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Abstract
Multi-label learning has been extensively studied
in the area of bioinformatics, information retrieval,
multimedia annotation, etc. In multi-label learning,
each instance is associated with multiple interde-
pendent class labels, the label information can be
noisy and incomplete. In addition, multi-labeled
data often has noisy, irrelevant and redundant fea-
tures of high dimensionality. As an effective data
preprocessing step, feature selection has shown its
effectiveness to prepare high-dimensional data for
numerous data mining and machine learning tasks.
Most of existing multi-label feature selection algo-
rithms either boil down to solving multiple single-
labeled feature selection problems or directly make
use of imperfect labels. Therefore, they may not be
able to find discriminative features that are shared
by multiple labels. In this paper, we propose a
novel multi-label informed feature selection frame-
work MIFS, which exploits label correlations to se-
lect discriminative features across multiple labels.
Specifically, to reduce the negative effects of im-
perfect label information in finding label correla-
tions, we decompose the multi-label information
into a low-dimensional space and then employ the
reduced space to steer the feature selection process.
Empirical studies on real-world datasets demon-
strate the effectiveness and efficiency of the pro-
posed framework.

1 Introduction
Recent years has witnessed an increasing number of appli-
cations involving multi-labeled data in which each instance
is associated with multiple labels simultaneously [Zhang
and Zhou, 2006; Hua and Qi, 2008; Katakis et al., 2008;
Song et al., 2008; Tang et al., 2009; Gopal and Yang, 2010].
For example, in bioinformatics, a gene may be related to mul-
tiple functions [Elisseeff and Weston, 2001]; in information
retrieval, each document may cover several topics [Huang et

al., 2012]; in image processing, an image may be annotated
with different scenes [Boutell et al., 2004].

⇤Indicates equal contribution.

Normally, multi-labeled data in the aforementioned appli-
cations such as gene sequences, texts and images are repre-
sented by feature vectors with very high dimensionality. The
high dimensionality of multi-labeled data not only signifi-
cantly increases the memory storage requirements and com-
putational costs for many learning algorithms, but also limits
the usage of these learning algorithms in real applications due
to the curse of dimensionality [Duda et al., 2012]. Previous
studies on feature selection have shown that the most discrim-
inative information are usually carried by only a subset of rel-
evant features [Liu and Motoda, 2007]. In other words, many
noisy, redundant, and irrelevant features which negatively af-
fect the learning performance can be eliminated.

However, it is not easy to directly perform feature selec-
tion on multi-labeled data due to its unique characteristics.
First, different from traditional single-labeled feature selec-
tion problems where class labels are mutually exclusive, dif-
ferent classes in multi-labeled data are typically not indepen-
dent but inherently correlated. For example, in text catego-
rization, “sports” are more closely related to the category of
“athletics” than to the category of “soap stars”. Therefore,
it is crucial to find some common features for the classes of
“sports” and “athletics”. Second, multiple labels of instances
are often annotated by human beings. It is natural for us
to make some incorrect or incomplete annotations especially
when we are provided with hundreds or even thousands of
labeling options. Therefore, it is important to seek a reason-
able way of exploiting the label correlation for multi-labeled
feature selection. Existing methods for multi-labeled fea-
ture selection either transform the problem to multiple single-
labeled sub-problems or directly make use of the flawed la-
bels. Not surprisingly, they do not perform well in finding
relevant features that are shared by multiple labels.

To tackle above challenges in multi-labeled feature selec-
tion problem, in this paper, we propose a multi-label informed
feature selection framework, named MIFS. In particular, we
first map the label information into a low-dimensional re-
duced space that captures the correlations among multiple la-
bels. Then we employ the reduced space instead of the orig-
inal noisy and incomplete label information to guide the fea-
ture selection phase. In this way, it alleviates the negative
influences of imperfect label information to find relevant fea-
tures across multiple labels. The major contributions of this
paper are summarized as follows:
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• Introducing a principled way of exploiting label correla-
tions for feature selection in the presence of noisy and
incomplete label information;

• Proposing a novel multi-label informed feature selection
framework MIFS which is able to select discriminative
features across multiple class labels;

• Developing an efficient algorithm to address the opti-
mization issue of MIFS and;

• Conducting experiments on multiple benchmark
datasets to demonstrate the effectiveness and efficiency
of the proposed MIFS framework.

The remainder of this paper is organized as follows. In
Section 2, we introduce the proposed multi-label informed
feature selection framework MIFS with an efficient alternat-
ing optimization algorithm. In Section 3, empirical evalua-
tions on benchmark datasets are given to show the superiority
of the proposed framework. In Section 4, we briefly review
related work on multi-label feature selection. The conclusion
and future work are presented in Section 5.

2 Multi-Label Informed Feature Selection
Framework - MIFS

In this section, we first summarize some symbols used
throughout this paper and then introduce the formulation of
the proposed MIFS framework.

2.1 Preliminaries
We use bold uppercase character to denote matrix (e.g., A),
bold lowercase character to denote vector (e.g., a), the i-th
entry of a as ai, (i, j)-th entry of A as Aij , i-th row of A
as Ai:, transpose of A as AT , trace of A as Tr(A) if A is
square matrix. For any matrix A2 Rn⇥d, its Frobenius norm
is defined as kAkF =

qPn
i=1

Pd
j=1 A

2
ij , its `2,1-norm is

kAk2,1 =
Pn

i=1

qPd
j=1 A

2
ij . Suppose that in the multi-

labeled dataset, we have n instances x1, · · · ,xn 2 Rd and k
different labels Y = {c1, · · · , ck}. Each instance xi is asso-
ciated with a subset of labels in Y , we represent this subset of
labels by a binary vector yi = [y1i , · · · , yki ] 2 {0, 1}k where
yji = 1 (j = 1, · · · , k) if and only if xi is associated with
label cj . Following the expression of MATLAB, we denote
the data matrix as X = [x1;x2; · · · ;xn] 2 Rn⇥d and label
matrix as Y = [y1;y2; · · · ;yn] 2 {0, 1}n⇥k.

2.2 Formulation
In multi-label learning problems, each instance is attributed
with multiple class labels and these labels may be correlated
with each other. Therefore, during the feature selection pro-
cess, it is beneficial to explicitly take the label correlations
into consideration. In this way, we are able to find common
features for strongly correlated labels and different features
for weakly correlated labels. However, it is problematic to
directly extract label correlations from multiple labels. In re-
ality, multi-labeled data often consists of hundreds or even
thousands of human annotated labels. It is inevitable to make
some incorrect and incomplete labeling during the arduous

annotation work. It is inappropriate to directly apply multiple
labels for feature selection in the presence of flawed labels.

Motivated by Latent Semantic Indexing (LSI) [Dumais,
2004], we propose an effective way to decompose the multi-
labeled output space to a low-dimensional space, and em-
ploy this low-dimensional space to guide the feature selection
process. One encouraging property of this low-dimensional
space is that most of the structures in the original output la-
bel space can be explained and recovered. Meanwhile, noisy
information in the output space is greatly reduced [Yu et al.,
2005]. Mathematically, it decomposes the multi-labeled out-
put space Y to a product of two low-dimensional matrices
V 2 Rn⇥c and B 2 Rc⇥k by minimizing the following re-
construction error:

min
V,B

kY �VBk2F , (1)

where V denotes the latent semantics of the multi-label in-
formation. It can be interpreted that we cluster the original
k labels into c different clusters, each cluster has a specific
semantic meaning. For example, in text categorization, labels
of “sports” and “athletics” are more likely to encode similar
latent semantic meanings. B is a coefficient matrix, and each
column in B shows the coefficient of each label in these c
latent semantic variables.

Since the low-dimensional latent semantics matrix V en-
codes label correlations and greatly reduces the noise in the
original multi-label output space, we take advantage of it to
perform feature selection via a regression model and the fea-
tures that are most related to the latent semantics V are se-
lected. In particular, we propose to perform label decompo-
sition and feature selection simultaneously via the following
optimization problem:

min
W,V,B

kXW �Vk2F + ↵kY �VBk2F + �kWk2,1, (2)

where W is a feature coefficient matrix and each row of W
measures the importance of i-th feature in approximating the
latent semantics V. The `2,1-norm regularization term is
imposed on W to ensure that W is sparse in rows, i.e., it
achieves joint feature sparsity for all c latent semantic vari-
ables. The parameter ↵ balances the contribution of feature
learning and label decomposition. The other parameter � con-
trols the sparsity of the model.

In addition, since we employ low-dimensional latent se-
mantics V to guide the feature selection process, we need to
ensure that local geometry structures are consistent between
the input space X and the reduced low-dimensional semantics
V. In other words, if two instances are close to each other in
the input space X then they should also be close to each other
in the latent semantic space V by minimizing the following:

1

2

nX

i=1

nX

j=1

Sij(Vi: �Vj:)
2

=Tr(VT (A� S)V)

=Tr(VT
LV)

(3)

where L = A � S is the graph laplacian matrix and A is
a diagonal matrix with Aii =

Pn
j=1 Sij . Vi: denotes the

1628



latent semantics of yi and Sij is some similarity measure of
instances xi and xj . In this paper we follow [Cai et al., 2010]
to build a nearest neighbor graph to effectively model local
geometry structure in the input space X and the affinity graph
is defined as:

Sij =

⇢
exp(�kxi�xjk2

�2 ), xi 2 Np(xj) or xj 2 Np(xi)
0, otherwise,

where Np(xi) denotes the p-nearest neighbors of instance xi.
Integrating the local geometry structure of the data, the fi-

nal objective function for the multi-label informed feature se-
lection (MIFS) can be formulated as follows:

min
W,V,B

kXW �Vk2F + ↵kY �VBk2F + �Tr(VT
LV)

+�kWk2,1, (4)

where � is a parameter that measures how the local geometry
structure of the data is preserved in the latent semantic space.
It can be observed from the objective function of MIFS in
Eq. (4) that the latent semantics V involves in three terms,
it captures label correlations, preserves local geometry struc-
ture and guides feature selection process simultaneously. The
feature coefficient matrix W involves in two terms, it makes
X approximate V via a regression model and achieves fea-
ture selection by a `2,1-norm regularization. There are three
variables in the above objective function, we will introduce
an efficient way to obtain these model parameters in the next
subsection.

2.3 Optimization Algorithm for MIFS
It can be observed that the objective function of MIFS in
Eq. (4) is not convex w.r.t. all these variables V, B and W

jointly. In addition, it is also not smooth due to the `2,1-
norm regularization term on W. Therefore, following [Nie
et al., 2010], we relax the term kWk2,1 by 2Tr(WT

DW),
where D is a diagonal matrix with its diagonal element Dii =

1

2
p

W

T
i:Wi:+✏

and ✏ is a small positive constant.

To optimize the objective function ⇥(W,V,B) =
kXW � Vk2F + ↵kY � VBk2F + �Tr(VT

LV) +
2�Tr(WT

DW), we propose to use an efficient alternating
optimization algorithm. Specifically, in each iteration, we up-
date one variable while fix the other two variables since the
objective function is convex when any two variables are fixed.
In addition, the objective function is differentiable, thus we
can apply gradient descent method in an alternating way to
update the model parameters. By taking the derivative of ob-
jective function w.r.t. variables W, V and B respectively, we
have the following formulations:
8
<

:

@⇥
@W = 2[(XT (XW �V) + �DW)]
@⇥
@V = 2[(V �XW) + ↵(VB�Y)BT + �LV]
@⇥
@B = 2↵VT (VB�Y).

(5)

With these, the update rule of the alternating algorithm for
MIFS is summarized as follows:

8
<

:

W := W � �W
@⇥
@W

V := V � �V
@⇥
@V

B := B� �B
@⇥
@B ,

(6)

where �W , �V and �B are stepsizes for these three gradient
descent update rules. In each iteration, it needs O(ndc+ n2)
operations to update all these three variables. Hence, the
chosen of suitable stepsizes is of crucial importance to ac-
celerate the convergence rate and to reduce the total running
time of MIFS, especially for large-scale (large n) and high-
dimensional (large d) problems. In the current work, we em-
ploy Armijo rule [Bertsekas, 1999] to adaptively determine
the stepsizes �W , �V , and �B in each iteration.

After obtaining the model parameters, we rank each fea-
ture according to the value of kWi,:k2 (i = 1, .., d) in a de-
scending order and return the top ranked features. The pseu-
docode of the multi-label informed feature selection frame-
work MIFS is illustrated in Algorithm 1.

Algorithm 1 Multi-label Informed Feature Selection (MIFS)
Input: Initialize W, V, B. Parameters ↵,�, �
Output: Top ranked features

1: Repeat
2: @⇥

@W = 2[(XT (XW �V) + �DW)];
3: @⇥

@V = 2[(V �XW) + ↵(VB�Y)BT + �LV];
4: @⇥

@B = 2↵VT (VB�Y);
5: determine stepsizes �V , �B and �W with Armijo rule;
6: V := V � �V

@⇥
@V ;

7: B := B� �B
@⇥
@B ;

8: W := W � �W
@⇥
@W ;

9: Update D;
10: Until Convergence
11: Return W

⇤;
12: Rank features according to kW⇤

i,:k2 in a descending or-
der and return the top ranked features.

3 Experimental Study
In this section, we conduct experiments on real-world multi-
labeled datasets to assess the performance of the proposed
multi-label informed feature selection framework MIFS.

3.1 Data Sets
Experiments are conducted on four publicly available bench-
mark datasets1, including one image dataset (i.e. Scene
[Boutell et al., 2004]) and three text datasets from RCV1
[Lewis et al., 2004]. The Scene dataset consists of 400 im-
ages from Corel stock photo library and some personal im-
ages. Each image is associated with a subset of six semantic
scenes (bench, sunset, fall foliage, field, urban, and moun-
tain). RCV1, i.e., Reuters Corpus Volume 1, is an archive of
over 80,000 newswire stories. Each document is represented
with TF-IDF format and has been cosine normalized. From
the RCV1 repository, we choose three representative multi-
labeled text datasets Topics, Regions, and Industries. Details
of these datasets are listed in Table 1.

1https://www.csie.ntu.edu.tw/⇠cjlin/libsvmtools/datasets/

1629



Table 1: Details of four benchmark datasets.

Dataset # Training # Test # Features # Labels
Scene 1211 1196 294 6
Topics 3000 3000 14171 101

Regions 11575 13953 7236 228
Industries 6967 9967 18894 354

3.2 Experimental Settings
Following the standard way to validate supervised feature se-
lection, we evaluate the proposed MIFS framework on clas-
sification task. To have a fair comparison with existing meth-
ods, we decompose the multi-labeled classification problem
into multiple binary classification problems, and then employ
SVM to learn these binary classifiers with a five-fold cross
validation. The SVM implementation in the Liblinear tool-
box [Fan et al., 2008] is used in the experiments.

Two widely adopted evaluation criteria based on F-
measure, i.e., macro-average and micro-average are used to
measure the performance of multi-label classification algo-
rithms. F-measure is one of the most popular metric for eval-
uation of binary classification [Yu et al., 2005] and it is de-
fined as the harmonic mean of precision and recall:

F-measure =
2TP

2TP + FP + FN
, (7)

where TP denotes the number of true positives, FP denotes
the number of false positives and FN denotes the number of
false negatives.

Micro-average can be considered as a weighted average of
F-measure over all k labels:

Micro-average =

Pk
i=1 2TPi

Pk
i=1(2TPi + FPi + FNi)

. (8)

Macro-average is an arithmetic average of F-measure of all
output labels:

Macro-average =
1

k

kX

i=1

2TPi

(2TPi + FPi + FNi)
. (9)

TPi, FPi and FNi denotes the number of true positives, false
positives and false negatives in the i-th class label, respec-
tively. The higher the micro-average and macro-average val-
ues are, the better the classification performance is.

MIFS is measured against the following state-of-the-
art feature selection methods for multi-label classification
problems. The number of selected features are varied as
{2%, 4%, ..., 20%} of total number of features.

1. F-Score: Fisher Score [Duda et al., 2012] selects fea-
tures by assigning similar feature values to the instances
within the same class and different feature values to in-
stances from different classes. The features with the
highest discriminative power are selected.

2. RFS: Robust Feature Selection [Nie et al., 2010] applies
`2,1-norm regularization for both the loss function and
the regularization term. It is robust to outliers in the
input space and is able to select features across all in-
stances with a joint sparsity.
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Figure 1: Micro-average comparisons of five feature selec-
tion algorithms on four datasets.

3. CSFS: Convex Semi-supervised multi-label Feature Se-
lection [Chang et al., 2014] is a convex algorithm de-
signed for large-scale multi-label feature selection prob-
lems. In this experiment, we adopt its supervised version
for a fair comparison.

4. SFUS: Sub-Feature Uncovering with Sparsity [Ma et al.,
2012] incorporates joint sparse feature selection with
multi-label learning to uncover shared feature subspace.

3.3 Experimental Results
In MIFS, there are some parameters need to be set in ad-
vance. First, to model the local geometry structure in the
input space X, we set the parameters �2 and p as 1 and 5,
respectively. There are three important regularization pa-
rameters ↵, � and � in MIFS. Similarly, RFS, CSFS and
SFUS also have different regularization parameters. For a
fair comparison between these feature selection methods, we
tune these regularization parameters for all methods with
a grid-search strategy by varying its value in the range
of {10�4, 10�3, 10�2, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 10}. For all
these methods, we report the best results of the optimal pa-
rameters in terms of classification performance. The experi-
ments are repeated 5 times and averaged.

Figure 1 and Figure 2 show the classification performance
of different feature selection algorithms in terms of Micro-
average and Macro-average on four datasets. To have a more
comprehensive comparison, we also use the Statlog’ ordering
method [Michie et al., 1994] to list the average ranks of these
four feature selection algorithms. The ranks are presented
in Table 2. The following observations can be found from
Figure 1, Figure 2 and Table 2.

1. With the increase of the number of selected features,
the classification performance first tends to increase and
then keeps stable or even degrades.

2. MIFS and the other two multi-labeled learning algo-
rithms CSFS and SFUS obtains better Micro-average
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Figure 2: Macro-average comparisons of five feature selec-
tion algorithms on four datasets.

Table 2: The comprehensive rank of different methods.

Dataset F-score RFS CSFS SFUS MIFS
Scene 4.00 3.10 2.25 3.00 1.00
Topics 4.05 2.55 4.75 2.30 1.15

Regions 3.80 3.30 2.45 3.50 1.00
Industries 3.50 3.95 2.30 2.25 1.75

and Macro-average than single-labeled feature selection
algorithms F-score and RFS on these four datasets. It
shows that when performing feature selection, it is ben-
eficial to explicitly incorporate the multi-label informa-
tion into the model.

3. MIFS outperforms the other two multi-labeled learning
algorithms CSFS and SFUS in most cases. It demon-
strates that by decomposing the label information to a
low-dimensional semantic space, we can still capture
the label correlations and alleviate the negative effects
of flawed labels to find relevant features.

4. On datasets Scene, Topics, and Regions, the proposed
MIFS outperforms other four methods significantly
when the percentage of select features are less than 14%.
This observation shows that MIFS can achieve good
classification performance even when a few number of
features are selected.

3.4 Convergence Analysis
As mentioned before, the proposed alternating optimiza-
tion algorithm monotonically decreases the objective function
value in Eq. (4) iteratively until convergence. In addition, the
Armijo update rule can accelerate the convergence process
significantly. In this subsection, we conduct an empirical ex-
periment to show the efficiency of the alternating optimiza-
tion algorithm with Armijo update rule. In the experiment,
the parameters ↵, �, and � are all fixed as 0.1. The following

Table 3: The running time (sec) of different methods.

Dataset F-score RFS CSFS SFUS MIFS
Scene 0.16 58.96 10.71 10.82 4.47
Topics 91.59 962.92 3089.09 9859.06 1460.29

Regions 198.87 1434.64 998.44 7855.08 1002.76
Industries 686.92 6019.93 13688.60 25808.25 5532.39

stopping criterion is used:

|⇥t �⇥t�1|
⇥t�1

< 10�5, (10)

where ⇥t indicates the objective function value in the t-th
iteration.
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Figure 3: Convergence comparison of MIFS with and with-
out Armijo update rule on the Scene dataset.

Figure 3 shows the convergence of the proposed alternating
optimization algorithm with/without Armijo update rule. It
can be seen clearly that the alternating optimization algorithm
with Armijo update rule converges more quickly. It converges
in 100 iterations, while the optimization algorithm without
Armijo update rule converges needs 1000 iterations.

3.5 Running Time Comparison
In this subsection, we show the efficiency of the proposed
MIFS framework by comparing its running time with other
baseline methods. In Table 3, we show the running time
that each method needs to converge to the optimal solution.
SFUS and CSFS perform an eigen-decomposition and matrix
inverse computation each iteration which require O(d3) op-
erations, respectively. Hence, they are not suitable to handle
high-dimensional data. RFS also needs to compute the ma-
trix inverse each iteration, which requires O(n3 + n2d). In
contrast, MIFS only requires simple matrix multiplication op-
erations, its computational complexity is O(ndc + n2) each
iteration. In a nutshell, compared with the state-of-the-art
methods RFS, SFUS and CSFS, the proposed MIFS method
is more computationally efficient.

3.6 Parameter Sensitivity Study
MIFS has three important parameters: ↵, �, and �. The pa-
rameter ↵ measures the contribution of the multi-label de-
composition process. The parameter � controls how strongly
the low-dimensional latent semantics preserves the local ge-
ometry structure in the original input space. The third pa-
rameter � controls the sparseness of the proposed model.
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Figure 4: Micro-average and Macro-average of MIFS on
Scene dataset with respect to different ↵, �, � and number
of selected features.

To study how these parameters affect the feature selection
results and the consequent multi-label classification prob-
lems, we conduct an experiment to study the effectiveness
of these parameters and report the performance variances in
Figure 4. Due to space limit, we only present the results
of dataset Scene. We turn the parameters ↵, �, � from
{10�4, 10�3, 10�2, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 10}. Figures of
↵ are shown with the other parameters � and � fixed as 0.1.
The same setting is used for the figures of � and figures of �.

It can be shown that the classification performance is not
very sensitive to the changes of parameters ↵,�, and �.
Therefore, in practice, we can safely set these parameters
in a wide range. The classification performance is the best
when ↵ = 0.4, � = 1 and � = 0.8. Another observation is
that compared with these three regularization parameters, the
classification performance is more sensitive to the number of
selected features. Specifically, when we increase the num-
ber of selected features, the classification performance first
increase, keeps stable and then decreases. How to determine
the suitable number of selected features is still an open issue
in feature selection research.

4 Related Work
Our work is most related to sparse learning based feature se-
lection and multi-label learning. Therefore, in this section,

we briefly review some related work on these two aspects.
Over the past two decades, numerous feature selection

methods have been proposed [Tibshirani, 1996; Peng et al.,
2005; Li et al., 2015; 2016a]. Recently, sparse learning based
methods have received increasing attention due to their good
performance and interpretability. Typically, these methods
embed the feature selection process into the classification
model such these two phases compliment with each other.
Among these approaches, `2,1-norm regularization based
methods are extremely popular [Liu et al., 2009; Nie et al.,
2010; Yang et al., 2011; Ma et al., 2012; Chang et al., 2014;
Li et al., 2016b] due to its ability to handle multi-class prob-
lems. By imposing the `2,1-norm sparse regularization, the
feature coefficients are guaranteed to be sparse across mul-
tiple targets. However, these methods cannot be directly ap-
plied for multi-label feature selection as they do not explicitly
consider the label correlations in the feature selection process.

With the prevalence of multi-labeled data in many real-
world applications, multi-label learning emerges to be an-
other hot research topic. Similar to many data mining and
machine learning tasks, multi-label learning also suffers from
the curse of dimensionality. An effective strategy is to exploit
the label correlations to reduce the feature dimensionality. To
tackle this issue, MLLS extracts a common subspace shared
among multiple labels [Ji et al., 2008]. MDDM projects the
original data into a low dimensional space by maximizing the
dependence between the original feature description and the
associated class labels [Zhang and Zhou, 2010]. SFUS joint
selects features via a sparse regularization and uncovers the
shared feature subspace of original features [Ma et al., 2012].
These work are different from our proposed MIFS frame-
work - (1) Most of exiting multi-label learning methods fo-
cus on transforming the original feature space to a new space,
while our method performs feature selection directly which
preserves the physical meanings of the original data; (2) To
reduce the negative effects of imperfect label information, we
decompose it to a low-dimensional space and take advantage
of it to perform feature selection with sparse regularization.

5 Conclusion and Future Work
In this study, we propose a novel multi-label informed fea-
ture selection framework MIFS. The proposed method has
two appealing properties. First, it makes use of latent seman-
tics of the multi-labels to guide the feature selection phase.
Therefore, it alleviates the negative affects of noisy and in-
complete labels in finding relevant features. Second, it ex-
ploits the label correlations in the output space to find fea-
tures that are shared across multiple labels. An efficient alter-
nating optimization algorithm is developed to solve the opti-
mization problem of MIFS. Empirical studies on real-world
datasets demonstrate the efficiency and efficacy of the pro-
posed framework. Future research can be focused on investi-
gating how to perform online multi-labeled feature selection
in which data samples arrive in a streaming fashion.
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