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Abstract
Many tasks in AI require the design of complex
programs and representations, whether for program-
ming robots, designing game-playing programs, or
conducting textual or visual transformations. This
paper explores a novel inductive logic programming
approach to learn such programs from examples.
To reduce the complexity of the learned programs,
and thus the search for such a program, we intro-
duce higher-order operations involving an alterna-
tion of Abstraction and Invention. Abstractions are
described using logic program definitions contain-
ing higher-order predicate variables. Inventions in-
volve the construction of definitions for the predicate
variables used in the Abstractions. The use of Ab-
stractions extends the Meta-Interpretive Learning
framework and is supported by the use of a user-
extendable set of higher-order operators, such as
map, until, and ifthenelse. Using these operators
reduces the textual complexity required to express
target classes of programs. We provide sample com-
plexity results which indicate that the approach leads
to reductions in the numbers of examples required to
reach high predictive accuracy, as well as significant
reductions in overall learning time. Our experiments
demonstrate increased accuracy and reduced learn-
ing times in all cases. We believe that this paper
is the first in the literature to demonstrate the effi-
ciency and accuracy advantages involved in the use
of higher-order abstractions.

1 Introduction
Inductive Programming (IP) [Gulwani et al., 2015] is a form of
machine learning which aims to learn programs from examples
given background knowledge (BK). To illustrate this form of
machine learning, consider teaching a robot to pour tea and
coffee for all place settings at a table. For each setting there
is an indication of whether the associated guest prefers tea or
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coffee. Figure 1 shows an example in terms of an initial state
(Figure 1a) and final state (Figure 1b).

T T C T C

(a) Initial state (b) Final state

f(A,B):-f3(A,B),at end(B).
f(A,B):-f3(A,C),f(C,B).
f3(A,B):-f2(A,C),move right(C,B).
f2(A,B):-turn cup over(A,C),f1(C,B).
f1(A,B):-wants tea(A),pour tea(A,B).
f1(A,B):-wants coffee(A),pour coffee(A,B).

(c) First-order program

f(A,B):-until(A,B,at end,f3).
f3(A,B):-f2(A,C),move right(C,B).
f2(A,B):-turn cup over(A,C),f1(C,B).
f1(A,B):-ifthenelse(A,B,wants tea, pour tea, pour coffee).

(d) Higher-order program

! Abstract ! Invent ! Abstract
f until f3,f2,f1 ifthenelse

(e) Alternation of Abstraction and Invention steps

Figure 1: Figures (a) and (b) show initial/final state waiter
examples respectively. In the initial state, the cups are empty
and each guest has a preference for tea (T) or coffee (C). In
the final state, the cups are facing up and are full with the
guest’s preferred drink. Figures (c) and (d) show higher-order
and first-order target theories respectively.

Now consider learning a general strategy for the task from
a set of such examples. Given that there may be an arbitrary
number of place settings, existing approaches to IP, such as
Meta-Interpretive Learning (MIL) [Muggleton et al., 2015;
Cropper and Muggleton, 2015a], would learn a recursive strat-
egy, such as that shown in Figure 1c. In this paper, we extend
the MIL framework to support learning theories with higher-
order constructs, such as map, until, and ifthenelse. In this
approach, an equivalent yet more compact strategy can be
learned, as in Figure 1d. This is implemented in a system
called MetagolAI which uses a form of interpreted BK to
learn programs through a sequence of interleaved Abstraction
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and Invention steps (see Figure 1e). We show that the com-
pactness of such definitions leads to substantially improved
predictive accuracy and significantly reduced learning time.

The paper is organised as follows. Section 2 discusses re-
lated work. Section 3 describes the theoretical framework
for the augmented form of MIL involving Abstraction and
Invention, together with a sample complexity result for the
new representation. Section 4 describes MetagolAI , including
changes to the meta-interpretive learner required to support
Abstraction and Invention. Section 5 details three experi-
ments in which predictive accuracies and learning times for
MetagolAI are compared with and without higher-order BK.
In each case, a substantial increase in predictive accuracy is
achieved when the higher-order BK is included, in accordance
with the sample complexity result from Section 3. Finally, Sec-
tion 6 summarises the outcomes and discusses further work.

2 Related work
Interest in IP has grown recently, partially due to successful
applications in real-world problems, such as end-user pro-
gramming [Gulwani, 2014a] and computer education [Gul-
wani, 2014b]. IP approaches can be classified as either
task specific or general-purpose. Task specific approaches
focus on learning programs for a specific domain and are
often restricted to specific data types, such as numbers
[Singh and Gulwani, 2012] and strings [Gulwani, 2011;
Wu and Knoblock, 2015]. By contrast, the MIL framework is
general-purpose, and has been used in a variety of problems
including grammar induction [Muggleton et al., 2014b], string
transformations [Lin et al., 2014], and extracting information
from markup files [Cropper et al., 2015].

MagicHaskeller [Katayama, 2008] is a general-purpose IP
system which learns Haskell functions by selecting and in-
stantiating higher-order functions from a pre-defined vocabu-
lary. In contrast to MagicHaskeller, MIL supports predicate
invention and learning explicitly recursive programs. Igor2
[Kitzelmann, 2007] also learns recursive Haskell programs
and supports auxiliary function invention but is restricted in
that it requires the first k examples of a target theory to gen-
eralise over a whole class. Esher [Albarghouthi et al., 2013]
learns recursive programs but needs to query an oracle each
time a recursive call is encountered to ask for examples. The
L2 system [Feser et al., 2015] synthesises recursive functional
algorithms, but the hypotheses learned by L2 are not directly
executable. By contrast, MetagolAI learns Prolog programs.

Section 5 includes experiments in learning robot strategies
[Cropper and Muggleton, 2015a]. Various machine learning
approaches support the construction of strategies, including
the SOAR architecture [Laird, 2008], reinforcement learning
[Sutton and Barto, 1998], and action learning in inductive
logic programming (ILP) [Moyle and Muggleton, 1997; Otero,
2005]. This work differs from most of these approaches in
that the MetagolAI learns human-readable Prolog programs.

Early work in ILP [Flener and Yıilmaz, 1999] considered
using schema to specify the overall form of recursive programs
to be learned. By contrast, the use of abstraction described in
this paper involves higher-order definitions which treat pred-
icate symbols as first-class citizens. This approach supports

until(S1,S2,Cond,Do) Cond(S1)
until(S1,S2,Cond,Do) not(Cond(S1)), Do(S1,S2)

(a) Higher-order definition

f(A,B) until(A,B,at end,f3)
(b) Abstraction

f3(A,B) f2(A,C),move right(C,B)
(c) Invention

Figure 2: Higher-order definition with related Abstraction and
Invention

a form of abstraction which goes beyond typical first-order
predicate invention [Saitta and Zucker, 2013] in that the use
of higher-order definitions combined with meta-interpretation
drives both the search for a hypothesis and predicate invention,
leading to more accurate and compact programs.

Lloyd [Lloyd, 2003] advocates using higher-order logic in
the learning process, though the approach was more strongly
allied to learning functional programs, and did not support
predicate invention.

3 Theoretical framework
The sets of constants, predicate symbols and first and second-
order variables are denoted C,P,V1 and V2. Elements of V1

and V2 can bind to elements of C and P respectively.

3.1 Higher-order definitions
Definition 1 (Higher-order definite clause) A higher-order
definite clause is a well-formed formulae 8⌧P (s1, .., sm) 
.., Qi(t1, .., tn), .. where ⌧ ✓ V1 [ V2 and P,Qi, sj , tk 2
P [ C [ V1 [ V2.

Definition 2 (Higher-order definite definition) A higher-
order definition is a set of higher-order clauses which all have
the form 8⌧ p(s1, .., sm) .. where ⌧ ✓ V1 [ V2 and p 2 P .

The clauses in Figure 2a comprise a higher-order definition.

3.2 Abstractions and inventions
Definition 3 (Abstraction) An abstraction is a higher-
order definite clause having the form 8⌧ p(s1, .., sm)  
q(v1, .., vn, r1, .., ro), .. where ⌧ ✓ V1 [ V2 and
p, q, r1, .., ro 2 P and v1, .., vn 2 V1.

Within Computer Science code abstraction [Cardelli and Weg-
ner, 1985] involves hiding complex code to provide a sim-
plified interface for users to select key details. In this paper
Abstractions contain one atom in the body which references
a higher-order predicate, as shown in Figure 2b. The second-
order arguments of until are grounded to predicate symbols.

Definition 4 (Invention) In the case background knowledge
B is extended to B [ H , where H is a set of higher-order
definite definitions, we call predicate p an Invention iff p is
defined in H but not in B.

Within this paper Abstractions are used by a meta-interpreter
to generate Inventions (Figure 2c).
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3.3 Meta-Interpretive Learning
Given background knowledge B and examples E the aim of a
MIL system is to learn a hypothesis H such that B,H |= E,
where B = Bp[M , Bp is a set of compiled Prolog definitions
and M is a set of metarules (see Figure 3). MIL [Muggleton et
al., 2014b; 2015; Cropper and Muggleton, 2015b; Muggleton
et al., 2014a] is a form of ILP based on an adapted Prolog meta-
interpreter. A standard Prolog meta-interpreter proves goals by
repeatedly fetching first-order clauses whose heads unify with
the goal. By contrast, a MIL learner proves goals by fetching
higher-order metarules (Figure 3) whose heads unify with the
goal. The resulting meta-substitutions are saved, allowing
them to be used as background knowledge by substituting
them into corresponding metarules.

Name Metarule
Curry3 P (x, y) Q(x, y,R)
Curry4 P (x, y) Q(x, y,R, S)
Precon P (x, y) Q(x), R(x, y)
Postcon P (x, y) Q(x, y), R(y)
Chain P (x, y) Q(x, z), R(z, y)
Tailrec P (x, y) Q(x, z), R(z, y)

Figure 3: Example metarules. Uppercase letters P,Q,R, S
denote existentially quantified variables. Lowercase letters x,
y, and z denote universally quantified variables.

3.4 Abstracted Meta-Interpretive Learning
We extend the MIL framework by assuming the background
knowledge B = Bp [ Bi [M , where Bp consists of com-
piled Prolog code (compiled BK), Bi consists of higher-order
definitions (interpreted BK), and M is a set of metarules. The
existence of Bp supports efficient execution of background
knowledge, but makes the substitution of meta-variables inac-
cessible to the meta-interpreter for inventing new predicates.
By contrast, the existence of Bi allows the meta-interpreter to
efficiently interleave Abstraction and Invention.

3.5 Language classes, expressivity and complexity
Metarules limit the language class for the hypothesis space.
For instance, the Chain rule in Figure 3 restricts clauses to be
definite with two body atoms and a predicate arity of two. This
corresponds to the language class H2

2 . In [Lin et al., 2014]
it was shown the number of H2

2 programs expressible with n
clauses is O(|M |np3n). The result below updates this bound
for the abstracted MIL framework.
Lemma 1 (Number of abstracted H2

2 programs of size n.)
Given p predicate symbols, |M | metarules, and abstractions
each with at most k � 1 second-order variables the number of
H2

2 programs expressible with n clauses is O(|M |np(2+k)n).
Proof. Since each abstraction has at most k � 1 second-
order variables the number of clauses Sp which can be con-
structed from an H2

2 metarule given p predicate symbols is
at most max(p3, p2+k) = p2+k. The set of such clauses
Sm,p has cardinality at most |M |p2+k. It follows the num-
ber of logic programs constructed from a selection of n rules
chosen from S|M |,p is at most

�|M |p2+k

n

�
 (|M |p2+k)n =

O(|M |np(2+k)n).

We use this result to develop sample complexity results for
unabstracted versus abstracted MIL.
Theorem 1 (Sample complexity of unabstracted MIL) Un-
abstracted MIL has a polynomial sample complexity of m �
n ln|M |+p ln(3n)+ln 1

�
✏ .

Proof. According to the Blumer bound [Blumer et al., 1989]
the error of consistent hypotheses is bounded by ✏ with proba-
bility at least (1� �) once m � ln|H|+ln 1

�+ln(c)
✏ , where |H|

is the size of the hypothesis space. From [Lin et al., 2014]
|H| = c(|M |np3n + d) where c, d are constants. Applying
logs and substiting gives m � n ln|M |+|p ln(3n)+ln 1

�
✏ .

Theorem 2 (Sample complexity of abstracted MIL) Ab-
stracted MIL has a polynomial sample complexity of m �
n ln|M |+p ln((2+k)n)+ln 1

�
✏ .

Proof. Analogous to Theorem 1.

We now consider the ratio of these bounds in the case n� p.
Proposition 1 (Ratio of unabstracted and abstracted
bounds) Given m,mA are the bounds on the number of train-
ing examples required to achieve error less than ✏ with proba-
bility at least 1� � and n, nA are the numbers of clauses in
the minimum expression of the target theories in these cases
then the ratio m : mA approaches n : nA in the case n� p.
Proof. Since n � p it follows m : mA ⇡ (n ln|M | :
nAln|M |) = n : nA.
Proposition 1 indicates abstraction in MIL reduces sample
complexity proportional to the number of clauses required
to express abstracted hypotheses. For instance, in Figure 1
the use of until and ifthenelse reduces the hypothesis size by
one clause each. Thus the minimal hypothesis reduces from
six clauses to four leading to a sample complexity reduction
of 3 : 2. Figure 4 tabulates higher-order predicates with
corresponding clause reductions.

HO predicate Reduction
until 1
ifthenelse 1
map 1
filter 2

Figure 4: Reductions in the number of clauses when using
higher-order predicates

4 MetagolAI

MetagolAI extends Metagol1, an existing MIL implemen-
tation, to support Abstractions and Invention by learning
with interpreted BK. Figure 5 shows the implementation of
MetagolAI as a generalised meta-interpreter [Muggleton et al.,
2015], similar in form to a standard Prolog meta-interpreter.

Background knowledge The key difference between
MetagolAI and Metagol is the introduction of the second
prove aux clause in the meta-interpreter, denoted in boldface.

1https://github.com/metagol/metagol
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prove([],H,H).
prove([Atom|Atoms],H1,H2):-

prove aux(Atom,H1,H3),
prove(Atoms,H3,H2).

prove aux(Atom,H,H):-
call(Atom).

prove aux(Atom,H1,H2):-
background((Atom:-Body)),
prove(Body,H1,H2).

prove aux(Atom,H1,H2):-
member(sub(Name,Subs),H1),
metarule(Name,Subs,(Atom :- Body)),
prove(Body,H1,H2),

prove aux(Atom,H1,H2):-
metarule(Name,Subs,(Atom :- Body)),
new metasub(H1,sub(Name,Subs)),
abduce(H1,H3,sub(Name,Subs)),
prove(Body,H3,H2).

Figure 5: Prolog code for the MetagolAI meta-interpreter. The
clause denoted in boldface is used to fetch higher-order clauses
from the interpreted BK.

This clause allows MetagolAI to prove a goal by fetching a
clause from the interpreted BK (such as map) whose head uni-
fies with a given goal. The distinction between compiled BK
and interpreted BK is that whereas a clause from the compiled
BK is proved deductively by calling Prolog, a clause from the
interpreted BK is proved through meta-interpretation. This
approach allows for predicate invention to be driven by the
proof of conditions (as in filter) and functions (as in map). In-
terpreted BK is different to metarules because the clauses are
all universally quantified. By contrast, metarules contain exis-
tentially quantified variables whose meta-substitutions form
the hypothesised program. Figure 6 shows examples of the
three forms of BK used by MetagolAI .

Compiled BK
head([H| ],H).
move forward(X/Y1),X/Y2):-Y2 is Y1+1.

Interpreted BK
background(([map,[],[],F]:- [])).
background(([map,[A|As],[B|Bs],F]:-

[[F,A,B],[map,As,Bs,F]])).
Metarules

metarule([P,Q,R],([P,A,B]:-[[Q,A],[R,A,B]])).
metarule([P,Q,R],([P,A,B]:-[[Q,A,C],[R,C,B]])).

Figure 6: Examples of the three forms of BK used by
MetagolAI

Algorithm MetagolAI first tries to prove a goal deduc-
tively using compiled BK by delegating the proof to Pro-
log (call(Atom)). Failing this, MetagolAI tries to unify
the goal with the head of a clause in the interpreted BK
(background((Atom:-Body))) and tries to prove the body goals
of the clause. Failing this, MetagolAI tries to unify the goal
with the head of a metarule (metarule(Name,Subs,(Atom :-

Body))) and to bind the existentially quantified variables in
a metarule to symbols in the signature. MetagolAI saves the
resulting meta-substitutions (Subs) and tries to prove the body
goals of the metarule. After proving all goals, a Prolog pro-
gram is formed by projecting the meta-substitutions onto their
corresponding metarules. Negation as failure [Clark, 1987]
is used to negate predicates in the compiled BK. Negation of
invented predicates is unsupported and is left for future work.

5 Experiments
This section describes three experiments2 which compare ab-
stracted MIL with unabstracted MIL, i.e. learning with and
without interpreted higher-order BK. To do this, we compare
MetagolAI (which supports interpreted BK) with Metagol
(which does not support interpreted BK). Accordingly, we
investigate the following null hypotheses:

Null hypothesis 1 MetagolAI cannot learn more accurate
programs than Metagol

Null hypothesis 2 MetagolAI cannot learn programs quicker
than Metagol

Common materials We provide MetagolAI and Metagol
with the same BK. The compiled BK varies in each experi-
ment. The interpreted BK contains the following definitions:
map/3,reduce/3,reduceback/3, until/4, and ifthenelse/5. The
metarules used are shown in Figure 3. Therefore, the only
variable in the experiments is the learning system. The only
difference between the two systems is the additional clause
used by MetagolAI , described in Section 4.

Common methods We train using m randomly chosen pos-
itive examples for each m in the set {1,2,3,4,5}. We test using
40 examples, half positive and half negative, so the default
accuracy is 50%. We average predictive accuracies and learn-
ing times over 20 trials. For each learning task, we enforce a
10-minute timeout.

5.1 Robot waiter
This experiment revisits the waiter example in Figure 1, in
which a robot waiter is learning to serve drinks.

Materials The state is a list of facts. In the initial state, the
robot starts at position 0; there are d cups facing down at
positions 1, . . . , d; and for each cup there is a preference for
tea or coffee. In the final state, the robot is at position d+1; all
the cups are facing up; and each cup is filled with the preferred
drink. We generate positive examples as follows. For the
initial state, we select a random integer d from the interval
[1, 20] as the number of cups. For each cup, we randomly
select whether the preferred drink is tea or coffee, and set it
facing down. For the final state, we update the initial state so
that each cup is facing up and is filled with the preferred drink.
To generate negative examples, we repeat the aforementioned
procedure, but we modify the final state so that the drink

2Experimental data are available at http://ilp.doc.ic.ac.uk/ijcai16-
metagolai
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choice is incorrect for a random subset of k drinks. The robot
can perform the following fluents and actions (details omitted
for brevity) defined as compiled BK: at end/1, wants tea/1,
wants coffee/1, move left/2, move right/2, turn cup over/2,
pour tea/2, and pour coffee/2.

Results Figure 7a shows that MetagolAI learns more accu-
rate programs than Metagol, refuting null hypothesis 1. Fig-
ure 7b shows that MetagolAI learns programs quicker than
Metagol, refuting null hypothesis 2. Figure 1 shows example
programs learned by Metagol (c) and MetagolAI (d)). Al-
though both programs are general and can handle any number
of guests and any assignment of drink preferences, program
(b) is smaller because it uses the higher-order abstractions until
and ifthenelse. This compactness affects predicate accuracies
because whereas MetagolAI can find solutions in the allocated
time, Metagol stuggles because the solutions are too long.
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Figure 7: Robot waiter experiment results

5.2 Chess strategy
Programming robust chess playing strategies is an exception-
ally difficult task for human programmers [Bratko and Michie,
1980]. Consider the concept of maintaining a wall of pawns to
support promotion [Harris, 1988]. In this case, we might start
by trying to inductively program the simple situation in which
a black pawn wall advances without interference from white.
Having constructed such a program one might consider using
negative examples involving interposition of white pieces to
deal with exceptional behaviour. Figure 8 shows such an ex-
ample, where in the initial state pawns are at different ranks,
and in the final state all the pawns have advanced to rank 8,
but the other pieces have remained in the initial positions. In
this experiment, we try to learn such strategies.

(a) Initial state (b) Final state

Figure 8: Chess initial/final state example

Materials The state is a list of pieces, where a piece is
denoted as a triple of the form (Type,Id,X/Y), where Type is the
type (king=k, pawn=p, etc.), Id is a unique identifier, and X/Y
is the position. We generate positive examples as follows. For
the initial state, we select a random subset of n pieces from
the interval [2, 16] and randomly place them on the board. For
the final state, we update the initial state so that each pawn
finishes at rank 8. To generate negative examples, we repeat
the aforementioned procedure but we randomise the final state
positions, whilst ensuring that the input/output pair is not a
positive example. We use the compiled BK shown in Figure 9.

at rank8(( , , /8)).
is pawn((p, , )).
not pawn(X):-not(is pawn(X)).
empty([]).
move forward((Type,Id,X/Y1),(Type,Id,X/Y2)):-

Y1 < 8,Y2 is Y1+1.
move forward(A,B,Id):-

append(Prefix,[(Type,Id,X/Y1)|Suffix],A),
Y1 < 8,Y2 is Y1+1,
append(Prefix,[(Type,Id,X/Y2)|Suffix],B).

Figure 9: Compiled BK used in the chess experiment

Results Figure 10a shows that MetagolAI learns programs
approaching 100% accuracy after two examples. By contrast,
Metagol learns programs with around default accuracy. This
result refutes null hypothesis 1. The semi-log plot in Fig-
ure 10b shows that MetagolAI learns programs quicker than
Metagol, refuting null hypothesis 2. We can explain these
results by looking at the sample programs learned in Figure 11.
MetagolAI (b) learns a small higher-order program using the
abstractions map and until. In this program, the map operation
decomposes the problem into smaller sub-problems of finding
how to move a single piece to rank 8. These sub-goals are
solved by the chess1 predicate. By contrast, Metagol (a) learns
a larger recursive and more specific first-order program.
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Figure 10: Chess experiment results

5.3 Drop lasts
In this experiment, the goal is to learn a program droplasts
which drops the last element from each sublist of a given
list, a problem frequently used to evaluate IP systems [Kitzel-
mann, 2007]. Figure 12 shows input/output examples for this
problem.
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chess(A,B):-chess2(A,C),chess2(C,B).
chess2(A,B):-chess1(A,C),chess1(C,B).
chess1(A,B):-move forward(A,B,p3).
chess2(A,B):-move forward(A,B,p5).

(a) First-order program

chess(A,B):-map(A,B,chess1).
chess1(A,A):-not pawn(A).
chess1(A,B):-until(A,B,at rank8,move forward).

(b) Higher-order program

Figure 11: Examples of programs learned by Metagol (a) and
MetagolAI (b) for the chess experiment

Input Output
[[i,j,c,a,i],[2,0,1,6]] [[i,j,c,a],[2,0,1]]
[[1,2,3,4,5],[1,2,3,4,5]] [[1,2,3,4],[1,2,3,4]]
[[1,2],[1,2,3],[1,2,3,4],[1,2,3,4,5]] [[1],[1,2],[1,2,3],[1,2,3,4]]

Figure 12: Input/output examples for the droplasts experiment

Materials We generate training examples as follows. To
form the input, we select a random integer i from the interval
[2, 20] as the number of sublists. For each sublist i, we select
a random integer k from the interval [1, 100] and populate
sublist i with k random integers. To form the output, we wrote
a Prolog program to drop the last element from each sublist.
We use the compiled BK shown in Figure 13.

head([H| ],H).
tail([ |T],T).
concat([H|T],B,C):-append([H|T],[B],C).
concat(A,B,C):-append([A],[B],C).

Figure 13: Compiled BK used in the droplasts experiment

Results MetagolAI achieved 100% accuracy after two exam-
ples (plot omitted for brevity). Figure 14 shows the program
learned by MetagolAI . This program contains a number of
noteworthy sub-programs. The invented predicate droplasts1
reverses a given list. The invented predicate droplasts3 drops
the last element from a single list by (1) reversing the list by
calling droplasts1, (2) dropping the head from the reversed
list, and (3) reversing the shortened list back to the original
order by again calling droplasts1. Finally, droplasts maps over
the input list and applies droplasts3 to each sublist to form
the output list. This program highlights invention through the
repeated calls to droplasts1 and abstraction through the higher-
order functions. By contrast, Metagol was unable to learn any
solution for this problem because the corresponding first-order
program is too long and thus the search is intractable.

Further discussion To further demonstrate invention and
abstraction, consider learning a program d droplasts which
extends the droplasts problem so that, in addition to dropping
the last element from each sublist, the whole last sublist is
also dropped. For this problem, given two examples under
the same conditions as in Section 5.3, MetagolAI learns the

droplasts(A,B):-map(A,B,droplasts3).
droplasts3(A,B):-droplasts2(A,C),droplasts1(C,B).
droplasts2(A,B):-droplasts1(A,C),tail(C,B).
droplasts1(A,B):-reduceback(A,B,concat).

Figure 14: Program learned by MetagolAI for the droplasts
experiment

program in Figure 15. The learned program is similar to the
droplasts program, but it makes an additional final call to the
invented predicate d droplasts3, which is used twice in the
program as both a higher-order argument in d droplasts4 and
as a first-order predicate in d droplasts.

d droplasts(A,B):-d droplasts4(A,C),d droplasts3(C,B).
d droplasts4(A,B):-map(A,B,d droplasts3).
d droplasts3(A,B):-d droplasts2(A,C),d droplasts1(C,B).
d droplasts2(A,B):-d droplasts1(A,C),tail(C,B).
d droplasts1(A,B):-reduceback(A,B,concat).

Figure 15: Program learned by MetagolAI for the d droplasts
problem

6 Conclusions and further work
We have introduced MetagolAI which extends the MIL frame-
work to support learning compact programs by using higher-
order Abstractions. Our sample complexity results indicate
that the consequent reduction in the number of clauses in the
minimal representation of the target leads to a reduced hypoth-
esis space which in turn leads to reductions in the size of the
sample complexity required to learn the target theory. These
complexity results are consistent with our experiments which
indicate increased predictive accuracy and decreased learning
time for abstracted MIL compared with unabstracted MIL.

Future work The experiments in this paper were largely
related to the use of functional constructs, such as map and
reduceback, within logic programs. However, we would like
to investigate the use of relational constructs. For instance,
consider the following higher-order definition of a closure.

closure(P,X,Y) P(X,Y).
closure(P,X,Y) P(X,Z), closure(P,Z,Y).

This definition could be used to learn compact abstractions of
relations such as the following.

ancestor(X,Y) closure(parent,X,Y).
lessthan(X,Y) closure(increment,X,Y).
subterm(X,Y) closure(headortail,X,Y).

Moreover, the issue of how metarules might themselves be
learned could be treated in a similar fashion using higher-order
programs such as the following.

chain(P,Q,R,X,Y) Q(X,Z), R(Z,Y).
inverse(P,Q,X,Y) Q(Y,X).

In summary we believe that the use of abstractions in machine
learning provides an important new approach to the use of
powerful programming constructs within IP. We believe that
such approaches could have wide application in AI domains
such as planning, vision, and natural language processing.
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