
The Complexity of Learning Acyclic CP-Nets

Eisa Alanazi, Malek Mouhoub and Sandra Zilles
Department of Computer Science

University of Regina
Regina, SK, Canada

{alanazie,mouhoubm,zilles}@cs.uregina.ca

Abstract
Learning of user preferences has become a core is-
sue in AI research. For example, recent studies in-
vestigate learning of Conditional Preference Net-
works (CP-nets) from partial information. To as-
sess the optimality of learning algorithms as well
as to better understand the combinatorial structure
of CP-net classes, it is helpful to calculate cer-
tain learning-theoretic information complexity pa-
rameters. This paper provides theoretical justifica-
tion for exact values (or in some cases bounds) of
some of the most central information complexity
parameters, namely the VC dimension, the (recur-
sive) teaching dimension, the self-directed learn-
ing complexity, and the optimal mistake bound, for
classes of acyclic CP-nets. We further provide an
algorithm that learns tree-structured CP-nets from
membership queries. Using our results on com-
plexity parameters, we can assess the optimality of
our algorithm as well as that of another query learn-
ing algorithm for acyclic CP-nets presented in the
literature.

1 Introduction
Since preference learning is important in many AI applica-
tions, there is a need for a strong theoretical underpinning
of research on this topic. In recent years, substantial ad-
vances have been made in this field, for example in the de-
sign of Conditional Preference Networks (CP-nets) [Boutilier
et al., 2004] and the study of their learnability. A CP-net
is a compact preference representation for multi-attribute do-
mains where the preference of one attribute may depend on
the values of other attributes.

Koriche and Zanuttini (2010) investigated query learning
of bounded acyclic CP-nets (i.e., with a bound on the num-
ber of attributes on which the preferences for any attribute
may depend). Their successful algorithms used both mem-
bership and equivalence queries, cf. [Angluin, 1988], while
they proved that equivalence queries alone are not sufficient
for efficient learnability. CP-nets have also been studied in
models of passive learning from examples, both for batch
learning [Dimopoulos et al., 2009; Lang and Mengin, 2009;
Liu et al., 2014] and for online learning [Guerin et al., 2013].

A fundamental question in assessing the proposed algo-
rithms is how many queries/examples would be needed by the
best possible learning algorithm in the given learning model.
For several models, lower bounds can be derived from the
Vapnik Chervonenkis dimension (VCD, [Vapnik and Chervo-
nenkis, 1971]). This central parameter is one of several that,
in addition to yielding bounds on the performance of learn-
ing algorithms, provide deep insights into the combinatorial
structure of the studied concept class. Such insights can in
turn help to design new learning algorithms.

Our main contributions are the following:
(a) We provide the first study that exactly calculates the

VCD for the class of unbounded acyclic CP-nets, and give
a lower bound for any bound k. So far, the only existing
studies present a lower bound [Koriche and Zanuttini, 2010],
which we prove incorrect for large values of k, and asymp-
totic complexities [Chevaleyre et al., 2010]. The latter show
that VCD=⇥(2n) for k = n� 1 and ⇥̃(n2k) when k 2 o(n),
in agreement with our result that VCD equals 2n � 1 for
k = n� 1, and at least 2k � 1+ (n� k)2k for general values
of k. It should be noted that both previous studies assume
that CP-nets can be incomplete, i.e., for some variables no
preference relations may be given. In our study, we make the
(not uncommon) assumption that CP-nets are complete, but
our result on VCD also applies to the more general case that
includes incomplete CP-nets. Further, our results are more
general than existing ones in that they apply also to CP-nets
with multi-valued variables (as opposed to binary variables).

As a byproduct of our study, we obtain that the VCD of
the class of all consistent CP-nets (whether acyclic or cyclic)1

equals that of the class of all acyclic CP-nets. Hence, the class
of acyclic CP-nets is less expressive than that of all consistent
CP-nets, but may (at least in some models) be as hard to learn.

(b) We further provide exact values (or, in some cases,
non-trivial bounds) for other important information complex-
ity parameters, namely the teaching dimension [Goldman and
Kearns, 1995], the recursive teaching dimension [Zilles et al.,
2011], the self-directed learning complexity [Goldman et al.,
1993], and the optimal mistake bound [Littlestone, 1988].

1A consistent CP-net is one that does not prefer an outcome o

over another outcome ô while at the same time preferring ô over
o. Acyclic CP-nets are always consistent, but cyclic ones are not
necessarily so.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1361

(c) We present a new algorithm that learns tree-structured
CP-nets from membership queries and use our results on the
teaching dimension to show that our algorithm is close to op-
timal.

(d) We re-assess the degree of optimality of Koriche and
Zanuttini’s algorithm for learning bounded acyclic CP-nets,
using our result on the VCD.

2 Background
A concept is any subset of a given universe X (called instance
space) and a concept class is a set of concepts. In this paper,
we assume that X (and hence every concept class) is finite. In
concept learning, the learner receives information on a target
concept c⇤ contained in a fixed concept class and is requested
to identify or approximate c⇤ from the given information. In-
formation consists of labelled examples (x, `) where x 2 X ,
` 2 {0, 1}, and ` = 1 iff x is contained in the target concept.
We also write c(x) = 1 if x 2 c, and c(x) = 0 otherwise. The
concept classes we study below are subclasses of the class of
so-called conditional preference networks (CP-nets).

2.1 Conditional Preference Networks
We largely follow the notation introduced by Boutilier et
al. (2004) in their seminal work on CP-nets.

Let V = {v1, . . . , vn} be a set of variables. Each vari-
able v

i

has a set of possible values (its domain) D
vi =

{vi1, . . . , vim}. We assume that every domain D
vi is of size

m, independent of i. An assignment x to a set of variables
X ✓ V is a mapping for every variable v

i

2 X to a value
from D

vi . We denote the set of all assignments of X ✓ V by
O

X

and remove the subscript when X = V . A preference is
an irreflexive, transitive binary relation �. For any o, ô 2 O,
we write o � ô to denote the fact that o is strictly preferred
to ô.

CP-nets provide a compact representation of preferences
over O. For every v

i

2 V , the decision maker chooses a
set Pa(v

i

) ✓ V \{v
i

} of parent variables that influence the
preference order of v

i

. For every u 2 O
Pa(vi), the decision

maker specifies a total ordering �vi
u

over D
vi . We refer to

�vi
u

as the conditional preference statement of v
i

in the con-
text of u. The set of preference statements {�vi

u1
, . . . ,�vi

uk
},

where the u
j

are all contexts that yield non-empty conditional
preference statements, is the Conditional Preference Table
CPT(v

i

). Such statements expressed in a CPT are under
the ceteris paribus interpretation.
Definition 1. [Boutilier et al., 2004] Given, V , Pa(v), and
CPT(v) for v 2 V , a CP-net is a directed graph (V,E),
where, for any v

i

, v
j

2 V , (v
i

, v
j

) 2 E iff v
i

2 Pa(v
j

).

Example 1. Figure 1a shows a CP-net over V = {A,B,C}
with D

A

= {a, ā}, D
B

= {b, b̄}, D
C

= {c, c̄}. Each vari-
able is annotated with its CPT. For variable A, the user
prefers a to ā unconditionally. For C, the preference depends
on the values of B, i.e., Pa(C) = {B}. For instance, in the
context of b̄, c̄ is preferred over c.

Two outcomes o, ô 2 O are swap outcomes (‘swaps’ for
short) if they differ in the value of exactly one variable v

i

;
then v

i

is called the swapped variable [Boutilier et al., 2004].

A B

C

b � b̄a � ā

b : c � c̄
b̄ : c̄ � c

(a) The CP-net

ab̄c̄ ābc̄ āb̄c

abc̄ ab̄c ābc

abc

āb̄c̄

(b) The induced graph

Figure 1: An acyclic CP-net and its induced graph

We use o[X] to denote the projection of o onto X ⇢ V and
write o[v

i

] instead of o[{v
i

}]. The size of a preference table
for a variable v

i

, denoted by size(CPT(v
i

)), is the number
of preference statements it holds. The size of a CP-net is the
sum of its tables’ sizes.

Example 2. In Figure 1a, abc, ābc are swaps over the
swapped variable A. The CP-net size is 1 + 1 + 2 = 4.

The induced graph of a CP-net N is defined as follows.
Each vertex in the induced graph represents an outcome
o 2 O. An edge from ô to o exists iff (o, ô) 2 O ⇥ O
is a swap w.r.t. some v

i

2 V and o[v
i

] precedes ô[v
i

] in
�vi

o[Pa(vi)]
[Boutilier et al., 2004]. N defines a partial or-

der � over O that is given by the transitive closure of its
induced graph. If o � ô we say N entails (o, ô). N is con-
sistent if there is no o 2 O with o � o, i.e., if its induced
graph is acyclic. Since acyclic CP-nets are always consistent
[Boutilier et al., 2004], their class is particularly interesting
for learnability studies, as is its subclass of separable CP-nets,
which have no edges.

Example 3. In the network in Figure 1a, abc � āb̄c, as wit-
nessed by the path āb̄c ! ab̄c ! abc in the induced graph
shown in Figure 1b.

As CP-net semantics are completely determined by the
preference relation over swaps, one may consider the set
X

swap

= {(o1, o2) 2 O⇥O | (o1, o2) is a swap and o1 is lex-
icographically smaller than o2} as the instance space; a quick
calculation (which is omitted due to space constraints) shows
that its size is |X

swap

| = nmn�1
�
m

2

�
= m

n
n(m�1)
2 . (We as-

sume a fixed lexicographic order.) For x = (o1, o2) 2 X
swap

,
let V (x) denote the swapped variable of x. We refer to the
first and second outcomes of an example x as x.1 and x.2,
respectively. We use x[�] to denote the assignments (in both
x.1 and x.2) of � ✓ V \{V (x)}.

In what follows, we fix k 2 {0, . . . , n � 1} and consider
the class C

ac

of all acyclic CP-nets whose nodes have an in-
degree of at most k. We use C

unb

, C
tree

and C
sep

for the
classes of acyclic CP-nets with indegree at most n � 1, 1,
and 0, respectively. A concept c contains a swap pair x
iff the corresponding CP-net entails (x.1, x.2). By size(c),
we refer to the size of the CP-net represented by c. Lastly,
M = max{size(c) | c 2 C

ac

} is the maximum number
of statements in any concept in C

ac

. It can be verified that
M = (n� k)mk +

P
k�1
i=0 mi.

1362

2.2 Information Complexity Parameters
The combinatorial structure of a concept class C has impli-
cations on the complexity of learning C, in particular on the
sample complexity (sometimes called information complex-
ity), which refers to the number of labelled examples the
learner needs in order to identify any target concept in the
class under the constraints of a given learning model. One
of the most important complexity parameters studied in ma-
chine learning is the Vapnik-Chervonenkis dimension (VCD).
In what follows, let C be a concept class over the (finite) in-
stance space X .
Definition 2. [Vapnik and Chervonenkis, 1971] A subset
Y ✓ X is shattered by C if the projection of C onto Y has
2|Y | concepts. The VC dimension of C, denoted by VCD(C),
is the size of the largest subset of X that is shattered by C.

The number of randomly chosen examples needed to iden-
tify concepts from C in the PAC-learning model is linear in
VCD(C) [Blumer et al., 1989]. By contrast to learning from
random examples, in teaching models, the learner is provided
with well-chosen labelled examples.
Definition 3. [Goldman and Kearns, 1995; Shinohara and
Miyano, 1991] A teaching set for a concept c⇤ 2 C with re-
spect to C is a set S = {(x1, `1), . . . , (xz

, `
z

)} of labelled
examples such that c⇤ is the only concept c 2 C that sat-
isfies c(x

i

) = `
i

for all i 2 {1, . . . , z}. The teaching di-
mension of c with respect to C, denoted by TD(c, C), is the
size of the smallest teaching set for c with respect to C. The
teaching dimension of C, denoted by TD(C), is given by
TD(C) = max{TD(c, C) | c 2 C}.

TD
min

(C) = min{TD(c, C) | c 2 C} denotes the small-
est TD of any c 2 C. A well-studied variation of teaching is
called recursive teaching. Its complexity parameter, the recur-
sive teaching dimension, is defined by recursively removing
from C all the concepts with the smallest TD and then taking
the maximum over the smallest TDs encountered in that pro-
cess. For the corresponding definition of teachers, see [Zilles
et al., 2011].
Definition 4. [Zilles et al., 2011] Let C0 = C and, for all i
such that C

i

6= ;, define C
i+1 = C

i

\ {c 2 C
i

| TD(c, C
i

) =
TD

min

(C
i

)}. The recursive teaching dimension of C, denoted
by RTD(C), is defined by RTD(C) = max{TD

min

(C
i

) | i �
0}.

As opposed to the TD, the RTD exhibits interesting rela-
tionships to the VCD. For example, every maximum class,
i.e., a class C whose size |C| meets Sauer’s upper bound�|X |

0

�
+

�|X |
1

�
+ . . . +

� |X |
VCD(C)

�
[Sauer, 1972], fulfills

RTD(C) = VCD(C); the same is true for classes of VCD
1 and for intersection-closed classes [Doliwa et al., 2014].

We will further determine complexity parameters for on-
line prediction, namely the self-directed learning complexity
and the optimal mistake bound. A self-directed learner passes
a prediction (x, `) 2 X ⇥ {0, 1} to an oracle, which responds
with the information whether or not the target concept c⇤ ful-
fills c⇤(x) = `. In case c⇤(x) 6= `, the learner has made
a mistake. The self-directed learning complexity SDC(C) is
the smallest number z for which some self-directed learner

exists that makes no more than z mistakes on any concept in
C [Goldman et al., 1993]. In classical online learning [Lit-
tlestone, 1988], the sequence of instances x for which the
learner makes label predictions is determined by an adver-
sary. The best worst-case number of mistakes achievable in
this model, where again the worst case is taken over all con-
cepts in C, is called the optimal mistake bound of C, denoted
by OPT(C).

3 Complexity Results
Table 1 summarizes our complexity results for acyclic CP-
nets whose nodes have indegrees bounded by k. The two
extreme cases are unbounded acyclic CP-nets (k = n � 1,
C
unb

) and separable CP-nets (k = 0, C
sep

).
The most striking observation from our results is that

VCD, RTD, and SDC are equal for all values of m in C
unb

.
Further, when m = 2 (the most studied case in the litera-
ture), we have that TD equals the instance space size n2n�1.
A close inspection of the case m = 2 shows that X

swap

has
only n instances that are relevant for C

sep

, and C
sep

corre-
sponds to the class of all concepts over these n instances.
Thus the values of VCD, TD, RTD, SDC, and OPT are
trivially equal to n in this special case. As mentioned ear-
lier, maximum classes and intersection-closed classes fulfill
VCD = RTD, but the class of binary separable CP-nets is
the only class to which this result applies, since C

ac

is nei-
ther maximum nor intersection-closed as soon as k > 0 or
m > 2 (we omit the proofs due to space constraints). The
classes C

unb

are thus the first natural ones in the literature for
which VCD = RTD is known to hold without the fulfillment
of any of Doliwa et al.’s sufficient conditions like being max-
imum or intersection-closed. This suggests that the combina-
torial structure of CP-nets is interesting from a computational
learning theory point of view.

In the case of online prediction, for m 11, dlog(m!)e is
known to be the minimum number of comparisons needed to
sort m elements [Sloane, 2016]. However, for most practi-
cal applications, m 11 is sufficient and thus our results are
still useful for judging the optimality of online learning algo-
rithms. The fact that SDC is asymptotically strictly smaller
than OPT shows that actively selecting examples strictly de-
creases the number of mistakes when m is large.

The remainder of this section is dedicated to proving the
statements from Table 1. Due to space constraints, some parts
of proofs are sketched only. Our first theorem substantially
improves on (and corrects) a result by Koriche and Zanut-
tini (2010), who present a lower bound on VCD(C

ac

); their
bound is in fact incorrect unless k ⌧ n.

Theorem 1. VCD(C
unb

) = mn�1, VCD(C
sep

) = (m�1)n
and VCD(C

ac

) � (m� 1)M.

As any consistent CP-net (whether acyclic or cyclic) de-
fines an irreflexive, transitive relation, a result from [Booth
et al., 2010] implies that the VCD of the class of all consis-
tent unbounded CP-nets is at most mn � 1. By our The-
orem 1, this VCD is equal to mn � 1. Sauer’s Lemma
then bounds the number of consistent CP-nets from above byP

m

n�1
i=0

�|Xswap|
i

�
. This also means though, that acyclic CP-

1363

class VCD TD RTD SDC OPT
Cac � (m� 1)M n(m� 1)U (m� 1)M (m� 1)M � dlog(m!)eM
Cunb m

n � 1 n(m� 1)mn�1
m

n � 1 m

n � 1 � dlog(m!)emn�1
m�1

Csep (m� 1)n (m� 1)n (m� 1)n (m� 1)n � dlog(m!)en

Table 1: Summary of complexity results. M = (n� k)mk +
P

k�1
i=0 mi; U is defined after Theorem 2.

nets, while less expressive, are in some sense as hard to learn
as all consistent CP-nets.

The proof of Theorem 1 relies on decomposing C
ac

as a
direct product of concept classes over subsets of X

swap

.

Definition 5. Let C
i

✓ 2Xi and C
j

✓ 2Xj be concept classes
with X

i

\ X
j

= ;. The concept class C
i

⇥ C
j

✓ 2Xi[Xj is
defined by C

i

⇥ C
j

= {c
i

[c
j

| c
i

2 C
i

and c
j

2 C
j

}. For
concept classes C1, . . . , C

r

, we define
Q

r

i=1 Ci = C1 ⇥ · · · ⇥
C
r

= (· · · ((C1 ⇥ C2)⇥ C3)⇥ · · ·⇥ C
r

).

It is well-known that VCD(
tQ

i=1
C
i

) =
tP

i=1
VCD(C

i

).

For any v
i

2 V and any � ✓ V \ {v
i

}, we define C�
CPT(vi)

to be the concept class consisting of all preference relations
corresponding to some CPT(v

i

) where Pa(v
i

) = � and
|�| k; here the instance space is the set of all swap pairs
x with V (x) = v

i

. Now, if we fix the context of v
i

by fix-
ing an assignment � 2 O� of all variables in �, we obtain a
concept class C�

�vi
�

, which corresponds to the set of all pref-
erence statements concerning the variable v

i

conditioned on
the context �. Its instance space is the set of all swaps x with
V (x) = v

i

and x[�] = �.
Recall that V = {v1, . . . , vn}. By S

n

we denote the class
of all permutations of {1, . . . , n}.

Proof of Theorem 1. Lemma 1 (below) states that C
ac

equals
S

�2Sn

nQ
i=1

S
�✓{v�(1),...,v�(i�1)},|�|k

Q
�2O�

C�

�v�(i)
�

,

which yields the bound VCD(C
ac

) �
max
�2Sn

nP
i=1

max
�✓{v�(1),...,v�(i�1)},|�|k

P
�2O�

VCD(C�

�v�(i)
�

).

Using VCD(C�

�v�(i)
�

) = m � 1 (see Lemma 2), independent
of � and �, one obtains, for any � 2 S

n

,

VCD(C
ac

) � (m� 1)
nX

i=1

max
�✓{v�(1),...,v�(i�1)},|�|k

|O�|

= (m� 1)

nX

i=1

max
�✓{v�(1),...,v�(i�1)},|�|k

m|�|

= (m� 1)M .

For k 2 {0, n � 1}, to verify VCD(C
ac

) (m � 1)M,
consider any shattered set Y of size (m � 1)M. One can
show that there is some labeling of Y that agrees with exactly
one concept in C

ac

, so that no set Y 0 � Y is shattered (and
thus no set of size > (m� 1)M is shattered) by C

ac

. ⌅
Lemma 1.
C
ac

=
S

�2Sn

nQ
i=1

S
�✓{v�(1),...,v�(i�1)},|�|k

Q
�2O�

C�

�v�(i)
�

.

Proof. By definition, for v 2 V and � ✓ V \ {v}, the class
C�
CPT(v) equals

Q
�2O�

C�
�v

�
. (Any concept representing a

preference table for v with Pa(v) = � corresponds to a union
of concepts each of which represents a preference statement
over D

v

conditioned on some context � 2 O�.)
Any concept corresponds to choosing a set �

v

of par-
ent variables of size at most k for each variable v, which
means C

ac

✓ Q
n

i=1

S
�✓V \{vi},|�|k

C�
CPT(vi)

. By acyclic-
ity, v

j

2 Pa(v
i

) implies v
i

/2 Pa(v
j

), so that for
each concept c 2 C

ac

some � 2 S
n

fulfills c 2Q
n

i=1

S
�✓{v�(1),...,v�(i�1)},|�|k

C�
CPT(v�(i))

. Thus, C
ac

✓
S

�2Sn

Q
n

i=1

S
�✓{v�(1),...,v�(i�1)},|�|k

Q
�2O�

C�

�v�(i)
�

.

Similarly, one can argue that every concept in the class on
the right hand side represents an acyclic CP-net with parent
sets of size at most k. With C�

CPT(vi)
=

Q
�2O�

C�
�vi

�
, the

statement of the lemma follows. ⌅

Lemma 2. VCD(C�
�vi

�
) = m � 1 for any v

i

2 V , � ✓
V \ {v

i

}, and � 2 O�.

Proof. Let v
i

2 V , � ✓ V \ {v
i

}, and � 2 O�. We show
that C�

�vi
�

shatters some set of size m � 1, but no set of size
m. Note first that, by definition, C�

�vi
�

is simply the class of
all total orders over the domain D

vi of v
i

.
To show VCD(C�

�vi
�
) � m � 1, choose any set of m � 1

swaps over � [{v
i

} with fixed context �, in which the pairs
of swapped values in v

i

are (vi1, v
i

2),. . . , (vi
m�1, v

i

m

).
Fix any set S ✓ X

swap

of m swaps over � [{v
i

} with
fixed context �. To show that S is not shattered, consider
the undirected graph G with vertex set D

vi in which an edge
between vi

r

and vi
s

exists iff S contains a swap pair flipping
vi
r

to vi
s

or vice versa. G has m vertices and m edges and thus
contains a cycle. The directed versions of G correspond to the
labellings of S; therefore some labelling ` of S corresponds
to a cyclic directed version of G, which does not induce a
total order over D

vi . Hence the labelling ` is not realized by
C�
�vi

�
, so that S is not shattered by C�

�vi
�

. ⌅

For studying teaching complexity, it is useful to identify
concepts that are “easy to teach.” To this end, we use the
notion of subsumption [Koriche and Zanuttini, 2010]: given
CP-nets N,N 0, we say N subsumes N 0 if for all v

i

2 V the
following holds: If y1 � y2 is specified in CPT(v

i

) in N 0 for
some context �0, then y1 � y2 is specified in CPT(v

i

) in N
for some context containing �0. If in addition N 6= N 0, we
say that N strictly subsumes N 0.

Now let C ✓ C
ac

. A concept c 2 C is maximal in C if no
c0 2 C strictly subsumes c. Note that maximal concepts in C

ac

1364

are of size M. The following lemma formalizes the intuition
that maximal concepts are “easy to teach.”
Lemma 3. For any maximal concept c in a concept class
C ✓ C

ac

, we have TD(c, C) (m� 1)size(c).

Proof. Every statement in the CP-net N represented by c cor-
responds to an order of m values for some variable v

i

under
a fixed context �. For every such order y1 �vi

�

. . . �vi
�

y
m

,
we include m � 1 positively labelled swap examples in a set
T . For 1 j m � 1, the jth such example labels a pair
x = (x.1, x.2) of swap outcomes with V (x) = v

i

, the pro-
jection of x onto {v

i

} is (y
j

, y
j+1), and the projection of x

onto the remaining variables contains �. The set T then has
cardinality (m � 1)size(c) and is obviously consistent with
N .

It remains to show that no other CP-net in C is consistent
with T . Suppose some c0 6= c in C is consistent with T . Since
c0 6= c, there is some v

i

2 V , � 2 O
V \{vi}, and y, y0 2 D

vi

such that y �vi
�

y0 holds in c0 while y0 �vi
�

y holds in c. Thus
(i) c0 disagrees with some statement in a preference table of
c, or (ii) c0 has a statement in one of its preference tables that
is not contained in c. (i) is impossible since c0 is consistent
with T , and (ii) is impossible since c is maximal in C. ⌅
Lemma 4. Each non-maximal c0 2 C

ac

is strictly subsumed
by some c 2 C

ac

s.t. TD(c0, C
ac

)�TD(c, C
ac

).

Proof. From the graph G0 for c0, we build a graph G by
adding the maximum possible number of edges to a single
variable v. As c0 is not maximal, it is possible to add at
least one edge. The CP-nets corresponding to G and G0 dif-
fer only in CPT(v). Let c be the concept representing G
and z be the size of its CPT for v. A smallest teaching set
T 0 for c0 can be modified to a teaching set for c by replac-
ing only those examples that refer to the swapped variable v;
(m� 1)z examples suffice. To distinguish c0 from c, T 0 must
contain at least (m � 1)z examples referring to the swapped
variable v (m � 1 for each context in CPT(v) in c). Hence
TD(c0, C

ac

) � TD(c, C
ac

). ⌅
Using these lemmas, one can show that TD(C

ac

) equals
the TD of separable CP-nets within C

ac

and RTD(C
ac

) is the
TD of maximal concepts within C

ac

. The latter is at most
(m � 1)M by Lemma 3, and can be verified to be at least
(m � 1)M when arguing that a teaching set for a maximal
concept must contain m � 1 examples for each statement in
its CPTs, so as to determine the preferences for each context.
We thus obtain the following theorem.
Theorem 2. RTD(C

ac

)=(m� 1)M.

For the TD of separables in C
ac

, consider any unconditional
CPT(v

i

) = {y1 � · · · � y
m

}. For every R ✓ V \{v
i

},
|R| = k, we create the dummy CPT(v

i

) where Pa(v
i

) = R
with the same statement y1 � · · · � y

m

in every context of
O

R

. Any teaching set must show that under any context, we
have the same statement y1 � · · · � y

m

.
Thus, a minimal teaching set restricted to CPT(v

i

) is a
smallest set of examples U

i

such that if projected to any sub-
set R of size k, U

i

contains mk contexts. Each of the state-
ments of the form y1 � · · · � y

m

can be taught by (m � 1)

labelled examples, and one does so for each element of U
i

.
For each variable v

i

, a respective set of examples is included
in the teaching set. One can show that fewer examples are not
sufficient for teaching a separable CP-net. We denote the car-
dinality of U

i

, which is independent of i, by U . In the binary
case, U

i

is known as a “(n � 1, k)-universal set of minimum
size” [Damaschke, 2000]. In combination with some obvious
bounds, we obtain the following theorem.
Theorem 3. For 0 k n � 1, we have n(m � 1)mk
TD(C

ac

) = n(m � 1)U n(m � 1)
�
n�1
k

�
mk. If k = 0,

then U = 1, so that TD(C
sep

) = (m � 1)n. If k = 1, then
U = m, so that TD(C

tree

) = (m� 1)mn. If k = n� 1, then
U = mn�1, so that TD(C

unb

) = (m� 1)nmn�1.

Theorem 3 implies that, for C
unb

, the ratio of TD over in-
stance space size |X

swap

| is 2
m

. In particular, in the case of
binary CP-nets (i.e., when m = 2), which is the focus of
most of the literature on learning CP-nets, the TD equals the
instance space size. However, maximal concepts have a TD
far below the worst-case TD.
Theorem 4. SDC(C

ac

) = (m� 1)M.

Proof. From [Doliwa et al., 2014] and Theorem 2 we get
SDC(C

ac

) � RTD(C
ac

) = (m�1)M. For the upper bound,
note that any concept in C

ac

, when fixing a variable v and a
context � 2 O

V \{v}, induces a total order on D
v

. Goldman et
al. (1993) discussed a prediction strategy (basically an inser-
tion sort) to learn a total order over m items while making at
most m � 1 mistakes. Separately for each variable v, a self-
directed learner fixes an arbitrary context � 2 O

V \{v} and
learns a preference over D

v

with Goldman et al.’ s strategy.
For other contexts on v, the learner will assume the same pref-
erence relation unless it makes a mistake (which will cause it
to learn a new preference over D

v

). For each preference to
be learned (M in total), the learner makes at most (m� 1)
mistakes, for a total of (m� 1)M mistakes. ⌅
Theorem 5. OPT(C

ac

) � dlog(m!)eM.

Proof. Any learner must identify up to M preference state-
ments (for a fixed variable and context) separately. Each
such statement is a permutation of m elements, and its iden-
tification requires at least dlog(m!)e comparisons, in the
worst case. The adversary can force the learner to make as
many mistakes as comparisons are needed, yielding the lower
bound. ⌅

4 Near-Optimal Query Learning
In what follows, we will demonstrate in two scenarios how
our complexity results can be used to assess the optimality of
learning algorithms, in particular, algorithms learning a tar-
get CP-net N⇤ from membership or equivalence queries. A
membership (equivalence) query is a swap x (a CP-net N 0,
resp.) that the learner passes to an oracle; the oracle responds
‘yes’ or ‘no’, depending on whether N⇤ entails x (whether
N⇤ equals N 0, resp.) If an equivalence query for N 0 is an-
swered ‘no’, the oracle also presents a swap that is entailed
by either N⇤ or N 0, but not by both. An algorithm learns a
class C from a given type of queries if it identifies any target

1365

concept c⇤ 2 C from a number of queries that is polynomial in
the size of the underlying representation of c [Angluin, 1988].

4.1 Learning Tree-Structured CP-nets from
Membership Queries

Koriche and Zanuttini (2010) present an algorithm for learn-
ing a binary tree-structured CP-net N⇤ that may be incom-
plete in that it may have empty CPTs (i.e., it learns a su-
perclass of C

tree

for m = 2.) Their learner uses at most
n
N

⇤ + 1 equivalence and 4n
N

⇤ + e
N

⇤ log(n) membership
queries, where n

N

⇤ is the number of relevant variables and
e
N

⇤ the number of edges in N⇤. We present a method learn-
ing any CP-net in C

tree

(i.e., complete tree CP-nets) for any
m, using only membership queries.

For a CP-net N , a conflict pair w.r.t. v
i

is a pair (x, x0) of
swaps such that (i) V (x) = V (x0) = v

i

, (ii) x.1 and x0.1
agree on v

i

, (iii) x.2 and x0.2 agree on v
i

, and (iv) N entails
one of the swaps x, x0, but not the other. If v

i

has a conflict
pair, then v

i

has a parent variable v
j

whose values in x and
x0 are different. Such a variable v

j

can be found with log(n)
membership queries by binary search (each query halves the
number of candidate variables with different values in x and
x0) [Damaschke, 2000].

We use this binary search to learn tree-structured CP-nets
from membership queries, by exploiting the following fact:
if a variable v

i

in a tree CP-net has a parent, then a conflict
pair w.r.t. v

i

exists and can be detected by asking member-
ship queries to sort m “test sets” for v

i

. Let (vi1, . . . , vim)
an arbitrary but fixed permutation of D

vi . Then, for all
j 2 {1, . . . ,m}, a test set I

i,j

for v
i

is defined by I
i,j

=

{(v1
j

, . . . , vi�1
j

, vi
r

, vi+1
j

, . . . , vn
j

) | 1 r m}. Since v
i

has no more than one parent, determining preference orders
over m such test sets of size m is sufficient for revealing con-
flict pairs, rather than having to test all possible contexts in
O

V \{vi}.
Now we have a simple strategy for learning tree CP-nets

with membership queries:

1. For every variable v
i

, ask O(m log(m)) membership
queries from the

�
m

2

�
swaps over I

i,j

to obtain orders
over I

i,j

for all j.

2. If at least two of the orders differ, i.e., there is a conflict
pair, find the only parent of v

i

by log(n) further queries,
else Pa(v

i

) = ;.

3. CPT(v
i

) is determined by the queries above.

It is not hard to see that this algorithm learns a tar-
get CP-net N⇤ 2 C

tree

with at most nmO(m log(m)) +
e
N

⇤ log(n) membership queries, where e
N

⇤ is the number
of edges in N⇤. In particular, for the binary case we need
2n + e

N

⇤ log(n) queries at most, i.e., compared to Koriche
and Zanuttini’s method, when focusing only on tree CP-
nets with non-empty CPTs, we reduce the number of mem-
bership queries by a factor of 2, and drop the requirement
for equivalence queries. As TD lower-bounds the required
number of membership queries, our method uses at most
log(m) + e

N

⇤ log(n) queries more than an optimal one, see
Theorem 3.

4.2 Learning Incomplete and Complete Acyclic
CP-nets from Queries

Koriche and Zanuttini (2010) provide an algorithm that learns
the class C⇤

ac

of complete and incomplete (binary) acyclic
CP-nets with nodes of bounded indegree from equivalence
and membership queries. To evaluate their algorithm, they
compare its query complexity to log(4/3)VCD(C⇤

ac

), which
lower-bounds the required number of membership and equiv-
alence queries [Auer and Long, 1999]. They calculate a lower
bound on VCD(C⇤

ac

), in lieu of the exact value, cf. their The-
orem 6.

C⇤
ac

◆ C
ac

implies VCD(C⇤
ac

) � VCD(C
ac

). It is not
hard to see that in fact VCD(C⇤

ac

) = VCD(C
ac

) � M (for
m = 2), since the largest shattering capacity is obtained when
specifying CPTs for all variables, i.e., when using complete
CP-nets. However, Koriche and Zanuttini’s lower bound on
VCD(C⇤

ac

) exceeds VCD(C⇤
unb

) = 2n � 1 in some cases.
In particular, in case k = n � 1, their lower bound (on
VCD(C⇤

unb

)) exceeds the exact value of 2n � 1, cf. our The-
orem 1. It appears as though their bound is correct only for
k ⌧ n as it is evaluated to (n+(c�1))2n�(c+1)�n2� (c�
1)n + (2c�1)(n+(c�1))

2 which exceeds VCD(C⇤
unb

) for small
values of c where k = n� c.

For any k, their algorithm learns a superclass C⇤
ac

of C
ac

for m = 2 (where the additional concepts are the incomplete
ones) using at most r

N

⇤ + e
N

⇤ log(n) + e
N

⇤ + 1 queries in
total, for a target CP-net N⇤ with r

N

⇤ statements and e
N

⇤

edges. In the worst case r
N

⇤ = M VCD(C⇤
ac

) and
e
N

⇤ =
�
k

2

�
+ (n � k)k (i.e., N⇤ is maximal w.r.t. C⇤

ac

).
This yields M + e

N

⇤(log(n) + 1) queries for their algo-
rithm, which exceeds the lower bound log(4/3)VCD(C⇤

ac

) by
at most log(3/2)VCD(C⇤

ac

) + e
N

⇤ log(n). This is a more re-
fined assessment compared to the reported term e

N

⇤ log(n),
and it holds for any value of k.

5 Conclusions
We determined exact values or non-trivial bounds on the pa-
rameters VCD, TD, RTD, SDC, and OPT for the classes of
complete k-bounded acyclic CP-nets for any k. Our VCD
values still apply to the class of potentially incomplete k-
bounded acyclic CP-nets, and thus correct a mistake in [Ko-
riche and Zanuttini, 2010]. Our TD value shows that our pro-
posed algorithm for learning complete tree CP-nets is close
to optimal.

To the best of our knowledge, C
unb

is the first known non-
maximum (and not intersection-closed) class that is interest-
ing from an application point of view and satisfies RTD =
VCD. Thus further studies on the structure of CP-nets may
be helpful toward the solution of an open problem concerning
the general relationship between RTD and VCD [Simon and
Zilles, 2015].

Our results may also have implications on the study of con-
sistent CP-nets. Since the class of acyclic CP-nets is less ex-
pressive than that of all consistent CP-nets, while having the
same information complexity in terms of VCD, it would be
interesting to find out whether learning algorithms for acyclic
CP-nets can be easily adapted to consistent CP-nets in gen-
eral.

1366

Acknowledgements
Eisa Alanazi’s research was supported by the Saudi Cul-
tural Bureau in Canada. Malek Mouhoub and Sandra Zilles
were supported by the Discovery Grant program of the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC). Sandra Zilles was also supported by the NSERC
Canada Research Chairs program.

References
[Angluin, 1988] Dana Angluin. Queries and concept learn-

ing. Machine Learning, 2(4):319–342, 1988.
[Auer and Long, 1999] Peter Auer and Phil Long. Structural

results about on-line learning models with and without
queries. Machine Learning, 36(3):147–181, 1999.

[Blumer et al., 1989] Anselm Blumer, Andrzej Ehrenfeucht,
David Haussler, and Manfred K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the
ACM, 36(4):929–965, 1989.

[Booth et al., 2010] Richard Booth, Yann Chevaleyre,
Jérôme Lang, Jérôme Mengin, and Chattrakul Sombat-
theera. Learning conditionally lexicographic preference
relations. In ECAI, pages 269–274, 2010.

[Boutilier et al., 2004] Craig Boutilier, Ronen I. Brafman,
Carmel Domshlak, Holger H. Hoos, and David Poole. CP-
nets: A tool for representing and reasoning with condi-
tional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

[Chevaleyre et al., 2010] Yann Chevaleyre, Frédéric Ko-
riche, Jérôme Lang, Jérôme Megine, and Bruno Zanut-
tini. Learning ordinal preferences on multiattribute do-
mains: the case of CP-nets. In Preference Learning, pages
273–296. Springer-Verlag, 2010.

[Damaschke, 2000] Peter Damaschke. Adaptive versus non-
adaptive attribute-efficient learning. Machine Learning,
41(2):197–215, 2000.

[Dimopoulos et al., 2009] Yannis Dimopoulos, Loizos
Michael, and Fani Athienitou. Ceteris paribus preference
elicitation with predictive guarantees. In IJCAI, pages
1890–1895, 2009.

[Doliwa et al., 2014] Thorsten Doliwa, Gaojian Fan,
Hans Ulrich Simon, and Sandra Zilles. Recursive teaching
dimension, VC-dimension and sample compression.
Journal of Machine Learning Research, 15:3107–3131,
2014.

[Goldman and Kearns, 1995] Sally A. Goldman and
Michael J. Kearns. On the complexity of teaching.
Journal of Computer and System Sciences, 50:20–31,
1995.

[Goldman et al., 1993] Sally A. Goldman, Ronald L. Rivest,
and Robert E. Schapire. Learning Binary Relations and
Total Orders. SIAM Journal on Computing, 22(5):1006–
1034, 1993.

[Guerin et al., 2013] Joshua T. Guerin, Thomas E. Allen,
and Judy Goldsmith. Learning CP-net preferences online
from user queries. In ADT, pages 208–220, 2013.

[Koriche and Zanuttini, 2010] Frédéric Koriche and Bruno
Zanuttini. Learning conditional preference networks. Ar-
tificial Intelligence, 174(11):685–703, 2010.

[Lang and Mengin, 2009] Jérôme Lang and Jérôme Mengin.
The complexity of learning separable ceteris paribus pref-
erences. In IJCAI, pages 848–853, 2009.

[Littlestone, 1988] Nick Littlestone. Learning quickly when
irrelevant attributes abound: a new linear threshold algo-
rithm. Machine Learning, 2(4):245–318, 1988.

[Liu et al., 2014] Juntao Liu, Yi Xiong, Caihua Wu, Zhijun
Yao, and Wenyu Liu. Learning conditional preference net-
works from inconsistent examples. IEEE Trans. Knowl.
Data Eng., 26(2):376–390, 2014.

[Sauer, 1972] Norbert Sauer. On the density of families
of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

[Shinohara and Miyano, 1991] Ayumi Shinohara and Satoru
Miyano. Teachability in computational learning. New
Generation Computing, 8(4):337–347, 1991.

[Simon and Zilles, 2015] Hans Ulrich Simon and Sandra
Zilles. Open problem: Recursive teaching dimension ver-
sus VC dimension. In COLT, pages 1770–1772, 2015.

[Sloane, 2016] Neil J.A. Sloane. The on-line encyclopedia of
integer sequences. Sequence A036604, 2016. Accessed:
10-April-2016.

[Vapnik and Chervonenkis, 1971] Vladimir N. Vapnik and
Alexey Ya. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory
of Probability and its Applications, 16(2):264–280, 1971.

[Zilles et al., 2011] Sandra Zilles, Steffen Lange, Robert
Holte, and Martin Zinkevich. Models of cooperative teach-
ing and learning. Journal of Machine Learning Research,
12:349–384, 2011.

1367

