a pair hH,T i of partial valua-
tions such that H ✓ T .
Definition 1 Given a fixed denotation J · K, we say that an
interpretation hH,T i satisfies a formula ', written hH,T i |=
', when the following recursive conditions hold:

(i) hH,T i |= A iff H 2 JA K
(ii) ?,_,^ as usual

(iii) hH,T i |= ' ! iff for both v = H and v = T it
holds: hv, T i 6|= ' or hv, T i |= .

As usual, an interpretation hH,T i is a model of a theory �,
written hH,T i |= �, if it satisfies all formulas in �, that is,
hH,T i |= ' for all ' 2 �. A theory (or a single formula) �
entails a formula ', written � |= ', when all models of � are
models of '. We write ' ⌘ to represent that ' and are
equivalent, that is, have the same HT

C

models.

Observation 1 The logic of Here-and-There can be obtained
as a case of HT

C

with a signature hX ,D,Ai where X repre-
sents propositions, D = {t} and A = X , understanding each
p 2 A as an abbreviation of the constraint atom (p = t) as
explained above. Moreover, this can be generalized to any
arbitrary singleton D = {d} and corresponding constraint
atoms (p = d) and the relationship still holds.

The following is an interesting connection between HT
C

and HT :
Proposition 2 Let � be some HT

C

theory for signature
hX ,D,Ai and let hH,T i be some model of �. Then,
hAt(H), At(T)i is an HT model of � under signature
hA, {t}, {p = t | p 2 A}i.1

As a result, we directly derive these properties from HT :
Proposition 3 For any formula ':

• hH,T i |= ' implies hT, T i |= '

• hH,T i |= ¬' iff hT, T i 6|= '

• Any tautology in HT is also a tautology in HT
C

.
In the light of Proposition 2, one might wonder whether, to

capture HT
C

semantics, it would suffice to exclusively con-
sider HT theories built with constraint atoms used as propo-
sitional variables without entering into their internal seman-
tics. This is not the case, since we cannot obtain a similar
correspondence in the opposite direction. Namely, not any
arbitrarily chosen pair of sets of atoms H 0 ✓ T 0 ✓ A nec-
essarily corresponds to an HT

C

interpretation hH,T i such
1Or simply hA, {t},Ai by abbreviating all (p = t) by p.

1016

that H 0 = At(H) and T 0 = At(T). As an example, take
H 0 = {x = y} ⇢ {x = y, x = 0} = T 0. Clearly, to obtain
At(T) = T 0 we need T = {(x, 0), (y, 0)}. Now, the only
subset of T that satisfies x = y is H = T itself. But then
At(H) = At(T) = T 0 6= H 0.

We sometimes write T |= ' to stand for hT, T i |= '.
Extending the equilibrium model definition [Pearce, 1997] to
HT

C

theories is straightforward.
Definition 2 An interpretation hT, T i is an equilibrium
model of a theory � if hT, T i |= � and there is no H ⇢ T
such that hH,T i |= �.
In this case, we also say that T is a stable model of �. Again,
if we restrict the signature to hA, {t},Ai, we obtain standard
equilibrium/stable models.

For logic programming syntax, we use comma ‘,’ and
semicolon ‘;’ as alternative representations of ^ and _, re-
spectively. Similarly, we write ' to stand for ! ', as
expected. An HT

C

-literal is an atom A or its default negation
¬A. An HT

C

program is a set of rules of the form:
L1; . . . ;Ln

 L
n+1, . . . , Lm

where each L
i

is an HT
C

-literal.
Example 1 For solving the 8-queens puzzle, we define the
variables X = {q1, . . . , q8} where q

i

represents the column
of the queen located at row i. We are given some queens al-
ready placed and, by default, the first queen should be located
at column 1. A possible way to encode this problem is as fol-
lows. We use the domain values D = {1, . . . , 8} and use the
atoms all di↵ (X) and |x� y| = d as given above. Then, we
specify the problem as the HT

C

-program ⇧1:
? ¬all di↵ (X) (1)
? |q

i

� q
j

| = d
i,j

(2)
q1 = 1 ¬(q1 6= 1) (3)
q
k

2 D (4)
where i, j, k 2 D, i 6= j, k > 1 and d

i,j

is the constant |i�j|.
Without further information, the program ⇧1 yields four so-
lutions corresponding to the possible 8-queens arrangements
with q1 = 1. However, if we add the fact q1 = 4, we obtain
the 18 possible solutions where queen 1 is located at row 4.

As we can see, constraints can be used to encode default
reasoning, such as the default value 1 for variable q1 in the
example. This feature of HT

C

cannot be represented with
the usual semantics for CASP [Gebser et al., 2009] which
separates regular ASP atoms (that allow for defaults) from
constraint atoms, that only permit monotonic reasoning. As a
result, any CASP program that does not contain regular atoms
is monotonic. Note the difference wrt HT

C

where, due to
Observation 1, it is always possible to encode any standard
logic program only using constraint variables and picking an
arbitrary singleton domain. For instance, the ASP program
{p ¬q} can be directly encoded as {p = 1 ¬(q = 1)}
using integer variables instead of Boolean atoms.

Capturing CASP constraints in HT
C

can be easily
achieved. Take the following pair of axioms:

¬¬(x = x) (5)
x = x _ ¬(x = x) (6)

A variable x is said to be defined (resp. rigid) in a theory � if
the axiom (5) (resp. (6)) is entailed by �.
Proposition 4 For any model hH,T i of �:

• If x is defined in �, then T (x) 6= u

• If x is rigid in �, then H(x) = T (x)

Intuitively, (5) acts as a constraint forbidding stable models
with x undefined. However, x can be undefined in H , that is,
during models minimization. Thus, a defined variable may
be assigned a default value, as we did with q1 in Example 1.
On the other hand, (6) forces a monotonic behavior for x,
so that we can freely choose its value beforehand, including
the case in which we decide to leave it undefined. When a
variable is both defined and rigid it satisfies (5) and (6), whose
conjunction amounts to the axiom x = x. This axiom acts as
a choice rule allowing to pick any arbitrary value in D for x.
Theorem 1 The definition of CASP provided in [Gebser et
al., 2009] exactly corresponds to HT

C

programs where all
variables are defined and rigid.

In fact, we can apply this same technique (adding axiom
x = x) to selectively fix a CASP behavior only for some vari-
able x. This is analogous to the addition of the ASP choice2

p _ ¬p to make proposition p behave classically.

3 Logic programs with Linear Constraints
In this section, we focus on a family of constraint atoms for
dealing with linear constraints on integer variables, studying
some useful syntactic constructions for logic programs with
this kind of atoms. A linear constraint is a constraint atom
of the form ↵  � where ↵ and � are in their turn linear
expressions defined as follows. A linear expression ↵ is a
sum t1 + · · · + t

n

where each addend t
i

can be a product
d
i

· x
i

or simply a constant d
i

, being d
i

2 Z and x
i

2 X .
By Vars(↵) we denote the set of variables occurring in ↵
and we sometimes write Vars(↵,�) def

= Vars(↵) [Vars(�)
when dealing with two linear expressions. A linear constraint
↵  � is said to be in normal form if � = d 2 Z. We
adopt some usual abbreviations. We simply write x

i

instead
of 1 · x

i

and we directly replace the ‘+’ symbol by ‘�’ for
negative constants. Moreover, when clear from the context,
we sometimes omit the ‘·’ symbol. As an example,�x+3 y�
2 z stands for (�1) · x+3 · y+(�2) · z. Other abbreviations
must be handled with care. In particular, we neither remove
products of form 0 · x nor replace them by 0.

To define the denotation of a linear constraint, we extend
any partial valuation v on integer variables to any arbitrary
arithmetic term t in the following way:

v(d) def
= d if d 2 Z

v(x) def
=

⇢
d if (x, d) 2 v, d 2 Z
u otherwise

v(t1�t2) def
=

⇢
u if v(t1) = u or v(t2) = u

v(t1)�v(t2) otherwise

for any variable x 2 X and any operator � 2 {·,+}. As
before, we write v(t) = u to represent that v(t) is undefined.

2This HT -formula is frequently denoted as {p} in ASP.

1017

In other words, an arithmetic expression is evaluated as usual,
except that it is undefined if it contains some undefined sub-
term (or eventually, some undefined variable).
Proposition 5 For any arithmetic expression t and HT

C

in-
terpretation hH,T i, H(t) 6= u implies H(t) = T (t).
The denotation of a linear constraint ↵  � is defined as:

J↵  � K def
= {v | v(↵), v(�) 2 Z, v(↵)  v(�)}

This collects interpretations assigning some integer both to ↵
and �, and additionally v(↵)  v(�). Therefore, ↵  � does
not hold in interpretations where some variable in Vars(↵,�)
is undefined (or assigned a non-integer value). We can
also observe that J↵  � K is strict, since it can be repre-
sented as the constraint h(x1, . . . , xn

), Ri with Vars(↵,�) =
{x1, . . . , xn

} and R containing all the n-tuples of integer val-
ues that assigned to the variables fulfill v(↵)  v(�).

We use some abbreviations: we write ↵ = � to stand for
the conjunction3 ↵  � ^ �  ↵. Given an inequality A :
(↵  �), we write A to stand for (� < ↵) def

= �  ↵^¬(↵ 
�). We also define the formula ↵ 6= � as ↵ < � _ � < ↵.
Notice that ↵ 6= � is stronger than ¬(↵ = �) since the former
requires ↵ and � to have different values (and so, to be both
defined), while the latter checks that ↵ = � does not hold, and
this includes the case in which any of the two is undefined.

One interesting result is that we can fully capture propo-
sitional HT and equilibrium logic in HT

C

with integer vari-
ables and linear constraints. To do so, it suffices to replace
each occurrence of a Boolean variable p in a propositional
HT theory by the constraint x

p

= 1 for a corresponding inte-
ger variable x

p

. Then, we get an obvious one-to-one mapping
where each assignment (p, t) in an HT model corresponds to
(x

p

, 1) in HT
C

and vice versa.
For any linear expression ↵, we define df ↵ def

= ↵  ↵ to
stand for “↵ is defined,” that is, ↵ has a value. It is easy to
see that df ↵ is equivalent to the conjunction

V
x2Vars(↵) df x.

Therefore, if ↵ does not contain integer variables, df ↵ = >.
Constraints in rule heads must be handled with care be-

cause they treat all variables, in principle, in a non-directional
way. For instance, imagine we want to assign to x some value
in the range from 0 to y, and that we have the rule y = 10 p
but currently no evidence about p so y should be undefined.
Adding the formula 0  x ^ x  y would not yield the de-
sired effect because, as we force both constraints to be true, it
would also allow for justifying any arbitrary value for y. To
allow for directional assignments, we introduce the following
construction. An assignment A for variable x is an expres-
sion of the form x := ↵ ..� (with ↵,� linear expressions)
standing for the formula:

¬¬dfA ^ (dfA! ↵  x ^ x  �) (7)

where dfA def
= df ↵ ^ df �. We say that A is applica-

ble in hH,T i when hH,T i |= dfA. We define �(A)
to be the non-directional version of assignment A, that is,
�(x := ↵ ..�) def

= ↵  x ^ x  �. As we can see, A

3When we write x = y for two variables, we deal with some
syntactic ambiguity wrt ‘=’ used as identity constraint atom. In fact,
for integer variables, the semantics of both formulas coincide.

makes some additional checks regarding the definedness of
↵ and � before imposing any condition on x. In particular,
(dfA ! ↵  x ^ x  �) guarantees that ↵ and � can be
used to fix the value of x, but not of variables in ↵ and �
themselves. On the other hand, ¬¬dfA can be seen as a con-
straint checking that ↵ and � must be eventually defined in
the stable model, but through other rule(s) in the program.

When the upper and lower bounds coincide, we just write
(x := ↵) def

= (x := ↵ ..↵), that is, ¬¬df ↵^(df ↵! x = ↵).
Note that, as a result, �(x := ↵) = (x = ↵).

The following proposition relates A and its non-directional
version, �(A), in some particular cases.
Proposition 6 Given an assignment A = (x := ↵ ..�) then:

(i) A ^ dfA ⌘ �(A)
(ii) ¬A ⌘ ¬�(A)

In particular, if A = (x := ↵ ..�) contains no variables other
than the assigned x, then dfA = > and so A ⌘ �(A).

We now define an interesting syntactic subclass of HT
C

logic programs. A linear constraint rule, or LC -rule for
short, is a rule of the form:

A1; . . . ;An

 B1, . . . , Bm

,¬B
m+1, . . . ,¬Bk

(8)

with n � 0 and k � m � 0, where each A
i

is an as-
signment and each B

j

is a linear constraint. For any rule
r like (8), we let Head(r) stand for the set of assignments
{A1, . . . , An

} and Body(r) be the set of linear constraints
{B1, . . . , Bm

,¬B
m+1, . . . ,¬Bk

}. An HT
C

program con-
sisting of LC -rules only is called LC -program.

Notice that an LC -rule does not directly correspond to an
HT

C

program rule since the assignments in the head contain
nested implications like (7). However, the following theorem
allows us to rewrite any LC -rule as a set of HT

C

rules, and
helps us to illustrate the intuitive behavior of assignments:
Theorem 2 A rule r as in (8) is equivalent4 to the conjunc-
tion

V
�✓Head(r) � where � is the implication:

_

A2�

�(A)
^

A2Body(r)

A ^
^

A2�

dfA ^
^

A2Head(r)\�

¬�(A)

Due to Proposition 6, each implication in Theorem 2 can be
written as a set of HT

C

rules, because �(A) is a conjunction
in the head ↵  x ^ x  � and, by De Morgan, ¬�(A)
becomes a disjunction in the body ¬(↵  x)_¬(x  �), and
both cases can be unfolded in HT into different rules. Let us
informally illustrate this result with the following example.
Example 2 The LC -rule

y := x� 1 ¬(1  z) (9)

corresponds to the set of HT
C

rules:

y = x� 1 ¬(1  z), df x (10)
? ¬(1  z),¬(y = x� 1) (11)

Suppose our LC -program consists of rule (9) only. The intu-
ition is that ¬(1  z) should hold, as z is undefined and we
cannot prove 1  z, but then y := x � 1 cannot be fulfilled,

4A more succinct translation is used in Section 4.

1018

since there are no assignments for x, so it is left undefined and
x�1 cannot be evaluated. As a result, we get no stable model.
Note how, if we replaced y := x� 1 by just y = x� 1 in the
head, we would get a stable model T = {(y, d), (x, d � 1)}
per each d 2 Z so the rule would also be fixing values for
x. Looking at the translation in (10)-(11), the behavior of the
assignment becomes clearer. As z does not occur in any head,
it is left undefined. Variable x occurs in the head of (10), but
it depends on df x in the body, and so, this rule cannot be
used to provide a founded value for x. Thus, x is undefined
and y = x � 1 is also false, so the constraint (11) becomes
applicable, and we get no stable model.

To illustrate non-monotonicity, suppose we add the rule
x := 1 whose translation from Theorem 2 amounts to
the fact x = 1. Then, we obtain a unique stable model
{(x, 1), (y, 0)}. Moreover, assume now that together with
x := 1, we also add the assignment z := 0 .. 3. This last
version of the program yields four stable models: one with
z = 0 and y = 0 and the other three with y undefined and z
varying from 1 to 3.

The next example illustrates the behavior of an LC -rule
with a disjunction in the head.
Example 3 The LC -rule:

z := x; t := y (12)

corresponds to the conjunction of the HT
C

-rules:

z = x; t = y df x, df y (13)
z = x df x,¬(t = y) (14)
t = y df y,¬(z = x) (15)
? ¬(z = x),¬(t = y) (16)

If we only have (12) in our program, then x and y are un-
defined and the rule cannot be satisfied – constraint (16) is
applicable. If we add, for instance, the assignment x := 1,
then y is still undefined, but (14) becomes applicable and
we get the stable model {(x, 1), (z, 1)}. Then, if we fur-
ther add y := 2, we obtain the two expected stable models
{(x, 1), (y, 2), (z, 1)} and {(x, 1), (y, 2), (t, 2)}. To illustrate
how disjunction interacts with positive cycles, let us look at
the following variation.
Example 4 Take the program containing (12) and the rules:

x := 1 (17)
y := 1 z = 1 (18)
z := 1 y = 1 (19)

If we apply the first disjunct in (12), we get z = 1
and then y = 1 by (18) leading to the stable model
{(x, 1), (y, 1), (z, 1)}. This is indeed the only stable model
of the program. If we tried to apply the second disjunct in
(12) instead, we would need to establish a founded value for
y first. However, y depends on z which, in its turn, depends
on x through the first disjunct of (12). But then the solution
{(x, 1), (y, 1), (z, 1), (t, 1)} would not be minimal.5

5As in standard ASP, stable models of a positive HTC program
are always minimal wrt set inclusion.

We show next that LC -programs can be translated into
ASP with linear constraints, viz. CASP [Gebser et al., 2009],
by introducing some auxiliary propositional variables. CASP
semantics was based on the assumption that all constraint
variables were defined and rigid, that is, the choice axiom
x = x is satisfied for any variable x. Let DF stand for the
set of choice axioms x = x for all variables in X .
Proposition 7 For any linear expression ↵: DF |=df ↵ ⌘ >

Let ⇧ be an LC -program for signature ⌃ = hX ,Z,Ai
where A is a set of linear constraints. We define a set of
auxiliary propositions P = {x� | x 2 X}. Intuitively, a
proposition x� represents the fact that variable x has a de-
fined value in the original program ⇧. The translation of ⇧
gives a new HT

C

program ⌧(⇧) for the extended signature
⌧(⌃) = hX [P,Z [{t},A [Pi. For any linear expression
↵, we write ↵� to stand for the conjunction of all proposi-
tions y� for all y 2 Vars(↵) and (↵  �)� to stand for the
conjunction ↵� ^ �� . Using this notation, the translation of
a linear constraint A is the formula ⌧(A) def

= A ^ A� . In-
tuitively, due to the choice axiom DF (applied only on X),
A can hold due to an arbitrary assignment of variable val-
ues, but A� guarantees that all variables have been assigned
a founded value wrt program ⇧. Notice that the translation
of df ↵ corresponds to ⌧(df ↵) = ⌧(↵  ↵) = ↵  ↵ ^ ↵�

and, under the assumption DF , the latter is equivalent to ↵�

(Proposition 7). For any arbitrary formula �, ⌧(�) stands for
the replacement of every constraint atom A in � by ⌧(A).
The translation of an LC -program ⇧ corresponds to the set
of formulas ⌧(⇧) def

= {⌧(r) | r 2 ⇧}.
As we see below, the models of the translation ⌧(⇧) are

isomorphic to the original models of ⇧. Thus, we can apply
⌧ on rules of the form (8) or on their decomposition through
Theorem 2. As an example, if we apply the translation on
the decomposition of (12) as (13)-(16), we obtain, after some
minor simplifications, the rules:

z = x ^ z�; t = y ^ t� x�, y� (20)

z = x ^ z� x�,¬(t = y ^ t� ^ y�) (21)

t = y ^ t� y�,¬(z = x^ z�^ x�) (22)

? ¬(z = x ^ z� ^ x�),

¬(t = y ^ t� ^ y�) (23)
Given a valuation v for the extended signature ⌧(⌃), we

define its corresponding “defined” subset in signature ⌃ as
v|

�

def
= {(x, d) 2 v | (x�, t) 2 v}.

Proposition 8 Given a pair of partial valuations H ✓ T for
signature ⌧(⌃), we have H|

�

✓ T |
�

.
Lemma 1 Let hH,T i be an HT

C

interpretation for signa-
ture ⌧(⌃). Then, for any constraint atom A 2 A, hH,T i |=
⌧(A) iff hH|

�

, T |
�

i |= A.
By a simple application of structural induction, we get:
Corollary 1 Let hH,T i be an HT

C

interpretation for sig-
nature ⌧(⌃). Then, for any formula ', hH,T i |= ⌧(') iff
hH|

�

, T |
�

i |= '.
Theorem 3 (Soundness) Let T be a stable model of ⌧(⇧) [
DF . Then, T |

�

is a stable model of LC -program ⇧.

1019

Theorem 4 (Completeness) Let T be a stable model of LC -
program ⇧. Then, any T 0 such that T 0 |= DF and T 0|

�

= T
is a stable model of ⌧(⇧) [DF .

That is, each stable model T of ⇧ is in one-to-one correspon-
dence to a class of stable models T 0 of ⌧(⇧) [DF that co-
incide with T in the valuation of its defined variables, mak-
ing x� true for all of them, and freely varying the other vari-
ables. For instance, the above program ⇧ consisting of (12)
plus the facts x := 1 and y := 2 has two stable models
T1 = {(x, 1), (y, 2), (z, 1)} and T2 = {(x, 1), (y, 2), (t, 2)}.
Then, ⌧(⇧) includes formulas (20)-(23) plus the translation
of the facts, viz. x = 1 ^ x� and y = 2 ^ y� . Also, DF in-
cludes axioms x = x, y = y and z = z. The resulting trans-
lation ⌧(⇧)^DF yields two sets of stable models: one of the
form {(x, 1), (y, 2), (z, 1), (x�, t), (y�, t), (z�, t), (t, d)} and
another {(x, 1), (y, 2), (t, 2), (x�, t), (y�, t), (t�, t), (z, d)} in
both cases for any d 2 D.

4 An LC -solver implementation
We implemented our approach (see [LC2CASP, 2016]) as an
extension of the CASP solver CLINGCON 3 [Banbara et al.,
2016]. Our system computes the stable models of an LC -
program by implementing a polynomial-size variant of the
translation described in the previous section. This is accom-
plished by using auxiliary atoms to avoid the exponential
blow-up in Theorem 2 (similar to [Tseitin, 1968]).

In the input language, rule heads are formed by
means of the functor &assign. More precisely, a dis-
junctive head A1; . . . ;An

as in (8) is represented as
‘&assign { A1;. . .;An }’. Similarly, linear expressions
are formed using the &sum functor. A linear con-
straint of form ‘↵1 + · · · + ↵

n

� �’ is written as
‘&sum { ↵1;. . .;↵n } � �’, where � is among <=, =, >=,
<, >, or !=. Moreover, the language contains an all-different
constraint, &distinct, as well as a &show and &minimize

directive with the same meaning as in ASP yet applied to lin-
ear expressions. As with ASP, undefined variables are not
shown (eg. t and z above, respectively); also, they do not
contribute to minimization.

For illustration, consider the HT
C

-program in (1) to (4)
expressed as an LC -program:

1 n(1..8).

2 :- not &distinct { q(X) : n(X) }.

3 :- &sum { q(X); -q(Y) } = X-Y, n(X), n(Y), X != Y.

4 :- &sum { q(X); -q(Y) } = Y-X, n(X), n(Y), X != Y.

5 &assign { q(1) := 1 } :- not &sum { q(1) } != 1.

6 &assign { q(X) := 1..n } :- n(X), X > 1.

Note that atoms, like n(X) and X > 1, are Boolean propo-
sitions, mixed with constraint atoms. The above LC -
program has 4 stable models, all assigning 1 to q(1) ac-
cording to the default expressed in Line 5. However, once
‘&assign { q(1) := 4 }.’ is added, the default is over-
written, and we obtain 18 models, yet all assigning 4 to q(1).

5 Discussion
We introduced the logic HT

C

in order to capture constraint
theories in the non-monotonic setting known from ASP. As

a result, HT
C

allows for assigning default values to con-
straint variables or to leave them undefined. To the best of our
knowledge, HT

C

constitutes the first logical account of non-
monotonic constraint theories. Since HT and thus also ASP
constitute special cases of HT

C

, we obtain a uniform frame-
work integrating ASP and CP on the same semantic footing.
In view of this, we particularly elaborated on the HT

C

frag-
ment of LC -programs dealing with linear constraints on in-
teger variables. A central concept is that of assignments (in
rule heads) because they are the only way to attribute values
to constraint variables – unassigned variables stay undefined.

Our approach is different from traditional CASP [Baselice
et al., 2005; Balduccini, 2009; Gebser et al., 2009], where
logic programs are hybridized with constraint atoms hav-
ing standard monotonic CP semantics. In such approaches,
constraint atoms in rule heads are merely shortcuts for the
complementary body literal. Rather, the monotonic CP se-
mantics assigns each variable all feasible values. In fact,
we have identified the HT

C

fragment corresponding to the
approach of [Gebser et al., 2009] and pinpointed the ax-
ioms characterizing the aforementioned feature. Although we
have not proven it, the result should also extend in a slightly
different form to the approaches in [Baselice et al., 2005;
Balduccini, 2009] due to their close correspondence to [Geb-
ser et al., 2009] established in [Lierler, 2014]. A notewor-
thy exception among CASP approaches is Bound Founded
ASP [Aziz et al., 2013] that imports the notion of non-circular
value derivations into CP. Informally, constraints can have a
distinguished variable (akin to a head) over a totally ordered
domain. The singular value of a lower-bound6 variable is the
smallest derivable value or the smallest domain element. This
yields also a non-monotonic approach that comprises ASP as
a special case. However, it remains future work to identify the
fragment of HT

C

that captures this approach and its notion of
value minimization.

Our semantics captures a fragment of ASP with partial
functions [Cabalar, 2011; Balduccini, 2012] where constraint
variables correspond to 0-ary functions. This fragment is
expressive enough to cover the general case, since arbitrar-
ily nested partial functions can be reduced to the 0-ary case
by a process called flattening [Cabalar, 2011] or unfold-
ing [Bartholomew and Lee, 2013]. Moreover, our approach
extends functional ASP by generalizing equality among terms
to arbitrary relations. In this paper, we have focused on linear
constraints, but other extensions will be studied in the future.

For implementing the fragment of LC -programs, we have
devised a translation into CASP programs in accord with
[Gebser et al., 2009] and shown its soundness and complete-
ness. The key role in this translation is played by propositions
warranting the non-circularity of constraint assignments. Al-
though our system uses CLINGCON as back-end, our trans-
lational approach applies also to other CASP solvers sharing
the same semantics. Our system along with several examples
and additional material is available at [LC2CASP, 2016].

6And analogously for upper-bound variables.

1020

Acknowledgments This work was partially funded by
DFG grant SCHA 550/9.

References
[Aziz et al., 2013] R. Aziz, G. Chu, and P. Stuckey. Stable

model semantics for founded bounds. Theory and Practice
of Logic Programming, 13(4-5):517–532, 2013.

[Balduccini, 2009] M. Balduccini. Representing constraint
satisfaction problems in answer set programming. In
W. Faber and J. Lee, editors, Proceedings of the Second
Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP’09), pages 16–30, 2009.

[Balduccini, 2012] M. Balduccini. A “conservative” ap-
proach to extending answer set programming with non-
herbrand functions. In E. Erdem, J. Lee, Y. Lierler,
and D. Pearce, editors, Correct Reasoning: Essays on
Logic-Based AI in Honour of Vladimir Lifschitz, volume
7265 of Lecture Notes in Computer Science, pages 24–39.
Springer-Verlag, 2012.

[Banbara et al., 2016] M. Banbara, B. Kaufmann, M. Os-
trowski, and T. Schaub. Clingcon: The next generation.
Submitted for publication, 2016.

[Bartholomew and Lee, 2013] M. Bartholomew and J. Lee.
On the stable model semantics for intensional functions.
Theory and Practice of Logic Programming, 13(4-5):863–
876, 2013.

[Baselice et al., 2005] S. Baselice, P. Bonatti, and M. Gel-
fond. Towards an integration of answer set and constraint
solving. In M. Gabbrielli and G. Gupta, editors, Proceed-
ings of the Twenty-first International Conference on Logic
Programming (ICLP’05), volume 3668 of Lecture Notes in
Computer Science, pages 52–66. Springer-Verlag, 2005.

[Cabalar, 2011] P. Cabalar. Functional answer set program-
ming. Theory and Practice of Logic Programming, 11(2-
3):203–233, 2011.

[Dechter, 2003] R. Dechter. Constraint Processing. Morgan
Kaufmann Publishers, 2003.

[Gebser et al., 2009] M. Gebser, M. Ostrowski, and
T. Schaub. Constraint answer set solving. In P. Hill and
D. Warren, editors, Proceedings of the Twenty-fifth Inter-
national Conference on Logic Programming (ICLP’09),
volume 5649 of Lecture Notes in Computer Science, pages
235–249. Springer-Verlag, 2009.

[Heyting, 1930] A. Heyting. Die formalen Regeln der intu-
itionistischen Logik. In Sitzungsberichte der Preussischen
Akademie der Wissenschaften, page 42–56. 1930. Reprint
in Logik-Texte: Kommentierte Auswahl zur Geschichte
der Modernen Logik, Akademie-Verlag, 1986.

[Lierler, 2014] Y. Lierler. Relating constraint answer set pro-
gramming languages and algorithms. Artificial Intelli-
gence, 207:1–22, 2014.

[Lifschitz, 2008] V. Lifschitz. What is answer set program-
ming? In D. Fox and C. Gomes, editors, Proceedings of
the Twenty-third National Conference on Artificial Intelli-
gence (AAAI’08), pages 1594–1597. AAAI Press, 2008.

[Nieuwenhuis et al., 2006] R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland pro-
cedure to DPLL(T). Journal of the ACM, 53(6):937–977,
2006.

[Pearce, 1997] D. Pearce. A new logical characterisation
of stable models and answer sets. In J. Dix, L. Pereira,
and T. Przymusinski, editors, Proceedings of the Sixth
International Workshop on Non-Monotonic Extensions of
Logic Programming (NMELP’96), volume 1216 of Lec-
ture Notes in Computer Science, pages 57–70. Springer-
Verlag, 1997.

[LC2CASP, 2016] http://www.cs.uni-potsdam.de/lc2casp,
2016.

[Tseitin, 1968] G. Tseitin. On the complexity of derivation in
the propositional calculus. Zapiski nauchnykh seminarov
LOMI, 8:234–259, 1968.

1021

