Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

A Characterization of the Semantics
of Logic Programs with Aggregates

Yuanlin Zhang, Maede Rayatidamavandi
Department of Computer Science, Texas Tech University
{y.zhang, maede.rayatidamavandi } @ttu.edu

Abstract

The aggregates have greatly extended the represen-
tation power, in both theory and practice, of An-
swer Set Programming. Significant understanding
of programs with aggregates has been gained in
the last decade. However, there is still a substan-
tial difficulty in understanding the semantics due to
the nonmonotonic behavior of aggregates, which is
demonstrated by several distinct semantics for ag-
gregates in the existing work. In this paper, we aim
to understand these distinct semantics in a more
uniform way. Particularly, by satisfiability, ratio-
nality and consistency principles, we are able to
give a uniform and simple characterizations of the
three major distinct types of answer set semantics.

1 Introduction

By aggregates we mean (possibly partial) functions defined
on sets of objects of a domain. They have been proven useful
in both Database and Logic Programming community. For
example, consider the representation of the policy that a class
needs a TA (Teaching Assistant) if it has more than 30 stu-
dents. Assume we have the facts of the form takes(S,C)
which denotes that student S takes course C'. We also use
needsT A(C) to denote that course C needs a TA. Then we
can represent the TA policy, using aggregates, as follows:

needsT A(C) = |{S : takes(S,C)}| > 30

where we use the standard math notations of sets, their
cardinality and arithmetic relations. Here the cardinality
function is an example of an aggregate function and [{S :
takes(S,C)}| > 30 is an aggregate atom. (In the rest of the
paper, we use aggregate and aggregate atom interchangeably
when there is no ambiguity.) The program is simple and has
a clear intuitive meaning.

It is not a surprise that aggregates have enhanced the repre-
sentation power of Answer Set Programming (ASP) [Gelfond
and Lifschitz, 1988], a branch of Logic Programming, that
has gained popularity in the knowledge representation com-
munity recently. Assuming the prominent feature of ASP is to
give simple yet precise semantics of the default negation (also
called negation as failure), the default negation can be taken
as an aggregate with a very special property (See Section 2).

1338

However, when expanding ASP with aggregates, defining the
semantics of the new language becomes challenging because
the technique used for defining the semantics of default nega-
tion is not immediately applicable to general aggregates.

Significant progress has been made to understand the se-
mantics of programs with aggregates in the last decade. Sim-
ple and precise semantics have been discovered. However,
a challenge is that these semantics do not always agree with
each other even on seemingly simple programs. For example,
consider the program p(a) i~ [{X : p(X)}| > 0. According
to the semantics by Son et al [Son et al., 20071, called SPT
semantics here, and that by Faber et al [Faber ez al., 2011],
called FPL semantics here, the program specifies one belief
set {p(a)} while there is no belief set for this program accord-
ing to Gelfond and Zhang’s semantics [Gelfond and Zhang,
2014], called Alog semantics. Now, consider another pro-
gram II;

p(a) == p(b).

p(b) = pla).

pa) = {X : p(X)} # 1.
No belief set exists for this program by SPT and Alog seman-
tics while FPL semantics offers a belief set of {p(a),p(b)}.

In this paper, we aim to understand the difference among
these semantics by some common principles. For simplicity,
we restrict the head of a rule to be a regular atom. Recall
that, in [Gelfond and Kahl, 2014], the semantics of an ASP
program is taken as the specification of belief sets (formally
called answer sets) of a rational agent equipped with the pro-
gram. A belief set is a set of atoms which are “justified” to
the agent in terms of the program. A “justified” atom is called
a belief here. There are three principles behind the justifica-
tion: satisfiability principle which requires every rule of the
program to be satisfied by a belief set; consistency principle
which says that no atom is believed and not believed at the
same time; and the rationality principle which says that no
atom is a belief unless it is forced by the satisfiability prin-
ciple. There is some small variation between principles here
and the original ones in [Gelfond and Kahl, 2014]. These
principles are originally employed to derive informal seman-
tics of ASP programs while they are used here to help obtain
the definition of formal semantics of ASP with aggregates.
Consider a logic program p(b) :— p(a). The satisfiability

principle allows for one empty belief set and one belief set
of {p(a), p(b)}. However, the rationality principle will allow

only the empty belief set because p(a), p(b) are not forced by
the satisfiability principle. Now consider another program

p(a).
p(b) == p(a).

By satisfiability principle, p(a) is forced to be a belief (by
the first rule). As a result, the second rule (which is read as
if one believes p(a), one has to believe p(b)) forces p(b) to
be a belief because of the satisfiability principle. These three
principles give the classical semantics of ASP without default
negation.

Now consider programs with default negation which is de-
noted by not. The construct not [, where [is a regular atom,
is read as [is not a belief. Consider program IIs:

p(a) :=not p(b).
p(b) == not p(a).

It is now less straightforward to directly obtain a belief set
from a program. However, once a set S of atoms is given,
it is easy to apply the satisfiability and rationality principle
to check if S is a belief set (containing all beliefs), with the
understanding that any atom outside the set is not a belief. In
contrast, we cannot take any atom in the set as a belief be-
cause each one needs to be “justified” by the principles. Each
atom outside the given set is called a non-belief. Consider
atom set {p(a)}. We know that p(b) is not a belief, and by
the satisfiability principle, the first rule forces us to believe
p(a). Since p(a) is a belief, the second rule is satisfied (vac-
uously). So, {p(a)} is a belief set. Empty set is not a belief
set because p(a) and p(b) are non-beliefs and thus the satis-
fiability of the two rules requires p(a) and p(b) to be beliefs,
violating the consistency principle. Consider {p(a),p(b)}.
By this atom set, we do not have that “p(a) is a non-belief”
or “p(b) is a non-belief”. So, the satisfiability of the rules
forces us nothing and thus neither p(a) nor p(b) is a belief.
Hence, {p(a), p(b)} is not a belief set. In fact, once an atom
set is given, the three principles can be used to check if it is
a belief set, i.e., they can lead to the classical ASP semantics
[Gelfond and Lifschitz, 1988].

Now consider program I3 as an example of a program with
aggregates:

pla) =[{X : p(X)} = 0.

We understood “not [”” as “l is not a belief”” before, but it does
not seem to be immediately extensible to the understanding
of an aggregate atom. The main challenge is that the prin-
ciples do not specify directly when an aggregate atom is be-
lieved/forced. In the rest of the paper, we will develop various
understanding of when we can say an aggregate atom is be-
lieved (or forced). We first introduce the new concepts used
in this work, and then give several ways of defining the se-
mantics, namely straightforward approach, monotonicity ap-
proach, convexity approach and equivalence based approach.
After that we give the hierarchy result on different semantics
and the relation between the newly defined semantics and the
existing ones. Then we give an alternative characterization of
the semantics. We finally discuss the related work and con-
clude this paper.

1339

2 Preliminaries

We employ the formalism for aggregates proposed by Marek
and Truszczynski [Marek and Truszczynski, 2004] because
it makes the presentation of our ideas and techniques more
intuitive, simple and explicit. To simplify the discussion, we
consider only finite programs.

Assume there is a finite set U which is called a signature.
Every element of U is called a regular atom. A constraint
atom agg, also called c-atom, is of the form (D, C), where
D C U and C C 2P; D is called the domain of agg and
it is denoted by dom(agg); C is called the constraint of agg
and we use con(agg) to denote C'; and every element of C'is
called an allowed set. Marek and Truszczynski argued that
aggregate atoms can be represented as c-atoms. For exam-
ple, given U = {p(a),p(b), ¢(a)}, {X : p(X)}| > 0 can
be represented as a c-atom ({p(a), p(b)}, 2{P(@)P(M)}) where
every possible subset of the domain of the c-atom is an al-
lowed set. Intuitively, the constraint part of the c-atom lists
all possibilities that make the aggregate atom true. A c-atom
is called elementary if it is either of the form ({a}, {{a}}),
or ({a},{{}})- A c-atom of the form ({a}, {{a}}) is called
a positive elementary c-atom and will be simply written as
a. A c-atom of the form ({a}, {{}}) is called a negative cle-
mentary c-atom and it will be written as not a. They are also
called literals.

A normal logic program with c-atoms (or program for
simplicity), is a finite set of rules of the form:

a:—Cly...,Cp.

where a is a regular atom and each ¢; (i € {1,...,n}) is
a c-atom. For a rule r of the form above, a is called its
head, denoted by head(r), and {ci,...,c,} is the body of
the rule, denoted by body(r). A program is elementary if
each ¢; (1 < i < n) is an elementary c-atom. An ASP pro-
gram is an elementary program. Given a program P, we use
U(P) to denote the set of all regular atoms that occur in P.

A set S of regular atoms satisfies a c-atom agg, denoted by
S | agg, if SN dom(agg) € con(agg). S satisfies a set of
c-atoms A if for any agg € A, S = agg. S satisfies a rule r,
denoted by S = r, if whenever S |= body(r), S = head(r).
We say that S is a model of a program P if for any r € P,
S = r. Amodel S of P is minimal if no proper subset of S
is a model of P.

The reduct of an ASP program P wrt a set S of regu-
lar atoms, denoted by R (P, S), is the program {r : r €
P; forall (not 1) € body(r),l ¢ S; foralll € body(r),l €
S}. S is an answer set of an ASP program P if it is a min-
imal model of R (P, S). This is the classical definition of
ASP program [Gelfond and Lifschitz, 1988].

We next review the notions in the existing work on the
semantics of aggregates in the context of programs with c-
atoms.

The FPL reduct of a program P wrt a set .S of regular
atoms, denoted by R (P, S), is the program {r : r € P, S |=
body(r)}. S is an FPL answer set of P if S is a minimal
model of Rp(P,S) [Faber et al., 2011].

Given sets A and S of regular atoms, the set A condition-
ally satisfies a c-atom agg wrt S, denoted by A =g agg if

A |= agg and for every I such that A N dom(agg) C I and
I C SNdom(agg), we have I € con(agg). S is an SPT
answer set of P [Son ef al., 2007] if S = T3°(0,.S), where

Tp(R,S) ={a:3r € P head(r) = a, R =g body(r)}
and T%(0, S) = () and for any i > 0,
T (0,8) = Te(Tp(0,9), 5).

The Alog reduct of a program P wrt a set .S of regular
atoms, denoted by R 4 (P, S), is the program obtained from P
by 1) removing any rule whose body has a c-atom not satisfied
by S, and 2) replacing any c-atom, agg, with the set .S N
dom(agg). S is an Alog answer set of P if it is a minimal
model of R4(P,S). [Gelfond and Zhang, 2014]

3 Semantics of Normal Logic Programs with
C-atoms

We first show that the three principles used to define the se-
mantics of II5 in the introduction section can be employed to
define answer sets of ASP programs.

Given disjoint sets S (intuitively a set of beliefs) and NV
(intuitively a set of non-beliefs — same in the rest of the pa-
per) of regular atoms, a set B of literals is forced by S wrt
N if for any positive literal [of B, [€ S and for any nega-
tive literal not [€ B, [€ N. Given a sequence 71,...,7y,
of rules of a program P, for any ¢ € {1,...,n}, we de-
fine H; = {head(r1),...,head(r;)}, and define Hy = {}.
The sequence is a derivation of P wrt N if for any rule
r;(i € {1,...,n}) in the sequence, body(r;) is forced by
H;_1 wrt N and for any rule of P — {ry,...,7,}, its body
is not forced by H,, wrt N. A set S is a straightforward
answer set of an ASP program P if there exists a derivation
T1,...,7 of P wrt U(P) — S such that H, = S. (Note,
U(P) — S is the set of all non-beliefs in terms of S.)
Consider the program P below and a set S = {a,b,d}

a.
b :—not c.
d:—a,b.

Let N = U(P) — S = {c}, i.e,, ¢ is a non-belief and we
have no beliefs so far (Hy = {}). The body of the first rule,
denoted by 1, is forced vacuously. Now H; = {a}. The
body of the second rule is forced by H; wrt N. Lets denote
the second rule by ro. Now Hy = {a,b}. We can verify that
the body of the third rule, denoted by 3, is forced by Hs wrt
N. Then there is no more rules whose body is forced. This
sequence 11,79, 73, is a derivation of the program wrt N. It
is easy to verify that S is a straightforward answer set of P
because r1, ro, 73 is a derivation of P wrt N and H3 = S.

We can prove the following result on the relation between
the new definition of answer sets and the classical one for
ASP programs.

Proposition 1 A set S is a straightforward answer set of an
ASP program P iff it is an answer set of P.

The full proof of all propositions in this paper can be found
in [Rayatidamavandi and Zhang, 2016].

In the following subsections, we will extend the definition
of answer sets to non-elementary programs. A key question

is when we are forced to believe a c-atom, given the beliefs
so far and non-beliefs? To see the challenge, consider a c-
atom agge, = ({p(a),p(d)},{{pr(a)}}). Given a belief set
S = {p(a)} and non-belief set N = {}, although S satisfies
the c-atom, we are not sure if it is still satisfied after we have
more beliefs. The case for general c-atoms is not as simple as
the elementary c-atoms.

Several types of answers to this question will be discussed
in the following subsections.

3.1 Semantics Using only Satisfiability of
Aggregates

Let us consider the c-atom agg.1 = ({p(a), p(b)}, {{pr(a)}})
again. We note that given the belief set S = {p(a)} and the

non-belief set N = {p(b)}, the c-atom is forced (i.e, always
satisfied by S wrt N no matter what new beliefs are produced)
if we follow the consistency principle. Based on this obser-
vation, a natural generalization of the notion of forced from
elementary c-atoms to c-atoms is as follows. Given two dis-
joint sets S and N of regular atoms, a c-atom agg is forced by
S wrt N if S = agg and (dom(agg) — S) C N. A set of c-
atoms is forced by S wrt IV if every c-atom of the set is forced
by S wrt N. A sequence r1, . .., 1y, of rules of a program P is
a derivation of P wrt N if for any rule r;(i € {1,...,n})in
the sequence, body(r;) is forced by H;_; wrt N and for any
rule of P—{ry,..., 7y}, its body is not forced by H,, wrt N.
A set S is a straightforward answer set of a program P if
there exists a derivation rq, ..., r, of P wrt U(P) — S such
that H,, = S. We have the following result.

Proposition 2 A set S is a straightforward answer set of a
program P iff it is an Alog answer set of P.

3.2 Semantics Using Properties of Aggregates

When to answer whether we have to believe a c-atom we may
infer that from the properties of the c-atom. Consider pro-
gram IIf, the c-atom version of program II3 (in the introduc-
tion section):

pa) : =({p(a)}, {{}, {p(a)}})-

Let the c-atom in the program above be denoted by agg. As-
sume we try to check if {p(a)} is a belief set. Clearly there
is no non-beliefs and thus non-belief set NV is empty. By the
definition of forced, agg is not forced intuitively because we
do not know whether p(a) is a belief. An alternative way is
to make use of the property of the c-atom to decide whether
we have to believe a c-atom. For agg, no matter we believe
p(a) or not, one of the allowed sets {} or {p(a)} will make
us believe the c-atom. Note we do not have a particular pref-
erence of different intuitions in defining answer sets in this
paper, and we aim only to provide techniques to “formalize”
these intuitions.

Let S and N be sets of ground atoms. A c-atom agyg is
M-forced by S wrt N if 1) it is forced by S wrt IV, or 2)
S E agg and VY such that SNdom(agg) C Y C dom(agg),
Y E agg. Intuitively, the second part means that no matter
what beliefs we may add to S, agg will always be satisfied.
M here denotes the “monotonicity” property. A c-atom agg
is C-forced by S wrt N if S |= agg, and VY such that (S N

1340

dom(agg) CY C (dom(agg)) — N, Y E agg. Intuitively,
C-forced definition makes sure that the c-atom is satisfied by
S together with any subset of other beliefs except those in
N. C here denotes this “convexity” property. As examples,

i]:\-fatom ({p(a)}, {{},{p(a)}}) is M-forced by S = {} wrt

= {p(b)}; c-atom ({p(a), p(b)}, {{},{p(a)}}) is not M-
forced by S wrt N but C-forced by .S wrt N

A set A of c-atoms is M-forced (and C-forced respec-
tively) by .S wrt IV, if any c-atom of A is M-forced (and C-
forced respectively) by S wrt N. A sequence 71, ...,7, of
rules of a program P is an M-derivation (and C-derivation
respectively) of P wrt N if for any rule r;(i € {1,...,n})
in the sequence, body(r;) is M-forced (and C-forced respec-
tively) by H;_1 wrt N and for any rule of P — {ry,..., 7},
its body is not M-forced (and not C-forced respectively) by
H, wrt N. A set S is an M-answer set (and C-answer set
respectively) of a program P if there exists an M-derivation
(C-derivation respectively) rq,...,r, of P wrt U(P) — S
such that H,, = S. Since the mechanism underlying these
definitions is the same as before, we do not give examples.
We have the following result related to the existing work.

Proposition 3 S is a C-answer set of a program P iff it is an
SPT answer set of P.

3.3 Semantics Using Properties of Programs

When deciding whether a c-atom has to be believed under a
given set of belief, we can further make use of the knowl-
edge (i.e., other rules) in the given program. Consider the
example II4 (a simple variation of example 5 [Son and Pon-
telli, 2007]) where the intuitive meaning of the only c-atom is

{X :p(X)} #1:
() p(b).
p(b)—p(a).
() ~({p(a),p(0)}, {{}, {r(a), p(b)}}).

The first two rules of the program indicate that p(a) and
p(b) belong to an “equivalence set”, meaning we either be-
lieve none of them or believe both of them. Hence, assuming
the program has an answer set, the c-atom in the body of the
third rule has to be believed no matter what our beliefs are.
To check if {p(a),p(b)} is a belief set, starting from empty
belief set, we have to believe p(a) by the third rule and then
p(b) by the second one. However, in this case, the previous
mechanism to define answer sets does not seem to be suffi-
cient to capture this intuition. We need additional concepts
including order preserving and equivalence.

The dependency graph of a program P, denoted by G p,
is a directed graph (V, E) where V' = U(P) and (u,v) €
E iff there is arule r € P and agg € body(r) such that
u = head(r) and v € dom(agg). Given a directed graph
G, a vertex i is before a vertex j if there is a non-empty path
from j to ¢ in the graph. Two vertices ¢ and j are a tie if ¢ is
before j and j is before ¢. Vertex ¢ is strictly before vertex
7 if ¢ is before j and ¢ and j are not a tie. The tie set of a
regular atom a wrt program P, denoted by tie(a, P), is {b :
b is a vertex of the graph Gp and @ and b are a tie in Gp }.

Given a program P and a sequence of rules rq,...,7,, of
P, the sequence is order preserving if for any head(r;) and

1341

head(r;) (i,j € {1,...,n}) such that head(r;) is strictly
before head(r;) in the dependency graph of {rq,...,7,},
i < j. More discussion on order preserving can be found
in the next subsection.

Given a sequence of rules ry,...,7,, and a regu-
lar atom head(r;) (¢ € {1,...,n}) such that T
tie(head(r;),{r1,...,}) is not empty, the last tie index
of head(r;) denoted by lastT (head(r;)) is the maximal j
such that j < n and head(r;) € T. The first tie index
of head(r;), denoted by firstT(head(r;)), is the minimal j
such that j < n and head(r;) € T. Note that for an atom a,
if tie(a) = (), the first and last tie indices are not defined.

We next introduce the equivalence notion behind which the
intuition is that a set S’ of regular atoms is an equivalence set
of atoms if any non-empty subset of S can be used to get
the rest of atoms in S using the rules of the program. Given
a program P and a set A of regular atoms, a set S of regular
atoms is an equivalence set wrt P and A if forany 7' C S and
T # (), there exists a rule r of P such that AU T = body(r)
and head(r) € S —T. Intuitively A in the definition above is
the set of beliefs so far. Consider the following example:

b:—a.

c—~({a,b}, {{a,b}}).

a—({a,b, c}, {{a,b,c}}).

a:—({a, b, c}, {{b},{a,b,c}}).

a:_({av ba C}ﬂ {{C}a {ba C}a {aa b7 C}})
We can verify that {a, b, ¢} is an equivalence set wrt {}. Any
non-empty proper subset of {a,b,c} can be used to get the
rest of the atoms in the equivalence set. For example given
{a, b}, the second rule can be used to derive ¢, or given {b, c}
the last rule can be used to derive a.

A sequence 71,...,7, of rules of a program P is an E-
derivation of P if 1) for any ¢ € {1,...,n}, Hi_1 =
body(r;), 2) the sequence is order preserving, 3) for any
atom head(r;)(i € {1,...,n}), tie(head(r;), {r1,...,mn})
is an equivalence set wrt {rq,...,r,} and H;_1, where
t = firstT (head(r;)), 4) for any rule 7; (< € {1,...,n}),
H,, E body(r;), and 5) there is no rule in P — {ry,...,r,}
whose body is satisfied by H,,. (E in the definition above
denotes equivalence based.) A set .S of regular atoms is an
E-answer set of a program P if there exists an E-derivation
r1,...,Tn of P such that H,, = S.

In E-derivation, conditions 1 and 5 are from satisfiability
principle, implying that the head of a rule whose body is sat-
isfied must be believed. Conditions 2 and 4 come from ra-
tionality principle (without this, unnecessary beliefs will be
produced). Conditions 3 defines a level of “satisfiability” of a
c-atom: a c-atom is “satisfiable” if from the “current” beliefs
and non-beliefs, the property of the c-atom and the property
of the given program, the c-atom can be “inferred” to be sat-
isfied.

Proposition 4 S is an E-answer set of a program P iff it is
an FPL answer set of P.

To prove the result above, we need a new definition and two
properties about FPL semantics and E-answer sets. Let P
be a program, and S be a FPL answer set of P. Also let B
be a set of atoms such that B C S. We say that B can be

expanded to S by P if there is a sequence of rules r1 ..., 7,
of FPL reduct of P wrt S, (denoted by Rp (P, S)) such that

1. BU{head(r1),...,head(r,)} = S,

2. BU{head(r1),...,head(r;)} | body(r;+1) for any i
where 0 < i < n.

Property 1 let S be a FPL answer set of P. Then for any
B C S, B can be expanded to S.

Next, we have the minimality property of E-answer sets.

Property 2 Let P be a program, S be an E-answer set of P
and {ry,...,rn} be an E-derivation such that H,, = S. S is
a minimal model of {r1,...,r,}.

Proof sketch of Proposition 4. The full proof is long and we
only provide a sketch here.

We first show the necessary condition (=>): if S is a E-
answer set of P, then S is a FPL answer set of P.

By the definition of E-answer set there exists an E-
derivation 71, ..., 7, such that S = H,,, S | body(r;)(1 <
i < n), and there is no rule in P — {rq, ..., 7, } whose body
is satisfied by S. These together imply that Rp(P,S) =
{r1,...,7n}. By Property 2, S is a minimal model of
{r1,...,mn} = Rp(P,S), which implies that S is a mini-
mal model of R (P, S). Hence, S is an FPL answer set of P
by definition. We next prove the sufficient condition

(«<=): assuming S is a FPL answer set of P, S is an E-
answer set of P.

We first give a procedure to construct a sequence of rules.
Let GG be the graph induced by S from the dependency graph
of Rp(P,S). Let (4, . .., Cy be the strongly connected com-
ponents of G. Let O = {{a} : a € S,Vi € {1,...,k},a &
C;. Assume O is of the form {Cj41,...,Cp}. For any
C;,C; (4,5 € {1,...,m},i # j), C; is before C; if there
isa € C; and b € Cj so that a is before b wrt G. C; (i €
{1,...,m})is first if there doesn’t exist C;(j € {1,...,m})
such that C; is before C;. By definition of C;’s, for any Cj;
and C; (i, € {1,...,m} and ¢ # j), there are only three
cases: Cj is before C;, C; is before C; or neither C; is before
C; nor C is before C;. Since G is a directed graph and finite,
there must exists C; which is first. Construct a sequence of
rules as follows:

I.Leti =0. C:={C,...,Cnp}.
2. If C = {}, STOP, otherwise, let M be a first set of C.

2.1 By step 1. there must be a € M such that there is a rule
r, head(r) = a, for every c-atom agg of body(r), {} is
an allowed set of agg. Let ;11 be r. Lett be ¢ + 1. Let
j bei.

Let D = {a}. While M — D # {}, repeat the following:
By Property 1, D U H; can be expanded to S through
..., ({rl,...,r} € Rp(P,S)). Let 1, be the first
rule such that head(r,) € M — D. Let r;41 be 1, . Let
ibei+ 1. Add head(r.) to D.

2.3 Remove M from C. Goto 2.

Let r1,...,r, be the sequence obtained from the process
above. By the procedure we can first show that for any

2.2

1342

ie€{0,...,n—1}
(1) H; E body(riy1).
We can also show that H,, = S.

Next, construct a new sequence from rq,..
lowing procedure:

LLetry,...,r, betherulesin Rp(P,S)—{ry,..
t be the sequence r1,...,7,. Let j =1,

II. While j < y, let ; be the rule in ¢ such that head(r;) =
head(r) and r; € {r1,...,7,}. Insert r} into the sequence
t immediately after r; where k is a minimal number such that
k >iand Hy [= body(ry). Let j = j + 1.

.,y by the fol-

.,Tn}. Let

Let the new sequence obtained by the above procedure be
ri,...,rh. We show r{,... 7, is an E-derivation of P.
First we can show that H, = S, and for any rule r €
P—{r},...,rL}, H. £ body(r). Next, by (1) and the con-
struction procedure, we can show for any 7} € {r{,... 7.},
H]_| E body(r;). We then show that 1, ..., r% is order pre-
serving by proving that rq,...,r, is order preserving. For
any head(r;) and head(r;) of the sequence such that ¢ # j
and head(r;) is strictly before head(r;) in G, head(r;) and
head(r;) are not in the same connected component. By the
construction procedure of r1, ..., r,, head(r;) being strictly
before head(r;) implies that rule r; is produced earlier than
rj,i.e., 1 < j. Hence, the sequence is order preserving. We
then can show that by inserting the new rules by the second
procedure the order will be still preserved. We next show
that any tie set in r1,...,7, iS an equivalence set. By the
first construction procedure, there is a partition of {1, ..., n}
into{l,...7k1},{k1+17...,k2}7...,{km,1+1,...,km}
such that C; = {rg,_,+1,...,7k; }. For any atom head(r;),
tie(head(r;),{r1,...,mn}) is equal to some C; which is an
equivalence set wrt Hy, , because of Property 1. We can
show that for any B C (), there exists a rule r such that
Hy, , UB = body(r) and head(r) € C; — B. Therefore,
{r{,...,r.} is an E-derivation of P, and S is an E-answer
set of P. O

3.4 Alternative Characterization

We have the following hierarchy on the different types of an-
swer set semantics.

Proposition 5 Given a program P, a straightforward answer
set of P is an M-answer set of P, and an M-answer set of P
is a C-answer set of P which is in turn an E-answer set of P.

Intuitively order preserving in deriving beliefs imposes a
natural requirement by which we should select first, the more
“basic” rules whose heads are used in the body of other rules
to derive future beliefs. It becomes more natural if we take
each rule as a “definition” of its head. The order preserving
happens to ensure the rationality principle when several rules
are in consideration. In the following, by using order pre-
serving, we offer another characterization of different types
of answer sets.

First we introduce a new type of derivation, based on E-
derivation. A sequence ry, ..., 1, of a program P is a canon-
ical derivation of P if 1) forany ¢ € {1,...,n}, Hi_1
body(r;), 2) the sequence is order preserving, 3) for any

i,j € {1,...,n}, head(r;) # head(r;), (i.e., all rules have
distinct heads), and 4) there isnorule 7 of P — {ry,...,r,}
such that H,, | body(r) and head(r) ¢ H, (i.e., the se-
quence is “maximal”’). Now we have the following character-
ization of the four answer set semantics studied in this paper.

Proposition 6 Given a program P and a set S of regular
atoms,

e S is a straightforward answer set of P iff there
exists a canonical derivation r1,...,r, of P such
that H, = S and for any i € {l,...,n},
tie(head(r;),{r1,...,rn}) = {}, i.e, there is no loop
in the dependency graph of {r1, ..., }.

e S is a C-answer set (and M-answer set respec-
tively) of P iff there exists a canonical derivation
T1y...,Tn Of P such that H, = S and for any
i € {1,...,n}, and for any r; such that head(r;) €
tie(head(r;),{r1,...,mn}), body(r;) is C-forced (and
M-forced respectively) by H;_1 wrt U(P) — S.

e S is an E-answer set of P iff there exists a canon-
ical derivation ry,...,ry, of P such that H, =
S, for any i € {1,...,n}, H, [body(r;) and
tie(head(r;),{r1,...,mn}) is an equivalence set wrt
{r1,...,rn} and Hy_y where t = firstT(head(r;)).

Note that the consistency principle is reflected by the con-
dition of H,, = S. The relationship among different types
of answer sets may be clearer and more explicit in the result
above.

4 Related Work and Conclusion

The nonmonotonicity nature of aggregate atoms makes the
understanding of logic programs with aggregates extremely
hard, as demonstrated by the variety of distinct semantics re-
searchers have proposed. On the other hand, excellent find-
ings have been discovered in the last decades to enhance
our understanding of logic programs with aggregates from
many aspects. It includes early work in Database [Klug,
1982] and in Logic Programming [Kemp and Stuckey, 1991].
More recent work on aggregates has been mainly in the con-
text of Answer Set Programming under different formalisms:
logic programs with c-atoms [Marek and Truszczynski, 2004;
Son and Pontelli, 2007; Son et al., 2007; Shen et al., 2009;
Liu et al., 20101, logic programs with aggregates [Niemela et
al., 2002; Pelov, 2004; Faber et al., 2011; Gelfond and Zhang,
2014] first-order formulas with answer set semantics [Ferraris
and Lifschitz, 2005; Ferraris, 2011; Lee and Meng, 2009;
Truszczynski, 2010; Shen er al., 2014] and abstract di-
alectical frameworks [Brewka et al., 2013; Strass, 2013;
Alviano and Faber, 2015]. Most of the semantics are “equiv-
alent” to one of the three semantics (in the c-atom based for-
malism): FPL answer sets [Faber et al., 20111, SPT answer
sets [Son ef al., 20071, and Alog answer sets [Gelfond and
Kahl, 2014], which is the reason for us to focus on these three
types of semantics in this study.

Our definition of straightforward answer set of ASP pro-
grams may seem to be similar to the definition of well-
supported models of ASP programs [Fages, 1994]. Although,

for us, the extension of the former to programs with aggre-
gates seems natural, it is not clear how the well-supported
model can be extended for programs with aggregates.

The most relevant work to characterize the semantics of
logic programs with aggregates is the computation based ap-
proach [Liu et al., 2010] and the unified approach [Alviano
and Faber, 2015]. Both our work and the computation based
approach introduce a sequence of rules to derive the beliefs. It
is worth to note that the sequence is different from the classi-
cal one step provability operator 7p where all rules of a pro-
gram should be applied to derive a new set of beliefs while
the rule sequence approach allows to apply one rule at a time
to derive new belief(s). The difference between our work and
the computation based approach lies in that the principles in-
volved in constructing the sequence is very different. For ex-
ample, computation based approach requires that the body of
arule r should be satisfied by additional beliefs derived after
rule r while that is not the case in the E-answer set defini-
tion here (as an example, see program Il in Section 3.3).
Also, computation based approach covers only SPT seman-
tics but not FPL or Alog semantics (we do not see a trivial
way to apply computation based approach to FPL or Alog
semantics). By using the traditional one step provability op-
erator, the unified approach is able to cover the Alog and SPT
semantics but not the FPL semantics. The unified approach
is based on the fixed point of an operator (over a power set
of literals), but in our case, each derivation is a sequence of
rules. As a result, the derivation is extensible to characterize
FPL semantics while it is not clear how likely the fixed point
based semantics can be extended for the FPL one. There is an
“equivalence” between the “conditions” defining the immedi-
ate consequence operator in [Alviano and Faber, 2015] and
the concepts of forced and C-forced.

In summary, we discovered that by the very basic satisfi-
ability principle, rationality principle and consistency princi-
ple, we can define when a given set of atoms is an answer
set of a program, possibly using the properties of aggregate
atoms and the program. Particularly, by the alternative char-
acterization (Proposition 6), to derive if a given a set of atoms
is an answer set, we simply start with the empty belief set and
then select a rule whose body is satisfied by the beliefs so far
and it is the first (i.e., the body of other rules may use the
head of this rule) such rule. Rules whose heads are a tie may
be allowed in this derivation if certain conditions related to
the properties (“monotonicity” or “convexity”) of the aggre-
gate atoms or program hold. In this view, the relation among
distinct semantics such as Alog, FPL and SPT becomes sim-
ple and clear. We hope our characterization may offer some
insight on the debate of different answer set semantics.

In the future, we plan to study how we can extend our
work to cover programs with rules allowing disjunction in
their heads. It is also interesting to see whether the answer
set characterization techniques in this paper are applicable
to the semantics (e.g., [Truszczynski, 2010]) that are differ-
ent from the four studied here. Furthermore, we will study
how the principles in this paper are related to the vicious
circle principle [Gelfond and Zhang, 2014; Feferman, 2002;
Poincare, 1906]. We would also like to examine our work in
the context of FO(ID) [Denecker and Ternovska, 2008].

1343

5 Acknowledgment

The authors’ work was partially supported by NSF grant
CNS-13593509.

References

[Alviano and Faber, 2015] Mario Alviano and Wolfgang
Faber. Stable model semantics of abstract dialectical
frameworks revisited: A logic programming perspective.
In Proceedings of the 21st International Joint Conference
on Artificial Intelligence. IJCAI Organization, Buenos
Aires, Argentina, To appear, 2015.

[Brewka et al., 2013] Gerhard Brewka, Stefan Ellmauthaler,
Hannes Strass, Johannes Peter Wallner, and Stefan
Woltran. Abstract dialectical frameworks revisited. In
Proceedings of the Twenty-Third international joint con-
ference on Artificial Intelligence, pages 803—-809. AAAI
Press, 2013.

[Denecker and Ternovska, 2008] Marc Denecker and Euge-
nia Ternovska. A logic of nonmonotone inductive defini-
tions. ACM transactions on computational logic (TOCL),
9(2):14, 2008.

[Faber er al., 2011] Wolfgang Faber, Gerald Pfeifer, and
Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelli-
gence, 175(1):278-298, 2011.

[Fages, 1994] Francois Fages. Consistency of clark’s com-
pletion and existence of stable models. Journal of Methods
of logic in computer science, 1(1):51-60, 1994.

[Feferman, 2002] S. Feferman. Predicativity.
http://math.stanford.edu/"feferman/papers/, 2002.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir
Lifschitz. Weight constraints as nested expressions. The-
ory and Practice of Logic Programming, 5(1-2):45-74,
2005.

[Ferraris, 2011] Paolo Ferraris. Logic programs with propo-
sitional connectives and aggregates. ACM Trans. Comput.
Log., 12(4):25, 2011.

[Gelfond and Kahl, 2014] Michael Gelfond and Yulia Kahl.
Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge University Press, 2014.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP-88, pages
1070-1080, 1988.

[Gelfond and Zhang, 2014] Michael Gelfond and Yuanlin
Zhang. Vicious circle principle and logic programs with
aggregates. TPLP, 14(4-5):587-601, 2014.

[Kemp and Stuckey, 1991] David B Kemp and Peter J
Stuckey. Semantics of logic programs with aggregates. In
ISLP, volume 91, pages 387-401. Citeseer, 1991.

[Klug, 1982] Anthony Klug. Equivalence of relational alge-
bra and relational calculus query languages having aggre-
gate functions. Journal of the ACM (JACM), 29(3):699—
717, 1982.

1344

[Lee and Meng, 2009] Joohyung Lee and Yunsong Meng.
On reductive semantics of aggregates in answer set pro-
gramming. In Logic Programming and Nonmonotonic

Reasoning, pages 182—195. Springer, 2009.

[Liu et al., 2010] Lengning Liu, Enrico Pontelli, Tran Cao
Son, and Miroslaw Truszczynski. Logic programs with
abstract constraint atoms: The role of computations. Artif.
Intell., 174(3-4):295-315, 2010.

[Marek and Truszczynski, 2004] Victor W Marek and
Miroslaw Truszczynski. Logic programs with abstract
constraint atoms. In AAAI, volume 4, pages 86-91, 2004.

[Niemela et al., 2002] Ilkka Niemela, Patrik Simons, and
Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181-
234, Jun 2002.

[Pelov, 2004] Nikolay Pelov. Semantics of logic programs
with aggregates. PhD thesis, Katholieke Universiteit Leu-
ven, Leuven, Belgium, April 2004.

[Poincare, 1906] H. Poincare. Les mathematiques et la
logique. Review de metaphysique et de morale, 14:294—
317, 1906.

[Rayatidamavandi and Zhang, 2016] Maede Rayatidama-
vandi and Yuanlin Zhang. Full proof of propositions.
https://goo.gl/M3hESH, 2016.

[Shen et al., 2009] Yi-Dong Shen, Jia-Huai You, and Li-Yan
Yuan. Characterizations of stable model semantics for
logic programs with arbitrary constraint atoms. TPLP,
9(4):529-564, 2009.

[Shen ez al., 2014] Yi-Dong Shen, Kewen Wang, Thomas
Eiter, Michael Fink, Christoph Redl, Thomas Krennwall-
ner, and Jun Deng. Flp answer set semantics without cir-

cular justifications for general logic programs. Artificial
Intelligence, 213:1-41, 2014.

[Son and Pontelli, 2007] Tran Cao Son and Enrico Pontelli.
A constructive semantic characterization of aggregates in
answer set programming. TPLP, 7(3):355-375, 2007.

[Son et al.,2007] Tran Cao Son, Enrico Pontelli, and
Phan Huy Tu. Answer sets for logic programs with arbi-
trary abstract constraint atoms. J. Artif. Intell. Res. (JAIR),
29:353-389, 2007.

[Strass, 2013] Hannes Strass. Approximating operators and
semantics for abstract dialectical frameworks. Artificial
Intelligence, 205:39-70, 2013.

[Truszczynski, 2010] Miroslaw Truszczynski. Reducts of
propositional theories, satisfiability relations, and gener-
alizations of semantics of logic programs. Artif. Intell.,
174(16-17):1285-1306, 2010.

