
Exploiting Partial Assignments for Efficient Evaluation of
Answer Set Programs with External Source Access⇤

Thomas Eiter, Tobias Kaminski, Christoph Redl, and Antonius Weinzierl
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,kaminski,redl,weinzierl}@kr.tuwien.ac.at

Abstract
Answer Set Programming (ASP) is a well-known
problem solving approach based on nonmonotonic
logic programs and efficient solvers. HEX-programs
extend ASP with external atoms for access to arbi-
trary external information. In this work, we extend
the evaluation principles of external atoms to par-
tial assignments, lift nogood learning to this setting,
and introduce a variant of nogood minimization.
This enables external sources to guide the search for
answer sets akin to theory propagation. Our bench-
mark experiments demonstrate a clear improvement
in efficiency over the state-of-the-art HEX-solver.

1 Introduction
HEX is an extension of Answer Set Programming (ASP) [Gel-
fond and Lifschitz, 1991] integrating external information
sources (e.g. XML/RDF data bases, description logic rea-
soners, SAT solvers, etc.) using so-called external atoms.
These pass information from the program, given by predi-
cates and constants, to an external source, which returns out-
put values to the program. For instance, the external atom
&synonym[car ](X) might be used to find the synonyms X
of car , e.g. automobile . HEX is highly expressive supporting
e.g., nonmonotonic aggregates [Alviano et al., 2015] and re-
cursive data exchange between programs and external sources.

Current evaluation algorithms for HEX [Eiter et al., 2012]
first compute a complete truth-assignment by guessing the
truth values of external atoms; only after the assignment is
complete, calls to the external sources can check if the guesses
were correct. This constitutes a major bottleneck and limits the
applicability of HEX-programs because external sources are
unable to guide the search algorithm effectively. Intuitively,
evaluating external sources earlier, i.e., evaluating them under
partial assignments, yields significant performance gains since
it avoids many wrong guesses. On the other hand, such an
evaluation has non-trivial issues because external sources are
largely black boxes and may be nonmonotonic.

In this paper, we overcome the above problems by extending
external sources from a Boolean semantics, defined only under
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complete assignments, to a three-valued semantics which is
also defined under partial assignments. This enables novel
evaluation techniques towards our main goal of efficiency,
namely, (i) evaluating external sources already during the
search with partial assignments, and based on this (ii) acquir-
ing additional information about the external sources in the
form of learned nogoods [Gebser et al., 2012] and (iii) min-
imizing the learned nogoods to approximate the semantics
of external sources more closely. We note that the semantics
of the overall formalism is not changed (answer sets are still
two-valued). Moreover, our approach provides full backwards
compatibility with existing two-valued sources.

Our techniques are related to theory propagation in
SMT [Barrett et al., 2009] and minimization techniques in
constraint ASP solvers such as CLINGCON [Ostrowski and
Schaub, 2012]. These, however, usually rely on a tailored
integration of theory solvers crafted by experts, whereas our
approach allows a broad range of users, without prior knowl-
edge on solver construction, to harness performance gained by
the new learning techniques.

Furthermore, motivated by the formalism at hand, we de-
velop refinements such as the simultaneous minimization of
multiple nogoods, from which also related approaches might
benefit. Although each additional step of evaluation and mini-
mization is costly, we find in our experiments a good tradeoff
and achieve a significant overall performance gain.

After necessary preliminaries in Section 2, we proceed to
present our contributions as follows:

• In Section 3, we extend external atoms such that they can
be evaluated under partial assignments. The output is
then three-valued (true, false, unassigned), while answer
sets are still two-valued. We also show how existing
external atoms can be captured by our extension.

• Next, we present a novel evaluation algorithm which
exploits the extension of external sources for earlier and
significantly more effective search space pruning.

• In Section 4, we present nogood learning functions and
a suitable minimization algorithm for HEX-programs,
which exploit the generalized external atom interface
for learning. We further show a close relation between
nogood minimization and theory-specific learning.

• In Section 5, we present our prototypical implementa-
tion and evaluate our new techniques using a benchmark
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suite. The results show a speedup of up to two orders of
magnitude (an exponential gain is possible in theory).

• In Section 6, we discuss related work and conclude.

2 Preliminaries
We follow Drescher et al. [2008] for basic concepts. A (signed)
literal is a positive or a negated ground atom Ta or Fa, where
a is of form p(c

1

, . . . , c`) with predicate symbol p and con-
stant symbols c

1

, . . . , c` from a finite set C, abbreviated as
p(c); we write c 2 c if c = ci for some 1  i  `. For
� 2 {T,F} let � = T if � = F and � = F if � = T, and
for a literal L = �a let L = �a. An assignment over the
(finite) set A of atoms is a set A of literals s.t. for all a 2 A,
Ta 2 A iff Fa /2 A; here Ta 2 A expresses that a is true
and Fa 2 A that a is false.

A nogood is a set {L
1

, . . . , Ln} of literals Li, 1  i  n of
type Ta or Fa. An assignment A is a solution to a nogood �
resp. a set of nogoods �, if � 6✓ A resp. � 6✓ A for all � 2 �.

HEX-Programs. We briefly recall HEX-programs, which
generalize (disjunctive) logic programs under the answer set
semantics [Gelfond and Lifschitz, 1991]; for more details and
background, see Eiter et al. [2005, 2014a].
Syntax. HEX-programs extend ordinary ASP programs by ex-
ternal atoms, which enable a bidirectional interaction between
a program and external sources of computation. A ground ex-
ternal atom is of the form &g [p](c), where p = p

1

, . . . , pk is
a list of input parameters (predicate names or object constants),
called input list, and c = c

1

, . . . , cl are constant output terms.
We restrict our theoretical investigation to ground programs as
safety conditions allow for applying a grounding procedure.
Definition 1. A ground HEX-program ⇧ consists of rules

a
1

_ · · · _ ak  b
1

, . . . , bm, not bm+1

, . . . , not bn

where each ai is a ground atom and each bj is either an
ordinary ground atom or a ground external atom.
The body of r is B(r)= {b

1

, . . . , bm, not bm+1

, . . . , not bn}.
Semantics. In the following, assignments are over the set
A(⇧) of ordinary atoms that occur in the program ⇧ at hand.
The semantics of a ground external atom &g [p](c) with k
input and l output parameters wrt. an assignment A is given
by the value of a 1+k+l-ary two-valued (Boolean) oracle
function f&g that is defined for all possible values of A, p and
c. Thus, &g [p](c) is true relative to A iff f&g(A,p, c) = T.
Satisfaction of ordinary rules and ASP programs [Gelfond and
Lifschitz, 1991] is then extended to HEX-rules and programs
in the obvious way.

The answer sets of a HEX-program ⇧ are defined as follows.
Let the FLP-reduct of ⇧ wrt. an assignment A be the set
f⇧A

= {r 2 ⇧ | A |= b, for all b 2 B(r)} of all rules
whose body is satisfied by A, and let for assignments A

1

, A
2

denote A

1

 A

2

that {Ta 2 A

1

} ✓ {Ta 2 A

2

}. Then:
Definition 2. An assignment A is an answer set of a HEX-
program ⇧, if A is a -minimal model of f⇧A.1

1For ordinary ⇧, these are Gelfond & Lifschitz’s answer sets.

Example 1. Consider the program ⇧ = {p  &id [p]()},
where &id [p]() is true iff p is true. Then ⇧ has the answer set
A

1

= ;; indeed it is a -minimal model of f⇧A1
= ;.

Evaluation. For evaluation, HEX-programs ⇧ can be trans-
formed to ordinary ASP programs as follows. Each external
atom &g [p](c) in ⇧ is replaced by an ordinary replacement
atom e&g[p]

(c) and a rule e&g[p]

(c) _ ne&g[p]

(c) is added.
The answer sets of the resulting guessing program ˆ

⇧ are com-
puted by an ASP solver. But the assignment encoded by such
an answer set may not satisfy ⇧, as f&g

may evaluate &g [p](c)

different from the guess for e&g[p]

(c). Thus, the answer set
is merely a model candidate; if a check against the external
sources finds no discrepancy, it is a compatible set. Formally:
Definition 3. A compatible set of a program ⇧ is an answer
set ˆ

A of the guessing program ˆ

⇧ such that f&g(
ˆ

A,p, c) = T

iff Te&g[p](c) 2 ˆ

A for all external atoms &g [p](c) in ⇧.
Each answer set of ⇧ is the projection of a compatible set to

A(⇧), but not vice versa. To discard the non-answer sets, the
evaluation algorithm calls an FLP check which uses unfounded
sets to check minimality wrt. f⇧A [Eiter et al., 2014a].
Example 2 (cont’d). Reconsider ⇧ = { p &id [p]() } from
above. Then ˆ

⇧ = {p e&id[p](); e&id[p] _ ne&id[p]  } has
the answer sets A

1

= ; and A

2

= {Tp,Te&id[p]}. Here A

1

is a-minimal model of f⇧A1
= ;, but A

2

not of f⇧A2
= ⇧.

3 Extension to Partial Assignments
In this section, we extend assignments and oracle functions to
partial assignments, which provide for explicitly representing
that some atom is yet unassigned.
Definition 4. A partial assignment over a set A of atoms is a
set A of signed literals of kind Ta, Fa and Ua such that for
all a 2 A exactly one of Ta 2 A, Fa 2 A or Ua 2 A holds.

Here, Ua denotes that the atom a is unassigned. A partial
assignment not containing any Ua is a complete assignment.

For partial assignments A,A0 we call A0 an extension of
A, denoted A

0 ⌫ A, if {Ta 2 A} [ {Fa 2 A} ✓ A

0 (i.e.,
some unassigned atoms in A are flipped to true resp. false).

Next, we extend oracle functions in order to define the se-
mantics of an external atom &g [p](c) wrt. partial assignments.
Definition 5. A three-valued oracle function f&g for a ground
external atom &g [p](c) with k input and l output parameters
is a 1+k+l-ary function such that f&g(A,p, c) 2 {T,F,U}
for a partial assignment A and all possible values of p and c,
and f&g(A,p, c) 6= U if A is complete.

Thus, &g [p](c) is true, false or unassigned relative to A, if
the value of f&g(A,p, c) is T, F or U, respectively.

We require that once the output of f&g is assigned to true or
false for some A, the value stays the same for all extensions.
Definition 6. A three-valued oracle function f&g is
assignment-monotonic if f&g(A,p, c) = X , X 2 {T,F},
implies f&g(A

0,p, c) = X for all assignments A0 ⌫ A.
Assignment-monotonicity guarantees that no compatible set

is lost when querying external sources on partial assignments.
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Example 3. Consider the program

a(X,Y ) _ na(X,Y ) v(X), v(Y ), X 6= Y.

 &ge[a, 2]().

It guesses, for a set of vertices v(X), all directed irreflexive
subgraphs of the complete graph. Suppose &ge checks if the
number of links is greater or equal to a natural number, s.t.
the constraint restricts the number of arcs. The according
two-valued oracle function f&ge(A, a, 2) for a complete as-
signment A evaluates to true if A contains at least two literals
Ta(X,Y ), and to false otherwise. Extending the oracle to a
partial assignment A0 is possible by defining an assignment-
monotonic three-valued oracle function f 0

&ge(A
0, a, 2) yield-

ing true if |{a(X,Y )|Ta(X,Y ) 2 A

0}| � 2, unassigned if
|{a(X,Y )|Ta(X,Y ) 2 A

0 or Ua(X,Y ) 2 A

0}| � 2, and
false otherwise.

Note that the definition of answer sets carries immediately
over to programs with external atoms that use three-valued
oracle functions. This is because answer sets are complete
assignments and thus, the oracle function evaluates to T or F.

A two-valued oracle function, however, cannot handle par-
tial assignments and is thus not a special case of a three-valued
oracle function that can be passed to an algorithm expecting
the latter. However, we can always obtain a three- from a two-
valued oracle function such that answer sets remain invariant.
Proposition 1. For every HEX-program ⇧ and external predi-
cate &g with a two-valued oracle function f&g(·, ·, ·) there is
an external predicate &g 0 with assignment-monotonic three-
valued oracle function f&g0

(·, ·, ·) s.t. AS(⇧) = AS(⇧0),
where ⇧

0 results from ⇧ by replacing every &g by &g 0.
Intuitively, we construct a three-valued oracle function

which coincides with the two-valued one for complete as-
signments, and returns U otherwise. Hence, Proposition 1
allows us to “wrap” two-valued oracle functions for use by
our algorithms below; in the implementation this is the basis
for backwards compatibility with existing external sources.

We exploit partial assignments, by extending previous eval-
uation algorithms. In spirit of theory propagation in SMT
solvers [Barrett et al., 2009], we use external theory learning
(ETL). It is related to external behavior learning (EBL), which
encodes observed output of external sources as nogoods [Eiter
et al., 2012], but our extension works over partial assignments
such that external sources may drive early propagation of truth
values implied by the current partial assignment.

As for EBL, we can associate with each external source a
learning-function ⇤ that yields a set of nogoods ⇤(&g [p],A)

learned from the evaluation of &g [p] under an assignment
A. Learned nogoods have to be correct, i.e., they must not
eliminate compatible sets. Formally, a nogood � is correct wrt.
a program ⇧, if all compatible sets of ⇧ are solutions to �.

We extend learning functions for partial assignments as
follows. Let E contain all expressions &g [p] that occur in ⇧

and S all signed (T,F,U) literals on atoms in ˆ

⇧.
Definition 7. A (three-valued) learning function for a HEX-
program ⇧ is a mapping ⇤ : E ⇥ 2

S 7! 2

2

S
. It is called

correct for ⇧, if all � 2 ⇤(&g [p],A) are correct for ⇧, for all
&g [p] in E and A 2 2

S .

Algorithm 1: HEX-CDNL-PA

Input: A program ⇧

Output: An answer set of ⇧ if there exists one and ? otherwise

Let

ˆ

⇧ be the guessing program of ⇧

ˆ

A {Ua | a 2 A} // all atoms unassigned

r  ; // set of dynamic nogoods

dl  0 // decision level

while true do
(a)(

ˆ

A,r) Propagation(

ˆ

⇧,r, ˆA)

(b)if some nogood � violated by ˆ

A then
if dl = 0 then return ?
Analyze conflict, add learned nogood tor, set dl to backjump

level

(c)else if ˆ

A is complete then
A ˆ

A \
�
Ta,Fa | a 2 A(

ˆ

⇧)

 

if ˆ

A is not compatible or A is not a minimal model of f⇧A then
r  r[ { ˆ

A}
else if there is an unfounded set U of ˆ⇧ wrt. ˆ

A then
Construct violated nogood for U and add it tor
Analyze conflict, add learned nogood tor, set dl to

backjump level

else
return A

(d)else if Heuristics evaluates &g[y] and ⇤(&g[y], ˆA) 6✓ r then
r  r[ ⇤(&g[y], ˆA)

(e)else
Guess �a with � 2 {T,F} for some variable a with Ua 2 ˆ

A

dl  dl + 1

ˆ

A (

ˆ

A \ {Ua}) [ {�a}

Throughout the rest, we assume that learning functions are
always correct for the programs at hand.

We now present a procedure for computing an answer set of
a HEX-program shown in Algorithm 1. To compute multiple
answer sets, we can naively add previous answer sets as con-
straints and call the algorithm again (cf. Gebser et al. [2007]
for more elaborated techniques). The basic structure of Algo-
rithm 1 resembles an ordinary ASP solver, but has additional
checks in Part (c) and external calls to learn further nogoods in
Part (d), which is based on partial assignments. Without the ex-
tensions, it computes an answer set ˆA of the guessing program
ˆ

⇧ and returns ˆ

A’s projection to the atoms in ⇧ (cf. Drescher
et al. [2008]). To this end, it starts from a void assignment and
does unit propagation in Part (a) to derive further truth values.
Part (b) backtracks and learns nogoods from conflicts; Part (c)
without the first if (i.e., starting at the elsif-block) checks min-
imality wrt. the reduct of ˆ

⇧. If no further truth values are set
and the assignment is incomplete, it guesses in Part (e).

The if-block in Part (c) checks if ˆ

A is a compatible set (cf.
Definition 3) and if ˆ

A’s projection to A(⇧), i.e. A, is a mini-
mal model of the FLP-reduct of ⇧ wrt. A. If both conditions
are satisfied, A is an answer set of ⇧ (cf. Definition 2).

The additional calls to external sources and nogood learning
in Part (d) are not mandatory but prune the search space; they
may eliminate assignments violating known behavior of exter-
nal sources already early in the search, while correctness of
learning functions guarantees that no compatible set (hence no
answer set) is eliminated. Notably and in contrast to previous
algorithms [Eiter et al., 2012], external atoms are evaluated un-
der partial assignments and use a three-valued oracle function.
We can show that this algorithm is sound and complete:
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Theorem 1. If Algorithm 1 returns for ⇧ (i) an assignment A,
then A is an answer set of ⇧ (ii) ?, then ⇧ is inconsistent.

4 Nogood Learning with Partial Assignments
In this section, we first discuss the generation of nogoods
which encode parts of the semantics of external atoms. In
contrast to previous work on external behavior learning (EBL),
this works for partial assignments. When certain ground in-
stances of an external atom can already be decided, nogoods
can be learned early on and incompatible assignments can be
identified; thus, they can guide the solver. Afterwards, we
present a method for nogood minimization (relying on partial
assignments and assignment-monotonicity), and show that this
task and theory-specific learning are in fact closely related.
Three-valued Learning Functions. Let us first assume that
we have no further knowledge about external sources and can
only observe their (partial) output under a possibly partial
input. We introduce a three-valued learning function for the
general case, which is in fact a lifting of the according two-
valued learning function defined by Eiter et al. [2012].

An input-output (io-)nogood is any nogood of form N =

{�
1

a
1

, . . . ,�nan}[ {�n+1

e&g[p]

(c)} where �
1

, . . . ,�n+1

2
{T,F}; we let NI = {�

1

a
1

, . . . ,�nan} be the literals over
ordinary atoms (input part), NO = {�n+1

e&g[p]

(c)} be the
replacement atom (output part) of N , and �(NO) = �n+1

.
We call N faithful, if f&e(A,p, c) = �(NO) for all partial
assignments A ◆ NI , i.e., it resembles the semantics of the
external source. We note the following property:
Proposition 2. If N is a faithful io-nogood, then N is correct
wrt. all programs.

As for the converse, correct nogoods (wrt. a given program)
may be no faithful io-nogoods (or simply no io-nogoods).

When the oracle of an external atom is evaluated, the solver
can create a new nogood for the observed input-output rela-
tionship. That is, evaluating &g [p] for a partial assignment A,
the solver learns, given all true and false literals of input predi-
cates, whether the output contains c, where f&g(A,p, c) 6=U.
Definition 8. The learning function for an external predicate
with input parameters &g [p] under partial assignment A is

⇤u(&g [p],A)=

�
A

0[{�e&g[p](c)}|f&g(A,p, c)=� 6=U

 

where A

0
= {�p(c) 2 A | p 2 p,� 6= U} is the relevant

part of the external atom input.
Each respective nogood is an io-nogood by construction and

as the oracle is assignment-monotonic, also faithful. Hence:
Proposition 3. Let &g [p](·) be an external atom in a HEX-
program ⇧. Then for all assignments A, the nogoods
⇤u(&g [p],A) in Definition 8 are correct wrt. ⇧.
Example 4 (cont’d). Assume we add facts v(a) and v(b).
Given the partial assignment A = {Tv(a), Tv(b), Fa(a, b),
Ua(b, a), Tna(a, b), Una(b, a)}, the learning function
⇤u(&ge[a, 2],A) yields the single io-nogood {Fa(a, b),
Te&ge[a,2]()}, which is indeed faithful. For A = {Tv(a),
Tv(b), Ta(a, b), Ua(b, a), Fna(a, b), Una(b, a)}, no io-
nogood can be learned and ⇤u(&ge[a, 2],A) returns the
empty set since f 0

&ge(A
0, a, 2) = U.

We can refine a three-valued ⇤u similar to two-valued learn-
ing functions, cf. Eiter et al. [2012], and tailor it to external
sources with specific properties. E.g., if an input predicate pi is
monotonic, we can drop false atoms over pi from io-nogoods.

The general learning function ⇤u generates nogoods de-
pending on the oracle function given a certain input. However,
an external source provider usually knows the source seman-
tics better and can thus provide better nogoods. The latter
might include only the necessary atoms in the input; they are
thus smaller and prune more of the search space. In such
cases, it makes sense to provide custom learning functions
⇤l(&g [p],A) which generate for &g [p] and a (possibly par-
tial) assignment A a set of nogoods.
Nogood Minimization. By exploiting three-valued seman-
tics, we can also eliminate irrelevant (input) atoms from the
nogoods in ⇤u, while faithfulness of io-nogoods is retained.
Definition 9. Given a faithful io-nogood N with NO =

{�e&g[p](c)}, the minimized nogoods of N are

minimize(N) = {N 0 ✓ N | N 0 is a faithful io-nogood,
f&g(N

00,p, c) = U for all N 00 ( N 0I}.

This extends to sets S of nogoods by minimize(S) =S
N2S minimize(N). Note that exponentially many minimal

nogoods in the size of N are possible.
Example 5 (cont’d). For the assignment A = {Tv(a),
Tv(b), Fa(a, b), Fa(b, a), Tna(a, b), Tna(b, a)} and the
faithful io-nogood N = {Fa(a, b), Fa(b, a), Te&ge[a,2]()}
2 ⇤u(&ge[a, 2],A), we obtain minimize(N) = {{Fa(a, b),
Te&ge[a,2]()}, {Fa(b, a), Te&ge[a,2]()}}.

The minimized nogoods subsume all faithful io-nogoods.
Proposition 4. Let A be a partial assignment and N be a
faithful io-nogood for &g [p] over the atoms in A. Then some
N 0 2 minimize(⇤u(&g [p],A)) exists s.t. N 0 ✓ N .

As a subset of each faithful io-nogood occurs among all
minimized nogoods, no further faithful io-nogoods prune the
search space more effectively. Still there might be further cor-
rect nogoods (non-io ones and/or depending on the program).

In the following, we call a theory-specific learning function
⇤l(·, ·) complete for an external source &g , if for each partial
assignments A0 ✓ A, input lists p, and output lists c the set
⇤l(&g [p],A) is the least set such that f&g(A

0,p, c) = � with
� 2 {T,F} implies A

0 [ {�e&g[p]

(c)} is in ⇤l(&g [p],A);
we call it partial otherwise. That is, ⇤l learns all and only
io-nogoods with a premise over the current partial assignment
which resemble the semantics of &g .

As it turns out, learning using complete theory-specific
learning functions and nogood minimization are closely re-
lated. Let min✓(S) = {N 2 S | @N 0 2 S s.t. N 0 ( N} be
the restriction of S to subset-minimal nogoods.2 Then:
Proposition 5. Let ⇤l be a complete theory-specific learn-
ing function for an external source &g . Then for all
partial assignments A and input lists p it holds that
minimize(⇤u(&g [p],A)) = min✓(⇤l(&g [p],A)).

2Despite similar names, minimize differs from min✓ as it mini-
mizes wrt. oracle results while min✓ just selects the minimal sets.
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Algorithm 2: Simultaneous Nogood Minimization
Input: A set S of faithful io-nogoods N with NI = {�1a1, . . . ,�nan}
Output: A set of minimal faithful io-nogoods

ch  ; // cache for oracle calls

for each signed literal �iai 2 NI do
(a)for each io-nogood N 0 2 S with N 0

O = {�n+1e&g[p](c)} do
N s  N 0

I \ {�iai} // smaller oracle input

(b)if hN s , ·i 62 ch then
ch  ch [

�⌦
N s , {�e&g[p](c

0
) | f&g(N

s ,p, c0
)=� 6=U}

↵ 

(c)if �n+1e&g[p](c) 2 output for hN s , outputi 2 ch then
Replace N 0

by N s [ {�n+1e&g[p](c)} in S

return S

This proposition implies that we have alternative techniques
to learn all nogoods that prune the search space in an optimal
(cf. Proposition 4) way. As above, it considers only faithful io-
nogoods while further correct nogoods may exist. Notably, the
equality holds only under the premises of exhaustive minimiza-
tion in the first case and a complete theory-specific learning
function in the second; otherwise different sets of nogoods may
be produced. As both operations are expensive and impracti-
cal, it makes sense to support both (incomplete) minimization
and (incomplete) theory-specific learning functions.

In practice, we use Algorithm 2 to compute only one min-
imal io-nogood for each learned io-nogood. Instead of mini-
mizing each nogood separately and to avoid redundant queries,
we proceed in parallel and use a cache for the external atom
output of a set S of io-nogoods with identical input but differ-
ent outputs. The algorithm works by sequentially removing
the same literal simultaneously from the premises of all N in
S in Part (a), and checking whether the output for the resulting
premises is already in the cache, in Part (b). If not, all outputs
c

0 s.t. f&g(A,p, c0) 6= U are computed (this is a single call
in the implementation) and stored in the cache. Otherwise,
no external source call is needed. It is then checked if the
resulting nogood is still faithful in Part (c), and N is replaced
by its reduced equivalent in S in this case. Formally:
Proposition 6. For a set S of faithful io-nogoods with equal
input parts and distinct output parts, Algorithm 2 yields exactly
one faithful io-nogood N 0 2 minimize(N) for each N 2 S.

5 Implementation and Evaluation
For experimentation, we integrated our techniques into the
reasoner DLVHEX with GRINGO 4.4.0 and CLASP 3.1.1 as
backends. All benchmarks were run on a Linux machine with
two 12-core AMD Opteron 6176 SE CPUs and 128 GB RAM;
timeout was 300 secs and memout 8 GB per instance. We used
the HTCondor load distribution system (http://research.cs.wisc.
edu/htcondor) to ensure robust runtimes (i.e., deviations of runs
on the same instance are negligible). Average runtimes of 50
instances per problem size for computing all answer sets are
reported in seconds,3 with timeouts in parentheses, and the
average number of solutions, where ‘�’ respects timeouts.
Benchmark Configurations. We used learning function ⇤u

and compared 5 configurations. We first tested 3 heuristics

3Results for computing the first answer sets are comparable.

# variables never periodic always ngm ngmc solutions
4 0.11 (0) 0.12 (0) 0.12 (0) 0.12 (0) 0.12 (0) 2.26
8 0.31 (0) 0.30 (0) 0.21 (0) 0.22 (0) 0.21 (0) 4.34

12 4.99 (0) 3.80 (0) 0.74 (0) 0.50 (0) 0.42 (0) 7.30
16 300.00 (50) 66.01 (0) 3.78 (0) 1.29 (0) 0.95 (0) 18.72
20 300.00 (50) 300.00 (50) 16.64 (0) 2.60 (0) 1.90 (0) 25.60
24 300.00 (50) 300.00 (50) 84.48 (3) 8.04 (0) 3.78 (0) 108.40
28 300.00 (50) 300.00 (50) 223.67 (23) 13.77 (0) 6.19 (0) 135.12
32 300.00 (50) 300.00 (50) 290.68 (47) 24.27 (1) 9.74 (0) 205.14
36 300.00 (50) 300.00 (50) 296.95 (49) 48.66 (2) 15.81 (0) 542.54

Table 1: Random PB Problems with 4 to 36 variables

PBC length never periodic always ngm ngmc solutions
4 94.62 (0) 27.32 (0) 0.39 (0) 0.30 (0) 0.30 (0) 0.00
6 107.57 (0) 38.67 (0) 10.27 (0) 7.76 (0) 2.03 (0) 317.40
8 103.66 (0) 55.42 (0) 66.49 (0) 156.22 (0) 14.11 (0) 6366.98

10 84.09 (0) 73.37 (0) 141.50 (0) 300.00 (50) 40.73 (0) 18662.86
12 85.52 (0) 92.82 (0) 211.89 (0) 300.00 (50) 68.00 (0) 27067.48
14 90.49 (0) 105.28 (0) 252.78 (0) 300.00 (50) 84.65 (0) 30721.18
16 97.61 (0) 116.34 (0) 286.11 (0) 300.00 (50) 96.74 (0) 32077.92
18 109.20 (0) 130.75 (0) 300.00 (50) 300.00 (50) 109.20 (0) 32554.34
20 116.63 (0) 139.42 (0) 300.00 (50) 300.00 (50) 117.06 (0) 32713.66

Table 2: Random PB Problems with PBC length of 4 to 20

for additional external source calls (cf. Algorithm 1, Part (d))
without nogood minimization, viz. never (no additional calls,
i.e. DLVHEX without the new techniques), periodic (partial
evaluation at each 10th heuristics call), and always (partial
evaluation at every heuristics call). We then tested nogood
minimization instead of additional calls (i.e., only for com-
plete assignments): minimizing all nogoods (ngm) resp. the
currently conflicting ones (ngmc). We omit results for min-
imization combined with periodic or always, which was
always significantly slower than some other configuration (due
to many more external calls with little gain).

Our hypothesis was that periodic and always decrease
the runtime over never if useful information is obtainable by
early evaluation, and increase it otherwise. We expected the
tradeoff to be mitigated by just minimizing nogoods on com-
plete assignments using ngm instead of evaluating early. We
further expected that restricting the minimization to nogoods
that directly trigger backjumping, as tested in ngmc, is even
more effective due to reduced overhead. It was expected that
partial evaluation performs better for instances with a small
percentage of solutions wrt. the assignments in the search
space since a large percentage leaves less room for pruning it.
Pseudo-Boolean Problems. Pseudo-boolean problems con-
stitute sets of pseudo-boolean constraints (PBCs) of the form
C

0

p
0

+ ... + Cn�1pn�1 � Cn, where all pi are literals and
all Ci are integers [Eén and Sörensson, 2006]. Our implemen-
tation guesses an interpretation of the pi by disjunctive rules
and has a constraint not&pbCheck [p, pbInst]() which is
satisfied wrt. a complete assignment to p iff the latter repre-
sents a solution for the PBCs. The strict separation of the
guess and the check part results in benchmark instances that
are well-suited for investigating the effect of a tighter integra-
tion of the solving algorithm and the evaluation of external
constraints.4 We extend the semantics of the external atom to

4Note that for the purpose of solving PBCs as part of a HEX-
program (possibly in combination with other external sources), the
external source could directly interface a dedicated PB solver.
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# never periodic always ngm ngmc ngm-sq solutions
4 0.19 (0) 0.19 (0) 0.23 (0) 0.41 (0) 0.18 (0) 0.92 (0) 6.68
6 0.35 (0) 0.28 (0) 0.41 (0) 5.47 (0) 0.27 (0) 26.13 (0) 16.64
8 1.50 (0) 0.67 (0) 1.06 (0) 98.66 (10) 0.59 (0) 203.65 (26) 53.28

10 13.05 (0) 1.18 (0) 1.88 (0) 204.46 (24) 1.17 (0) 297.41 (48) 121.28
12 213.17 (13) 6.45 (0) 11.35 (0) 294.01 (49) 6.63 (0) 294.05 (49) 334.72
14 300.00 (50) 19.46 (0) 28.25 (1) 294.02 (49) 20.90 (0) 294.32 (49) 821.76
16 300.00 (50) 25.31 (0) 38.79 (0) 294.03 (49) 28.17 (0) 294.54 (49) 867.84
18 300.00 (50) 74.13 (7) 94.91 (7) 294.05 (49) 86.40 (7) 294.84 (49)�2371.26
20 300.00 (50) 142.66 (13) 174.44 (18) 300.00 (50) 180.63 (16) 300.00 (50)�3918.82

Table 3: Taxi Assignment Results

drives(X,Y ) driver(X), customer(Y ),DL[; isIn](X,A),

DL[; isIn](Y,A), region(A), notndrives(X,Y ).

ndrives(X,Y ) driver(X), customer(Y ), not drives(X,Y ).

 drives(X,Y ), drives(X1, Y ), X 6= X1.

drivesECust(X,Y ) drives(X,Y ),

DL[eDrives ] drivesECust;ECust](Y ).

driven(Y ) drives( , Y ).

 not driven(Y ), customer(Y ).

 #count{Y : drives(X,Y )} > 4, driver(X).

 drives(X,Y ), notDL[eDrives ] drivesECust;ECust](Y ),

DL[eDrives ] drivesECust;EDriver ](X).

 drives(X,Y ),DL[eDrives ] drivesECust;ECust](Y ),

notDL[eDrives ] drivesECust;EDriver ](X).

Figure 1: Taxi Assignment Rules

partial assignments A as follows: &pbCheck [p, pbInst]() is
true wrt. A if every input PBC fulfills

P
Tpi2A Cipi � Cn;

it is false, if some input PBC fulfills
P

Fpi 62A Cipi < Cn; it
is unassigned otherwise.

First, we tested randomly generated problems with N 2
[4, 36] variables and 4⇥N PBCs with n = 6 and Ci 2 [1, 5]
for 0  i  n (Table 1). The ratio between N and the number
of constraints ensures that only a small fraction of all assign-
ments are answer sets. A clear improvement over never is
observed whenever partial evaluation is used. Without no-
good minimization, always shows the best performance, with
periodic falling in-between always and never, hence learn-
ing the io-behavior of the external source as early as possible
outweighs the runtime overhead for querying it additionally.
Overall, ngmc shows the best performance.

Second, to investigate the behavior when large parts of the
search space contain solutions, we fixed the number of vari-
ables and PBCs to 15 and 60, resp., and tested different lengths
n 2 [4, 20] (Table 2). The solution count increases with length,
and for n > 14 nearly all assignments are answer sets. Ex-
pectedly, periodic and always are slower than never if
many (more than about half of) the candidates are solutions.
Frequent evaluation is detrimental here, as runtime investment
has no pay-off in information gain or early search termination.
Likewise, minimizing all io-nogoods is worse as identical no-
goods are computed for many complete assignments; ngmc,
however, is very efficient with only a small runtime overhead,
because it focuses on valuable (i.e. conflicting) io-nogoods.
Taxi Assignment. We use a HEX-program to assign taxi
drivers to customers under constraints. Naturally, a customer
and her driver must be in the same region; customers may
share the driver, and a taxi fits at most 4 customers. A descrip-

# never periodic always ngm ngmc solutions
10 0.15 (0) 0.16 (0) 0.17 (0) 0.15 (0) 0.15 (0) 3.58
15 0.28 (0) 0.28 (0) 0.30 (0) 0.24 (0) 0.24 (0) 8.44
20 0.88 (0) 0.75 (0) 0.75 (0) 0.52 (0) 0.49 (0) 19.18
25 4.28 (0) 2.60 (0) 2.36 (0) 1.49 (0) 1.36 (0) 55.96
30 24.65 (0) 9.07 (0) 6.77 (0) 3.72 (0) 3.33 (0) 118.94
35 147.77 (0) 32.89 (0) 20.49 (0) 9.78 (0) 8.64 (0) 260.56
40 300.00 (50) 122.03 (0) 50.77 (0) 24.76 (0) 21.57 (0) 553.04
45 300.00 (50) 294.57 (45) 157.35 (8) 78.50 (0) 68.03 (0) 1490.78
50 300.00 (50) 300.00 (50) 261.09 (32) 170.16 (17) 158.21 (12) �2850.36

Table 4: Conflicting Strategic Companies Results

tion logic (DL) ontology has information such as locations of
individuals, e-customers (customers demanding electric cars),
and e-drivers (drivers of electric cars); e-customers must be
assigned to e-drivers, and normal customers to normal drivers.

The answer sets of the program with facts driver(d),
customer(c) and region(r) for drivers d, customers c and
regions r, and the rules in Figure 1 encode legal assignments.
The ontology is queried using DL-atoms [Eiter et al., 2008],
which offer a more tailored syntax for specific external atoms;
e.g. DL[eDrives ] drivesECust;EDriver](X) retrieves
all individuals in the class EDriver, where “eDrives ]
drivesECust” enhances the role eDrives with the true
atoms of drivesECust before evaluation. DL-atoms are
implemented in the DL-Lite plug-in for DLVHEX [Eiter et
al., 2014b]. Exploiting monotonicity of DLs, the three-
valued evaluation under a partial assignment A is as fol-
lows: it returns true, if the query is true with the minimal
addition of assertions (in the example {eDriver(d, d0) |
TdrivesECust(d, d0) 2 A}); false, if the query is not
true with the maximal possible addition ({eDriver(d, d0) |
FdrivesECust(d, d0) 62 A}); and unassigned otherwise.

In our tests, we increased the number N of drivers and
customers from 4 to 20, which were put in N/2 regions ran-
domly, with the drivers balanced among regions; half of the
customers were e-customers (Table 3). As DL-atoms have
output constants, we could also compare simultaneous and
sequential nogood minimization (ngm-sq). The results for
partial evaluation using periodic, always and ngmc are
mixed and there is no clear winner; however, all of them are
significantly faster than never. Indeed, the external DL calls
are costly, and waiting a bit until the next one can pay off.
As the premise of an io-nogood can be large but the output
often depends only on a small part, minimization can drasti-
cally shrink io-nogoods. However, the cost is many external
calls, which can be reduced by minimizing nogoods with same
premise simultaneously; in total, a significant speedup results.
Conflicting Strategic Companies. Strategic Companies
is a popular problem in ASP. We use the encoding schema
of Leone et al. [2006], with an additional constraint that
checks for conflicts on strategic sets via the external atom
&conflict [s](), e.g. imposing legislative restrictions. On com-
plete assignments, it is true if companies ci, cj in s are related
by an external conflict relation R ✓ C⇥C, and false other-
wise. We use a three-valued oracle function that returns true
for a partial assignment A if Ts(ci),Ts(cj) 2 A holds for
some (ci, cj) 2 R, false if Fs(ci) 2 A or Fs(cj) 2 A for
every (ci, cj) 2 R, and unassigned otherwise.

Since finding a strategic set is computationally hard, exclud-
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ing candidate strategic sets with a conflict early in the search
by partial evaluations should noticeably decrease the runtime.

We ran tests on instances with N 2 [10, 50] companies, at
most N randomly assigned control relations, 5⇥N products
with randomly assigned producers, and N/2 randomly created
conflicts (Table 4); the latter cut more than 90% of the strate-
gic sets (i.e., solution candidates). Partial evaluation always
decreases the runtime, where ngmc shows the best results.
Notably, for computing strategic sets containing a specific
company (which is ⌃P

2

-hard) we obtain similar results.
Instances and details on the experiments can be found at http:

//www.kr.tuwien.ac.at/research/projects/inthex/partialevaluation.

6 Discussion and Conclusion
Related Work. Our work is most closely related to constraint
ASP solving [Gebser et al., 2009] and SMT (in particular
theory propagation) [Nieuwenhuis et al., 2006]. However,
our approach is more general as it supports arbitrary external
sources, even if they may be semantically black boxes; thus,
the context for learning also differs. While theory literals and
constraint atoms are directly related via a theory and shared
constraint variables, respectively, external atoms are only in-
directly related via their input. Hence, ETL is realized by
learning io-relations in our case, while values of theory literals
and constraint atoms can be propagated within the solver. Also
Ostrowski and Schaub [2012] considered nogood minimiza-
tion, using different algorithms that avoid expensive resets
of the constraint solver. In our more general setting, this is
inapplicable, while other issues arise; e.g., that external atoms
can have multiple output values motivates our algorithm for
simultaneous io-nogood minimization. Overall, the mentioned
approaches do not lend themselves to a direct comparison.

Antic et al. [2013] considered partial HEX-semantics before,
employing Approximation Fixpoint Theory (AFT). Although,
we only consider two-valued answer sets and do not apply a fix-
point construction, our partial oracle functions coincide with
their three-valued ones. Similarly, Pelov et al. [2004] have
defined a family of partial stable model semantics for logic pro-
grams with aggregates using AFT. Assignment-monotonic ora-
cle functions are also related to their approximating aggregate
relations which must be precision-monotone and generalize
ordinary aggregate relations to a three-valued semantics.

Typical integration schemas for SMT have been identified
[Balduccini and Lierler, 2013b], which are also applicable
to ASP modulo theories; a comparison is given in [Balduc-
cini and Lierler, 2013a]. In black-box integration, the SAT
solver blindly generates a model and passes it for checking to
the theory solver. If it passes the check, it is returned, other-
wise it is added as a constraint to the instance and the solver
restarts. This allows for easy coupling with arbitrary theories
but does not enable search space pruning. In grey-box integra-
tion, the theory solver is only called for complete models of the
SAT instance, but the SAT solver is merely suspended during
checking and can continue its search afterwards; integration is
still relatively simple. Only in clear-box integration, the SAT
solver is interleaved with the theory solver, which is called al-
ready for partial assignments and in turn may propagate further
truth values or detect inconsistencies. However, the integration

is much more challenging as the theory solver must identify
atoms implied by the given partial assignment, or inconsis-
tency reasons, respectively. Applied to HEX, the grey-box
schema corresponds to the algorithms before EBL [Eiter et al.,
2012] was introduced (black-box integration, i.e., complete
restarts, was never used). With EBL, the algorithms followed
an intermediate schema between grey- and clear-box: external
sources were still only evaluated under complete assignments
but the learned nogoods possibly pruned the search space.

Conclusion. The techniques introduced in this paper yield
full-fledged clear-box integration. Moreover, due to automatic
nogood minimization, developers of external sources do not
need to manually describe implied truth values or inconsis-
tency reasons, but only need to implement a three-valued
oracle function, which keeps the integration of sources simple.

In our experiments, the new techniques yield a speedup of
up to two orders of magnitude; unsurprisingly, their ranking
depends on the instances. This is similar to observations by
Ostrowski and Schaub [2012], who reported mixed results
for different propagation delays. Our results are also in line
with results in SMT, where theory propagation, if doable with
small overhead, is crucial for performance [Dutertre and de
Moura, 2006; Lahiri et al., 2006; Nieuwenhuis and Oliveras,
2005]. We observed that in most cases learning from complete
assignments plus minimization of conflicting nogoods (based
on partial assignments) outperforms learning during search;
hence, this setting is suggestive as a default. This is explained
by the fact that in this case, learning focuses on nogoods that
are useful for conflict resolution, thus the information gain
is similar and the overhead much smaller. This matches the
observation by Nieuwenhuis et al. [2006] that conflict analysis
uses only a small fraction of the lemmas learned by theory
propagation, which can be addressed with lazy explanations
[Gent et al., 2010]. The speedup can be up to exponential, as
evidenced by an external atom whose truth value is definite
after assigning a single input atom, e.g. &empty [p]() to check
if an atom over p is true. Each naive nogood eliminates one
of exponentially many assignments, but a linear number of
minimized ones eliminates all wrong guesses.

Although our minimization algorithm cannot be improved
in the worst case (the nogood is already minimal), more sophis-
ticated algorithms for computing minimal conflicts have been
considered in the literature, which are likely to improve the
performance when nogoods comprise many irrelevant literals.
E.g., the QUICKXPLAIN algorithm [Junker, 2004] employs
a divide-and-conquer strategy to find relaxations of overcon-
strained problems, which allows pruning parts of a binary
search tree not containing relevant constraints. Based on this,
Shchekotykhin et al. [2015] developed the MERGEXPLAIN
algorithm, capable of efficiently determining multiple minimal
conflicts during one problem analysis run, which could be inte-
grated into our approach for obtaining all minimal io-nogoods.

Topics for ongoing and future work include further heuris-
tics for external evaluation (e.g., evaluating or skipping based
on the past information gain), further nogood-minimization
strategies using knowledge about external sources (e.g., func-
tionality or convexity), and exploiting partial assignments also
in the minimality check of answer set candidates.
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