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Abstract
Knowledge transfer between tasks can improve
the performance of learned models, but requires
an accurate estimate of the inter-task relation-
ships to identify the relevant knowledge to trans-
fer. These inter-task relationships are typically es-
timated based on training data for each task, which
is inefficient in lifelong learning settings where the
goal is to learn each consecutive task rapidly from
as little data as possible. To reduce this burden, we
develop a lifelong reinforcement learning method
based on coupled dictionary learning that incorpo-
rates high-level task descriptors to model the inter-
task relationships. We show that using task descrip-
tors improves the performance of the learned task
policies, providing both theoretical justification for
the benefit and empirical demonstration of the im-
provement across a variety of dynamical control
problems. Given only the descriptor for a new task,
the lifelong learner is also able to accurately predict
the task policy through zero-shot learning using the
coupled dictionary, eliminating the need to pause to
gather training data before addressing the task.

1 Introduction
Transfer and multi-task learning (MTL) methods reduce the
amount of experience needed to train individual task mod-
els by reusing knowledge from other related tasks. These
techniques typically select the relevant knowledge to trans-
fer by modeling inter-task relationships, based on training
data for each task [Baxter, 2000; Ando & Zhang, 2005;
Bickel et al., 2009; Maurer et al., 2013]. However, this pro-
cess requires sufficient training data for each task to identify
these relationships before knowledge transfer can succeed.

Consider instead the human ability to rapidly bootstrap a
model for a new task, given only a high-level task description,
before obtaining experience on the actual task. For example,
viewing only the image on the box of a new Ikea chair, we
can immediately identify previous related assembly tasks and
begin formulating a plan to assemble the chair. In the same
manner, an experienced inverted pole balancing agent may be
†These authors contributed equally to this work.

able to predict the controller for a new pole given its mass and
length, prior to interacting with the physical system.

Inspired by this idea, we explore the use of high-level task
descriptions to improve knowledge transfer between multiple
machine learning tasks. We focus on lifelong learning scenar-
ios [Thrun, 1996; Ruvolo & Eaton, 2013], in which multiple
tasks arrive consecutively and the goal is to rapidly learn each
new task by building upon previous knowledge. Although we
focus on reinforcement learning (RL) tasks in this paper, our
approach extends easily to regression and classification.

Our algorithm, Task Descriptors for Lifelong Learning
(TaDeLL), encodes the task descriptions as feature vectors
that identify each task, treating these descriptors as side
information in addition to training data on the individual
tasks. This idea of using task features for knowledge trans-
fer has been explored previously by Bonilla et al. [2007]
in an offline batch MTL setting, and more recently by
Sinapov et al. [2015] in a computationally expensive method
for estimating transfer relationships between pairs of tasks.
In comparison, our approach operates online over consecu-
tive tasks and is much more computationally efficient.

We use coupled dictionary learning to model the inter-task
relationships between both the task descriptions and the in-
dividual task policies in lifelong learning. The coupled dic-
tionary learning enforces the notion that tasks with similar
descriptions should have similar policies, but still allows dic-
tionary elements the freedom to accurately represent the dif-
ferent task policies. We connect the coupled dictionaries to
the concept of mutual coherence in sparse coding, providing
theoretical justification for why the task descriptors improve
performance, and verify this improvement empirically.

In addition to improving the task policies, we show that
the task descriptors enable the learner to accurately predict
the policies for unseen tasks given only their description—
this process of learning without data is known as zero-shot
learning. This capability is particularly important in the on-
line setting of lifelong learning, enabling the system to accu-
rately predict policies for new tasks through transfer, without
requiring it to pause to gather training data on each task.

2 Related Work
Batch MTL [Caruana, 1997] methods often model the rela-
tionships between tasks to determine the knowledge to trans-
fer [Baxter, 2000; Ando & Zhang, 2005; Bickel et al., 2009;
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Lazaric & Ghavamzadeh, 2010; Maurer et al., 2013]. These
techniques include modeling a task distance metric [Ben-
David et al., 2007], using correlations to determine when
transfer is appropriate [Wang et al., 2014], or building mod-
els based on nearest neighbors [Parameswaran & Weinberger,
2010]. More recently, MTL has been extended to a life-
long learning setting, in which tasks arrive consecutively
for regression and classification [Ruvolo & Eaton, 2013]
and for reinforcement learning [Bou Ammar et al., 2014;
2015]. However, all of these methods require training data
for each task in order to assess their relationships and deter-
mine the knowledge to transfer.

Instead of relying solely on the tasks’ training data, several
works have explored the use of high level task descriptors to
model the inter-task relationships in MTL and transfer learn-
ing settings. Task descriptors have been used in combination
with neural networks [Bakker & Heskes, 2003] to define a
task-specific prior or to control the gating network between
individual task clusters. Bonilla et al. [2007] explore similar
techniques for multi-task kernel machines, using task features
in combination with the data for a gating network over indi-
vidual task experts or to augment the original task training
data. These papers focus on multi-task classification and re-
gression in batch settings where the system has access to the
data and features for all tasks, in contrast to our study of task
descriptors for lifelong learning over consecutive RL tasks.

In the work most similar to ours, Sinapov et al. [2015] use
task descriptors to estimate the transferability between each
pair of tasks for transfer learning. Given the descriptor for a
new task, they identify the source task with the highest pre-
dicted transferability, and use that source task for a warm start
in RL. Though effective, their approach is computationally
expensive, since they estimate the transferability for every
task pair through repeated simulation. Their evaluation is also
limited to a transfer learning setting, and they do not consider
the effects of transfer over consecutive tasks or updates to the
transferability model, as we do in the lifelong setting.

Our work is also related to the Simple Zero-Shot Learning
(Simple ZSL) method by Romera-Paredes and Tor [2015],
which learns a multi-class linear model, and factorizes the
linear model parameters, assuming the descriptors are coef-
ficients over a latent basis to reconstruct the models. Our
approach assumes a more flexible relationship: that both the
model parameters and task descriptors can be reconstructed
from separate latent bases that are coupled together through
their coefficients. In comparison to our lifelong learning ap-
proach, Simple ZSL operates in an offline multi-class setting.

3 Background
3.1 Reinforcement Learning
A reinforcement learning (RL) agent must select sequen-
tial actions in an environment to maximize its expected re-
turn. An RL task is typically formulated as a Markov Deci-
sion Process (MDP) hX ,A, P,R, �i, where X is the set of
states, and A is the set of actions that the agent may execute,
P : X ⇥A⇥ X ! [0, 1] is the state transition probability
describing the systems dynamics, R : X ⇥ A ⇥ X ! R
is the reward function, and � 2 [0, 1) is the discount as-

signed to rewards over time. At time step h, the agent
is in state xh 2 X and chooses an action a 2 A ac-
cording to policy ⇡ : X ⇥A 7! [0, 1], which is represented
as a function defined by a vector of control parameters
✓ 2 Rd. The agents then receives reward rh according to
R and transitions to state xh+1

according to P . This se-
quence of states, actions, and rewards is given as a trajec-
tory ⌧ = {(x

1

,a
1

, r
1

), . . . , (xH ,aH , rH)} over a horizon
H . The goal of RL is to find the optimal policy ⇡⇤ with pa-
rameters ✓

⇤ that maximizes the expected reward. However,
learning an individual task still requires numerous trajecto-
ries, motivating the use of transfer to reduce the number of
interactions with the environment.

Policy Gradient (PG) methods [Sutton et al., 1999],
which we employ as our base learner, are a class of
RL algorithms that are effective for solving high dimen-
sional problems with continuous state and action spaces,
such as robotic control [Peters & Schaal, 2008]. The
goal of PG is to optimize the expected average re-
turn: J (✓) = E

h
1

H

PH
h=1

rh
i
=

R
T p✓(⌧ )R(⌧ )d⌧ , where

T is the set of all possible trajectories, the average re-
ward on trajectory ⌧ is given by R(⌧ ) =

1

H

PH
h=1

rh,
and p✓(⌧ ) = P

0

(x

1

)

QH
h=1

p(xh+1

| xh,ah) ⇡(ah | xh) is
the probability of ⌧ under an initial state distribution
P
0

: X 7! [0, 1]. Most PG methods (e.g., episodic REIN-
FORCE [Williams, 1992], PoWER [Kober & Peters, 2009],
and Natural Actor Critic [Peters & Schaal, 2008]) optimize
the policy by maximizing a lower bound on J (✓), comparing
trajectories generated by ⇡✓ against those generated by a new
candidate policy ⇡

˜✓ . For details, see Kober & Peters [2009].

3.2 Lifelong Machine Learning
In a lifelong learning setting [Thrun, 1996; Ruvolo & Eaton,
2013], the learner faces multiple, consecutive tasks and must
rapidly learn each new task by building upon its previous ex-
perience. The learner may encounter a previous task at any
time, and so must optimize performance across all tasks seen
so far. A priori, the agent does not know the total number of
tasks T

max

, the task distribution, or the task order.
At time t, the lifelong learner encounters task Z(t).

In this paper, each task Z(t) is specified by an MDP
hX (t),A(t), P (t), R(t), �(t)i, but the lifelong learning setting
and our approach can equivalently handle classification or re-
gression tasks. The agent will learn each task consecutively,
acquiring training data (i.e., trajectories) in each task before
advancing to the next. The agent’s goal is to learn the opti-
mal policies {⇡⇤

✓(1) , . . . ,⇡
⇤
✓(T )} with corresponding parame-

ters {✓(1), . . . ,✓(T )}, where T is the number of unique tasks
seen so far (1  T  T

max

). Ideally, knowledge learned from
previous tasks {Z(1), . . . ,Z(T�1)} should accelerate training
and improve performance on each new task Z(T ). Also, the
lifelong learner should scale effectively to large numbers of
tasks, learning each new task rapidly from minimal data.

The Efficient Lifelong Learning Algorithm (ELLA) [Ru-
volo & Eaton, 2013] and PG-ELLA [Bou Ammar et al., 2014]
were developed to operate in this lifelong learning setting
for classification/regression and RL tasks, respectively. Both
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approaches assume the parameters for each task model can
be factorized using a shared knowledge base L, facilitating
transfer between tasks. Specifically, the model parameters
for task Z(t) are given by ✓

(t)
= Ls

(t), where L 2 Rd⇥k

is the shared basis over the model space, and s

(t) 2 Rk

are the sparse coefficients over the basis. This factorization
has been effective for transfer in both lifelong and multi-task
learning [Kumar & Daumé, 2012; Maurer et al., 2013].

Under this assumption, the MTL objective for PG is:

min

L,S

1

T

X

t

h
�J (✓

(t)
) + µks(t)k

1

i
+ �kLk2F , (1)

where S = [s

(1) · · · s

(T )

] is the matrix of sparse vectors,
J (✓

(t)
) is the PG objective for task Z(t), k · kF is the Frobe-

nius norm, the L
1

norm is used to approximate the true vector
sparsity of s(t), and µ and � are regularization parameters. To
solve this objective in a lifelong learning setting, Bou Am-
mar et al. [2014] approximate the multi-task objective by first
substituting in the lower-bound to the PG objective, then tak-
ing a second-order Taylor expansion to approximate the ob-
jective around an estimate ↵(t) 2 Rd of the single-task policy
parameters for each task Z(t), and updating only the coeffi-
cients s(t) for the current task at each time step. This process
reduces the MTL objective to the problem of sparse coding
the single-task policies in the shared basis L, and enables S
and L to be solved efficiently by the following online update
rules that constitute PG-ELLA [Bou Ammar et al., 2014]:

s

(t)  argmin

s
k↵(t) �Lsk2�(t) + µksk

1

(2)

A A+ (s

(t)
s

(t)>
)⌦ �(t) (3)

b b+ vec
⇣
s

(t)> ⌦
⇣
↵

(t)>�(t)
⌘⌘

(4)

L mat
✓✓

1

T
A+ �Ikd

◆�1

1

T
b

◆
, (5)

where kvk2A = v

>
Av, the symbol ⌦ denotes the Kro-

necker product, �(t) is the Hessian of the PG lower bound
on J (↵

(t)
), Im is the m⇥m identity matrix, A is initialized

to a kd⇥ kd zero matrix, and b 2 Rkd is initialized to zeros.
Though effective for lifelong learning, this approach re-

quires significant training data to estimate the policy for each
new task before the learner can solve it. We eliminate this re-
striction by incorporating task descriptors into lifelong learn-
ing, enabling zero-shot transfer to new tasks.

4 Task Descriptors
While most MTL and lifelong learning methods use task
training data to model inter-task relationships, high level de-
scriptions can describe task differences. For example, in
multi-task medical domains, patients are often grouped into
tasks by demographic data and disease presentation [Oyen
& Lane, 2012]. In control problems, the dynamical sys-
tem parameters (e.g., the spring, mass, and damper con-
stants in a spring-mass-damper system) describe the task. De-
scriptors can also be derived from external sources, such as
Wikipedia [Pennington et al., 2014]. Such task descriptors

have been used extensively for zero-shot learning [Palatucci
et al., 2009; Socher et al., 2013].

Formally, we assume that each task Z(t) has an associated
descriptor m(t) that is given to the learner upon first presen-
tation of the task. The learner has no knowledge of future
tasks, or the distribution of task descriptors. The descriptor is
represented by a feature vector �

�
m

(t)
�
2 Rdm , where �(·)

performs feature extraction and (possibly) a non-linear ba-
sis transformation on the features. We make no assumptions
on the uniqueness of �

�
m

(t)
�
, although in general tasks will

have different descriptors.1 In addition, each task also has as-
sociated training data X

(t) to learn the model; in the case of
RL tasks, the data consists of trajectories that are dynamically
acquired by the agent through experience in the environment.

5 Lifelong Learning with Task Descriptors
We incorporate task descriptors into lifelong learning via
sparse coding with a coupled dictionary, enabling the descrip-
tors and learned policies to augment each other. Although we
focus on RL tasks, our method can easily be adapted to clas-
sification or regression, as described in the Appendix.2

5.1 Coupled Dictionary Optimization
As described previously, many multi-task and lifelong learn-
ing approaches have found success with factorizing the policy
parameters ✓

(t) for each task as a sparse linear combination
over a shared basis: ✓(t)

= Ls

(t). In effect, each column of
the shared basis L serves as a reusable policy component rep-
resenting a cohesive chunk of knowledge. In lifelong learn-
ing, the basis L is refined over time as the system learns more
tasks. The coefficient vectors S = [s

(1) . . . s(T )

] encode the
task policies in this shared basis, providing an embedding of
the tasks based on how their policies share knowledge.

We make a similar assumption about the task descriptors—
that the descriptor features �

�
m

(t)
�

can be linearly factor-
ized3 using a latent basis D 2 Rdm⇥k over the descriptor
space. This basis captures relationships among the descrip-
tors, with coefficients that similarly embed tasks based on
commonalities in their descriptions. From a co-view per-
spective [Yu et al., 2014], both the policies and descriptors
provide information about the task, and so each can augment
the learning of the other. Each underlying task is common to
both views, and so we seek to find task embeddings that are
consistent for both the policies and their corresponding task
descriptors. We can enforce this by coupling the two bases L
and D, sharing the same coefficient vectors S to reconstruct
both the policies and descriptors. Therefore, for task Z(t),

✓

(t)
= Ls

(t) �
�
m

(t)
�
= Ds

(t) . (6)

To optimize the coupled bases L and D during the life-
long learning process, we employ techniques for coupled dic-
tionary optimization from the sparse coding literature [Yang
1This raises the question of what descriptive features to use, and
how task performance will change if some descriptive features are
unknown. We explore these issues empirically in the Appendix.

2The online appendix is available on the third author’s website.
3This is potentially non-linear w.r.t m(t), since � can be non-linear.
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Algorithm 1 TaDeLL (k, �, µ)
1: T  0

2: L RandomMatrixd,k, D  RandomMatrixm,k

3: while some task
�
Z(t),�

�
m

(t)
��

is available do
4: if isNewTask(Z(t)) then
5: T  T + 1

6: T(t)  sampleRandomTrajectories(Z(t))
7: else
8: T(t)  sampleTrajectories(Z(t), ⇡↵(t) )
9: end if

10: Compute ↵

(t) and �(t) from T(t)

11: s

(t)  argmins

��
�

(t)�Ks

��2
A(t) + µksk

1

12: L updateL(L, s(t),↵(t),�(t),�)
13: D  updateD(D, s(t),�

�
m

(t)
�
, ⇢Idm ,�)

14: for t 2 {1, . . . , T} do: ✓

(t)  Ls

(t)

15: end while

et al., 2010], which optimizes the dictionaries for multiple
feature spaces that share a joint sparse representation. This
notion of coupled dictionary learning has led to high per-
formance algorithms for image super-resolution [Yang et al.,
2010], allowing the reconstruction of high-res images from
low-res samples, and for multi-modal retrieval [Zhuang et al.,
2013] and cross-domain retrieval [Yu et al., 2014].

Given the factorization in Eq. 6, we can re-formulate the
multi-task objective (Eq. 1) for the coupled dictionaries as

min

L,D,S

1

T

X

t


�J

⇣
✓

(t)
⌘
+ ⇢

����
�
m

(t)
�
�Ds

(t)
���
2

2

+ µ
���s(t)

���
1

�
+ �(kLk2F + kDk2F) ,

(7)

where ⇢ balances the policy’s fit to the task descriptor’s fit.
To solve Eq. 7 online, we approximate J (·) by a second-

order Taylor expansion around ↵

(t), the minimizer for the
PG lower bound of J (·) (i.e., ⇡↵(t) is the single-task policy
for Z(t) based on the observed trajectories), following Bou
Ammar et al. [2014]. This simplifies Eq. 7 to

min

L,D,S

1

T

X

t

���↵(t) �Ls

(t)
���
2

�(t)
+ ⇢

����
�
m

(t)
�
�Ds

(t)
���
2

2

+ µ
���s(t)

���
1

�
+ �(kLk2F + kDk2F) . (8)

We can merge pairs of terms in Eq. 8 by choosing:

�

(t)
=


↵

(t)

�
�
m

(t)
�
�

K=


L

D

�
A

(t)
=


�(t) 0
0 ⇢Idm

�
,

where 0 is the zero matrix, letting us rewrite (8) concisely as

min

K,S

1

T

X

t

����(t)�Ks

(t)
���
2

A(t)
+ µ

���s(t)
���
1

�
+�kKk2F . (9)

This objective can now be solved efficiently online, as a se-
ries of per-task update rules given in Algorithm 1. L and D

are updated independently using Equations 3–5, following a
recursive construction based on an eigenvalue decomposition.

The complete implementation of our approach is available
on the third author’s website.

Algorithm 2 Zero-Shot Transfer to a New Task Z(tnew )

1: Inputs: task descriptor m(tnew ), learned bases L and D

2: ˜

s

(tnew )  argmins

���
�
m

(tnew )
�
�Ds

��2
2

+ µ ksk
1

3: ˜

✓

(tnew )  L

˜

s

(tnew )

4: Return: ⇡
˜✓(tnew )

5.2 Zero-Shot Transfer Learning
In a lifelong setting, when faced with a new task, the agent’s
goal is to learn an effective policy for that task as quickly
as possible. At this stage, previous multi-task and lifelong
learners incurred a delay before they could produce a decent
policy, since they needed to acquire data from the new task in
order to identify related knowledge and train the new policy.

Incorporating task descriptors enables our approach to pre-
dict a policy for the new task immediately, given only the
descriptor. This ability to perform zero-shot transfer is en-
abled by the use of coupled dictionary learning, which allows
us to observe a data instance in one feature space (i.e., the
task descriptor), and then recover its underlying latent signal
in the other feature spaces (i.e., the policy parameters) using
the dictionaries and sparse coding [Yang et al., 2010].

Given only the descriptor m(tnew ) for a new task Z(tnew ),
we can estimate the embedding of the task in the latent de-
scriptor space via LASSO on the learned dictionary D:

˜

s

(tnew )  argmin

s

����
�
m

(t)
�
�Ds

���
2

2

+ µ ksk
1

. (10)

Since the estimate given by s

(tnew ) also serves as the coef-
ficients over the latent policy space L, we can immediately
predict a policy for the new task as: ˜

✓

(tnew )
= L

˜

s

(tnew ). This
zero-shot transfer learning procedure is given as Algorithm 2.

5.3 Theoretical Analysis
This section discusses why incorporating task descriptors
through coupled dictionaries can improve performance of the
learned policies and enable zero-shot transfer to new tasks. In
the Appendix2, we also prove the convergence of TaDeLL. A
full sample complexity analysis is beyond the scope of this
paper, and, indeed, remains an open problem for zero-shot
learning [Romera-Paredes & Torr, 2015].

To analyze the policy improvement, since the policy pa-
rameters are factored as ✓(t)

= Ls

(t), we proceed by show-
ing that incorporating the descriptors through coupled dic-
tionaries can improve both L and S. In this analysis, we
employ the concept of mutual coherence, which has been
studied extensively in the sparse recovery literature. Mutual
coherence measures the similarity of a dictionary’s elements
as M(Q) = max

1i 6=jn

⇣
|q>

i qj |
kqik2kqjk2

⌘
2 [0, 1], where qi is

the ith column of a dictionary Q 2 Rd⇥k. If M(Q) = 0,
then Q is an invertible orthogonal matrix and so sparse recov-
ery can be solved directly by inversion; M(Q) = 1 implies
that Q is not full rank and a poor dictionary. Intuitively, low
mutual coherence indicates that the dictionary’s columns are
considerably different, and thus such a “good” dictionary can
represent many different policies, potentially yielding more
knowledge transfer. This intuition is shown in the following:
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Theorem 5.1. [Donoho et al., 2006] Suppose we have noisy
observations ˆ

✓ of the linear system ✓ = Qs, such that
kˆ✓ � ✓k

2

 ✏. Let s

⇤ be a solution to the system, and
let K = ksk

0

. If K < 0.5(1 +M(Q)

�1

), then s

⇤ is the
unique sparsest solution of the system. Moreover, if s+ is the
LASSO solution for the system from the noisy observations,
then: ks⇤ � s

+k2
2

 4✏2

1�M(Q)(4K�1)

.

Therefore, an L with low mutual coherence would lead to
more stable solutions of the ✓

(t)’s against inaccurate single-
task estimates of the policies (the ↵

(t)’s). We next show that
our approach likely lowers the mutual coherence of L.

TaDeLL alters the problem from training L to training the
coupled dictionaries L and D (contained in K). Let s⇤(t)
be the solution to Eq. 1 for task Z(t), which is unique under
sparse recovery theory, so

��
s

⇤(t)
��
0

remains unchanged for all
tasks. Theorem 5.1 implies that, if M(K) < M(L), coupled
dictionary learning can help with a more accurate recovery
of the s

(t)’s. To show this, we note that Eq. 7 can also be
derived as a result of an MAP estimate from a Bayesian per-
spective, enforcing a Laplacian distribution on the s

(t)’s and
assuming L to be a Gaussian matrix with elements drawn
i.i.d: lij ⇠ N (0,�2

). When considering such a random ma-
trix Q 2 Rd⇥k, Donoho & Huo [2001] proved that asymp-

totically M(Q) /
q

log(dk)
d as d ! 1. Using this as an

estimate for M(L) and M(K), since incorporating task de-
scriptors increases d, most likely M(K) < M(L), imply-
ing that TaDeLL learns a superior dictionary. Moreover, if
M(D) M(L), the theorem implies we can use D alone to
recover the task policies through zero-shot transfer.

To show that task features can also improve the sparse re-
covery, we rely on the following theorem about LASSO:
Theorem 5.2. [Negahban et al., 2009] Let s⇤ be a unique
solution to the system ✓ = Qs with ksk

0

= K and
Q 2 Rd⇥k. If s

+ is the LASSO solution for the sys-
tem from noisy observations, then with high probability:

ks⇤ � s

+k
2

 c0
q
K log k

d , where the constant c0 2 R+ de-
pends on properties of the linear system and observations.

This theorem shows that the error reconstruction for
LASSO is proportional to 1p

d
. When we incorporate the de-

scriptor through �

(t), the RHS denominator increases from
d to (d + dm) while K and k remain constant, yielding a
tighter fit. Therefore, task descriptors can improve learned
dictionary quality and sparse recovery accuracy. To ensure an
equivalently tight fit for s(t) using either policies or descrip-
tors, Theorem 5.2 suggests it should be that dm � d to ensure
that zero-shot learning yields similarly tight estimates of s(t).

Computational Complexity Each update begins with one
PG step to update ↵

(t) and �(t) at a cost of O(⇠(d, nt)),
where ⇠() depends on the base PG learner and nt is the num-
ber of trajectories obtained for task Z(t). The cost of updating
L and s

(t) alone is O(k2d3) [Ruvolo & Eaton, 2013], and so
the cost of updating K through coupled dictionary learning
is O(k2(d+ dm)

3

). This yields an overall per-update cost of
O(k2(d+ dm)

3

+ ⇠(d, nt)), which is independent of T .

6 Experiments
We evaluated our method on learning control policies for
three benchmark systems and an application to quadrotors.

6.1 Benchmark Dynamical Systems
Spring Mass Damper (SM) The SM system is described
by three parameters: the spring constant, mass, and damping
constant. The system’s state is given by the position and ve-
locity of the mass. The controller applies a force to the mass,
attempting to stabilize it to a given position.
Cart Pole (CP) The CP system involves balancing an in-
verted pendulum by applying a force to the cart. The system
is characterized by the cart and pole masses, pole length, and
a damping parameter. The states are the position and velocity
of the cart and the angle and rotational velocity of the pole.
Bicycle (BK) This system focuses on keeping a bicycle bal-
anced upright as it rolls along a horizontal plane at constant
velocity. The system is characterized by the bicycle mass, x-
and z-coordinates of the center of mass, and parameters re-
lating to the shape of the bike (the wheelbase, trail, and head
angle). The state is the bike’s tilt and its derivative; the actions
are the torque applied to the handlebar and its derivative.

6.2 Methodology
In each domain we generated 40 tasks, each with different
dynamics, by varying the system parameters. The reward for
each task was taken to be the distance between the current
state and the goal. For lifelong learning, tasks were encoun-
tered consecutively with repetition, and learning proceeded
until each task had been seen at least once. We used the same
random task order between methods to ensure fair compari-
son. The learners sampled trajectories of 100 steps, and the
learning session during each task presentation was limited to
30 iterations. For MTL, all tasks weres presented simultane-
ously. We used Natural Actor Critic [Peters & Schaal, 2008]
as the base learner for the benchmark systems and episodic
REINFORCE [Williams, 1992] for quadrotor control. We
chose k and the regularization parameters independently for
each domain to optimize the combined performance of all
methods on 20 held-out tasks, and set ⇢ = mean(diag(⇢(t)))
to balance the fit to the descriptors and the policies. We mea-
sured learning curves based on the final policies for each of
the 40 tasks, averaging results over seven trials. The system
parameters for each task were used as the task descriptor fea-
tures �(m); we also tried several non-linear transformations
as �(·), but found the linear features worked well.

6.3 Results on Benchmark Systems
Figure 1 compares our TaDeLL approach for lifelong learn-
ing with task descriptors to 1.) PG-ELLA [Bou Ammar et al.,
2014], which does not use task features, 2.) GO-MTL [Ku-
mar & Daumé, 2012], the MTL optimization of Eq. 1, and
3.) single-task learning using PG. For comparison, we also
performed an offline MTL optimization of Eq. 7 via alter-
nating optimization, and plot the results as TaDeMTL. The
shaded regions on the plots denote standard error bars.

We see that task descriptors improve lifelong learning on
every system, even driving performance to a level that is un-
achievable from training the policies from experience alone
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Figure 1: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)
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Figure 3: Zero-shot transfer to new tasks. Figure (a) shows the initial “jumpstart” improvement on each task domain; Figures
(b)–(d) depict the result of using zero-shot policies as warm start initializations for PG. (Best viewed in color.)

via GO-MTL in the SM and BK domains. The difference
between TaDeLL and TaDeMTL is also negligible for all do-
mains except CP (which had very diverse tasks), demonstrat-
ing the effectiveness of our online optimization.

Figure 3 shows that task descriptors are effective for zero-
shot transfer to new tasks. We generated an additional 40
tasks for each domain to measure zero-shot performance, av-
eraging results over these new tasks. Figure 3a shows that our
approach improves the initial performance (i.e., the “jump-
start” [Taylor & Stone, 2009]) on new tasks, outperforming
Sinapov et al. [2015]’s method and single-task PG, which
was allowed to train on the task. We attribute the espe-
cially poor performance of Sinapov et al. on CP to the fact
that the CP policies differ substantially; in domains where
the source policies are vastly different from the target poli-
cies, Sinapov et al.’s algorithm does not have an appropriate
source to transfer. Their approach is also much more compu-
tationally expensive (quadratic in the number of tasks) than
our approach (linear in the number of tasks), as shown in Fig-
ure 2; details of the runtime experiments are included in the
Appendix2. Figures 3b–3d show that the zero-shot policies
can be used effectively as a warm start initialization for a PG
learner, which is then allowed to improve the policy.

6.4 Application to Quadrotor Control
We also applied our approach to the more challenging do-
main of quadrotor control, focusing on zero-shot transfer to
new stability tasks. To ensure realistic dynamics, we use the
model of Bouabdallah and Siegwart [2005], which has been
verified on physical systems. The quadrotors are character-
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Figure 4: Warm start learning on quadrotor control.

ized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 4 shows the results of our application, demonstrat-
ing that TaDeLL can predict a controller for new quadrotors
through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the bench-
marks, TaDeLL is effective for warm start learning with PG.

7 Conclusion
We proposed a coupled dictionary method for incorporating
task descriptors into lifelong learning, showing that descrip-
tors improve learned policy performance, and enable us to
predict policies for new tasks before observing training data.
Experiments demonstrate that our method outperforms other
approaches on dynamical control problems, and requires sub-
stantially less computational time than similar methods.
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