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Abstract
Subspace clustering aims to cluster unlabeled sam-
ples into multiple groups by implicitly seeking a
subspace to fit each group. Most of existing meth-
ods are based on a shallow linear model, which may
fail in handling data with nonlinear structure. In
this paper, we propose a novel subspace cluster-
ing method – deeP subspAce clusteRing with spar-
siTY prior (PARTY) – based on a new deep learn-
ing architecture. PARTY explicitly learns to pro-
gressively transform input data into nonlinear la-
tent space and to be adaptive to the local and global
subspace structure simultaneously. In particular,
considering local structure, PARTY learns repre-
sentation for the input data with minimal recon-
struction error. Moreover, PARTY incorporates a
prior sparsity information into the hidden represen-
tation learning to preserve the sparse reconstruc-
tion relation over the whole data set. To the best
of our knowledge, PARTY is the first deep learn-
ing based subspace clustering method. Extensive
experiments verify the effectiveness of our method.

1 Introduction
Subspace clustering aims to seek a set of implicit low-
dimensional subspaces to fit provided unlabeled high-
dimensional data and cluster them according to their mem-
bership to the subspaces [Vidal, 2011]. During the past
decades, spectral clustering based methods [Costeira and
Kanade, 1998; Shi and Malik, 2000; Ng et al., 2001] have
been state-of-the-art, which perform subspace clustering in
following two steps. First, build an affinity matrix (i.e. sim-
ilarity graph) C to depict the relationship of the data, where
Cij denotes the similarity between data points xi and xj .
Second, cluster the data through clustering the eigenvectors of
the graph Laplacian L = D� 1

2AD� 1
2 , where D is a diagonal

matrix with Dii =

P
j Aij and A = |C| + |CT |. Clearly,

performance of spectral clustering based methods critically
relies on the quality of the built affinity matrix.

⇤Corresponding Author: Zhang Yi.

In recent years, many works [Nie et al., 2011; Lu et al.,
2012; Elhamifar and Vidal, 2013; Liu et al., 2013; Feng et al.,
2014; He et al., 2015; Peng et al., 2015; Zhang et al., 2015]
have devoted to obtaining a good affinity matrix by using the
self-expression of inputs. More specifically, these methods
linearly represent the input X 2 Rd⇥n by solving

min

C

1

2

kX�XCk2F + �R(C), (1)

where d denotes the dimensionality of inputs, n is the data
size, C 2 Rn⇥n corresponds to the self-expression of X,
k · kF denotes the Frobenius norm, and R(C) denotes a

prior structured regularization on C. The major difference
among these methods lies in the choice of R(C). For exam-
ple, sparse subspace clustering (SSC) [Elhamifar and Vidal,
2013] and low rank representation (LRR) [Liu et al., 2013]
encourage C to be sparse and low rank by adopting `1- and
nuclear-norm as R(·), respectively. Once obtaining C, those
methods build an affinity matrix as A = |C|+|CT | and apply
spectral clustering [Ng et al., 2001] over A to cluster data.

Although those approaches have shown encouraging per-
formance, we observe that they suffer from the following lim-
itations. First, most of existing methods strive for building
high-quality affinity matrix while ignore the importance of
low-dimensional representation derived from the affinity ma-
trix. In fact, most of them simply use several eigenvectors
(w.r.t. leading eigenvalues) of L as the low-dimensional rep-
resentation of data X. This is identical to Laplacian Eigen-
map (LE) [Belkin and Niyogi, 2003] in essence. In other
words, those spectral clustering based methods perform sub-
space clustering through 1) building an affinity matrix; 2) per-
forming LE on the affinity matrix to produce low dimensional
representations; and 3) clustering the representations. It still
remains open whether there is a better way to embed the affin-
ity matrix into low-dimensional spaces and recover the latent
subspaces therein, and we believe investigating data embed-
ding schemes in depth will significantly boost the clustering
performance. The second limitation of those methods is due
to their intrinsic linearity and they cannot handle data with
significant non-linearity well. To address this issue, some ker-
nel extensions of existing methods have been proposed, e.g.,
kernel sparse subspace clustering (KSSC) [Patel and Vidal,
2014] and kernel low rank representation (KLRR) [Xiao et
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(a) Architecture of some existing spectral clustering based meth-
ods.
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(b) Architecture of the proposed PARTY.

Figure 1: Comparison on architectures of PARTY and sub-
space clustering methods: (a) a popular architectures of ex-
isting subspace clustering methods with L being the graph
Laplacian and (b) the architecture of PARTY. In (b), H(m)

denotes the output of the m-th layer, with m = 1, 2, · · · ,M
and H(0) denotes inputs. PARTY is complementary to ex-
isting subspace clustering methods. Thus, one can directly
perform k-means or other existing clustering methods on the
compact representation H(M

2 ). The major difference between
these two architectures is colored.

al., 2015]. They compute the representation in a kernel space
rather than the original space. However, the performance of
these kernel based methods heavily relies on the choice of
kernel function, while a golden rule for choosing the kernel
functions is still absent in practice.

Motivated by the fact that representation learning is vi-
tal to the subspace clustering and deep learning is one of
the most powerful representation learning approaches [Hin-
ton and Salakhutdinov, 2006; Krizhevsky et al., 2012], we
propose a novel subspace clustering framework based on a
deep learning model, namely, deeP subspAce clusteRing with
sparsiTY prior (PARTY). The proposed method achieves sub-
space clustering by computing the sparse reconstruction re-
lation from the input space, learning a neural network with
locality and globality of data set, and clustering the com-
pact representation learned by our neural network. The ba-
sic idea of PARTY is illustrated in Fig. 1. One can observe
that PARTY significantly differs from the existing subspace
clustering approaches in the following aspects: 1) PARTY di-
rectly learns low-dimensional representation of data instead
of relying on an affinity matrix; 2) PARTY possesses a multi-
layer structure, which offers stronger ability to model non-
linearity of the data; 3) Although being partially similar to
stacked Auto-Encoder (SAE), PARTY not only considers the
locality for reconstructing input data, but also incorporates
the structured global prior in representation learning; 4) In
contrast to kernel-based methods, PARTY provides explicit
transformations and better scalability as it avoids loading all
the data to calculate the kernel function; 5) PARTY is com-
patible with both k-means and most of existing subspace clus-
tering methods. When applying k-means on the outputs of
PARTY, we theoretically demonstrate that under mild condi-
tions, PARTY performs in a similar way to spectral cluster-
ing. When combined with spectral clustering, PARTY ac-

tually performs latent subspace clustering like [Patel et al.,
2013], by learning the latent space via hierarchically stacked
nonlinear transformations.

2 Related Works
In this section, we briefly discuss some existing works in sub-
space clustering and deep learning, respectively.

Subspace Clustering: Recently, many subspace cluster-
ing methods have been proposed [Elhamifar and Vidal, 2013;
Liu et al., 2013; Patel et al., 2013; Patel and Vidal, 2014;
Peng et al., 2015; Lu et al., 2012; Favaro et al., 2011;
Yuan et al., 2016; Yu et al., 2015; Hu et al., 2014b], of
which the major difference is the way to obtain the affinity
matrix. More specifically, these methods use the linear recon-
struction coefficients to build the affinity matrix, by enforcing
different constraints on the coefficients. However, these ap-
proaches are linear models, which cannot model the nonlin-
earity of data in many practical situations. To address this
problem, [Patel and Vidal, 2014] and [Xiao et al., 2015] pro-
posed kernel SSC (KSSC) and kernel LRR (KLRR), respec-
tively. However, how to choose appropriate kernel for these
kernel-based methods is usually unclear in practice.

Unlike these subspace clustering approaches, our method
learns multiple hierarchical nonlinear transformations (in the
neural network) to map the input into another space so that
the nonlinearity can be incorporated into the obtained low-
dimensional representation, thus resulting a better clustering
performance. To the best of our knowledge, this is the first

deep subspace clustering framework.
Deep Learning: With the impressive power of learn-

ing representations, deep learning has achieved huge suc-
cess in numerous applications, especially in the scenario of
supervised learning, e.g. image classification [Krizhevsky
et al., 2012], metric learning [Hu et al., 2014b], image
super-resolution [Wang et al., 2015], etc. In contrast, less
works investigated the applications with unsupervised learn-
ing scheme, such as subspace clustering. To the best of our
knowledge, there are only two recent works [Ma et al., 2014;
Tian et al., 2014] that apply the existing Auto-Encoder (AE)
for clustering. They mainly differ in the input of the neu-
ral network. Specifically, [Ma et al., 2014] directly encodes
the representation from raw data, whereas [Tian et al., 2014]
feeds a predefined affinity matrix to the neural network. Due
to the absence of comparison with state-of-the-art subspace
clustering such as SSC [Elhamifar and Vidal, 2013] and LRR
[Liu et al., 2013], it remains unknown whether these two
works are relatively effective for subspace clustering. Since
unsupervised deep learning remains an open issue, it could
be better to incorporate domain knowledge and the merits of
previous works to develop new unsupervised deep model as
suggested by [Bengio et al., 2013].

Different from these two methods, our framework is based
on a new neural network which preserves both locality and
globality. To be exact, the locality is considered by min-
imizing the reconstruction error of the sample itself, while
the globality is guaranteed by minimizing the reconstruction
error of using the whole data set to reconstruct each sam-
ple. Such a framework is complementary to existing subspace
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clustering methods and deep learning approaches, because it
incorporates the advantages (i.e. structure prior) of existing
subspace clustering methods into the framework deep learn-
ing. As a result, it is well expected that the proposed neural
network can achieve satisfactory performance while handling
unlabeled data. To our best of knowledge, this is the first work

to introduce the global structure prior into neural network for

unsupervised learning.

3 Deep Subspace Clustering with Sparsity
Prior

In this section, we elaborate on the details of the proposed
PARTY model for subspace clustering. PARTY clusters data
in the following three steps: computing the sparsity prior
from raw data, learning a neural network to map the input
into a latent space, and clustering the low-dimensional data
representations into multiple subspaces. We will first explain
how PARTY is specifically designed for these steps and then
present the algorithm for optimizing the PARTY model.

3.1 The Deep Model of PARTY
The neural network within PARTY consists of M + 1 lay-
ers for performing M nonlinear transformations, where M is
an even number, the first M/2 hidden layers are encoders to
learn a set of compact representation (i.e., dimension reduc-
tion) and the last M/2 layers are decoders to progressively
reconstruct the input. For ease of presentation, we first pro-
vide the following definitions. Let h(0)

i = xi 2 Rd denote
one input sample to the first layer and

h(m)
i = g(W(m)h(m�1)

i + b(m)
) 2 Rdm (2)

be the output of the m-th layer, where m = 1, 2, · · · ,M
indexes the layer of network and g(·) is a nonlinear activa-
tion function, dm denotes the dimension of the output at the
m-th layer, W(m) 2 Rdm⇥dm�1 and b(m) 2 Rdm denote
the weights and bias associated with the m-th layer, respec-
tively. Thus, given xi as the input of the first layer, h(M)

i
(i.e. the output of the top layer) is the reconstruction of
xi, while h

(M
2 )

i is the desired low-dimensional representa-
tion of xi. Furthermore, for a collection of n given samples
X = [x1, . . . ,xn] 2 Rd⇥n, the corresponding outputs of our
neural network is denoted by

H(M)
= [h(M)

1 ,h(M)
2 , · · · ,h(M)

n ]. (3)

The objective of PARTY is to minimize the data recon-
struction error and simultaneously preserve the global spar-
sity prior C in the representation learning. With the defini-
tions above, these targets can be formally stated as:

min

W(m),b(m)

1

2

kX�H(M)k2F
| {z }

J1

+

�1

2

kH(M
2 ) �H(M

2 )Ck2F
| {z }

J2

+

�2

2

MX

m=1

⇣
kW(m)k2F + kb(m)k22

⌘

| {z }
J3

, (4)

where �1 and �2 are positive tradeoff parameters.
The terms {Ji}3i=1 are designed for different goals. Intu-

itively, the first term J1 is designed to consider the locality by
minimizing the reconstruction errors w.r.t. the input itself. In
other words, the input acts as a supervisor to learn a compact
representation H(M

2 ). J2 is designed based on the so-called
manifold assumption [Roweis and Saul, 2000] which states
that the reconstruction relation (e.g., the structure prior) is in-
variant to different feature spaces. In this paper, we mainly
consider the sparsity prior in C = [c1, c2, · · · , cn] which is
obtained by solving the following problem:

min

C

nX

i=1

kxi �Xcik22 + �kck1

s.t. cii = 0, (5)

where k·k1 denotes the `1-norm that is usually used to achieve
sparsity, cii is the i-th entry of the column vector ci, and the
constraint avoids the degenerated solution.

With the optimal solution of (5), J2 guarantees the glob-
ality because the reconstruction relation over the whole data
set is preserved into the hidden representation. Lastly, J3 is a
regularization term to avoid over-fitting. Noticed that, the ob-
jective (4) with nonlinear function g(·) can intrinsically avoid
trivial solutions such as W(m)

= [I O] and W(m)
= [I O]

T

where I is an identity matrix and O is an all-zero matrix.
Our neural network model uses the input as self-supervisor

to learn compact representation and simultaneously exploits
the sparsity prior for ensuring invariance of the underlying
manifold (non-linear subspace) structure in the progressively
learned representations. The learned representation is fully
adaptive to these local and global structures and favorable for
the following clustering process.

3.2 Optimization
We now demonstrate how PARTY model can be optimized ef-
ficiently via stochastic sub-gradient descent. For convenience
of developing the algorithm, we rewrite (4) in the following
sample-wise form:

J =

1

2

nX

i=1

⇣
kxi � h(M)

i k22 + �1kh
(M

2 )
i �H(M

2 )cik22
⌘

+

�2

2

MX

m=1

⇣
kW(m)k2F + kb(m)k22

⌘
, (6)

Recall the definition of h(m)
i in (2). Applying chain rule,

we can express the sub-gradients of (6) w.r.t. W(m) and b(m)

as follows:
@J

@W(m)
=

⇣
�(m)

+ �1⇤
(m)

⌘
(h(m�1)

i )

T
+ �2W

(m)(7)

@J
@b(m)

= �(m)
+ �1⇤

(m)
+ �2b

(m), (8)

where �(m) is defined as8
<

:
�
⇣
xi � h(M)

i

⌘
� g0(z(M)

i ), m = M

(W(m+1)
)

T�(m+1) � g0(z(m)
i ), otherwise

(9)

1927



and ⇤(m) is given by
8
>>>>><

>>>>>:

(Wm+1
)

T⇤(m+1) � g0(z(m)
i ), m = 1, · · · , M � 2

2⇣
h
(M

2 )
i �H(M

2 )ci
⌘
� g0(z

(M
2 )

i ), m =

M

2

0, m =

M + 2

2

, · · · ,M
(10)

Here � denotes element-wise multiplication, g0(·) is the
derivative of the activation function g(·), h(0)

i = xi, and
z(m)
i = W(m)h(m�1)

i + b(M).
Using the stochastic sub-gradient descent algorithm, we

update {W(m),b(m)}Mm=1 as follows until convergence:

W(m)
= W(m) � µ

@J
@W(m)

, (11)

and
b(m)

= b(m) � µ
@J

@b(m)
, (12)

where µ > 0 is the learning rate which is typically set to a
small value such as 2�10 in our experiments.

Algorithm 1 summarizes the detailed procedure for opti-
mizing PARTY.

Algorithm 1 Deep Subspace Clustering with Sparsity Prior
Input: A given data set X, and the tradeoff parameters �1, �2.
Initialize {W(m),b(m)}Mm=1, and H0 = X.
// Obtain the sparsity prior:
Compute the sparsity prior C over X via solving (5).
// Optimization:
for m = 1, 2 · · · ,M do

Do forward propagation to get {H(m)}Mm=1 via (2).
end
while not converge do

for i = 1, 2, · · · , n do
Randomly select a data point xi and let h0

i = xi,
for m = 1, 2 · · · ,M do

Compute h
(m)
i via (2).

end
for m = M,M � 1 · · · , 1 do

Calculate the gradient using (7)–(10).
end
for m = 1, 2, · · · ,M do

Update W(m) and b(m) via (11)–(12).
end

end
end
// Clustering:
Obtain the segmentation of data by clustering based on H(M

2 ).
Output: {W(m),b(m)}Mm=1 and the clustering result.

3.3 Implementation Details
In our experiments, we use g = tanh as the activation function
which is defined as follows:

g(z) = tanh(z) =
ez � e�z

ez + e�z
, (13)

and the corresponding derivative is calculated by

g0(z) = tanh0
(z) = 1� tanh2

(z). (14)

Regarding the initialization of {W(m),b(m)}Mm=1, we
adopt the pre-training and fine-tuning strategy [Hinton and
Salakhutdinov, 2006].

3.4 Connection to Prior Works
We here provide two ways to understand our proposed
PARTY method. Firstly, PARTY can be treated as a general
form of the classical Auto-Encoder. Moreover, with several
simplifications, PARTY can be deemed as a variant of spec-
tral clustering (SC) algorithms.

Connection between AE and PARTY:
The AE has been widely used in various applications includ-
ing clustering [Tian et al., 2014; Ma et al., 2014] which use
the input as the supervisor to learn a compact representation
and then perform kmeans over the representation to obtain the
segmentation of data. The proposed PARTY reduces to the
the standard AE if �1 in (4) is set as 0, i.e. without the spar-
sity prior. In this sense, PARTY augments AE by considering
the valuable relations among different samples (i.e. structure
prior) and can provide superior performance in the scenario
of unsupervised learning as shown in our experiments.

Connection between SC and PARTY:
Most spectral clustering based methods obtain the segmenta-
tion of data by performing kmeans on the eigenvectors cor-
responding to the largest eigenvalues of the Laplacian L as
aforementioned.
Remark 1 If we adopt g(z) = z, �1 ! +1, M = 2 in (4)

and add a mild constraint for avoiding trivial solutions, then

our learnt compact representation H?
will be the solution of

min

H

1

2

kH�HCk2F s.t. HHT
= I, (15)

Interestingly, H⇤
is also optimal to

max

H

HLHT

HHT
, (16)

which is exactly the problem of spectral clustering

[

Ng et
al., 2001

]

but with different choice of L. Specifically, L =

C+CT �CCT
for our method, whereas L = D� 1

2AD� 1
2

(Dii =
P

j Aij) for the spectral clustering method.

4 Experiments
In this section, we compare the proposed PARTY with 13
popular subspace clustering methods on several image data
sets in terms of 5 evaluation metrics.

4.1 Experimental Settings
Baseline Algorithms: We compare PARTY with SSC [El-
hamifar and Vidal, 2013], LRR [Liu et al., 2013], low rank
based subspace clustering (LRSC) [Favaro et al., 2011], least
square regression (LSR) [Lu et al., 2012], smooth repre-
sentation clustering (SMR) [Hu et al., 2014a], kernel SSC
(KSSC) [Patel and Vidal, 2014], kernel LRR (KLRR) [Xiao
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et al., 2015], latent subspace sparse subspace clustering
(LS3C) [Patel et al., 2013] and stacked sparse autoencoders
(SAE) [Ma et al., 2014; Tian et al., 2014]. Among these
methods, both KSSC and KLRR have two versions based on
the radial basis function / the polynomial function, which are
denoted by KSSC1 / KSSC2 and KLRR1 / KLRR2, respec-
tively. LSR has also two variants which are denoted by LSR1
and LSR2. Moreover, we investigate the performance of SAE
with the sigmoid function (SAEg) and the saturating linear
transfer function (SAEs). For a fair comparison, we adopt the
same `1-solver (i.e. the Homotopy solver [Yang et al., 2010])
to achieve sparsity for SSC, KSSC, and our method.

In all experiments, we train the SAE and our PARTY with
five layers at which consists of 300-200-150-200-300 neu-
rons. As PARTY is complementary to existing clustering
methods, we investigate the performance of PARTY with two
clustering methods for an extensive investigation, i.e. kmeans
and SSC, where the corresponding methods are denoted by
PARTYk and PARTYs. For fair comparisons, we report the
best result of all the evaluated methods achieved with their
optimal parameters. For our PARTY with the tradeoff param-
eters, �1 and �2. We fix �2 = 10

�3 for all data sets and
experimentally choose �1.

Data Sets: We carry our experiments using three
real-world data sets, i.e. Extended Yale database B
(YaleB) [Georghiades et al., 2001], COIL20 image data
set [Nene et al., 1996], and the BF0502 data set [Sivic et al.,
2009]. The used YaleB consists of 2,414 samples from 38 in-
dividuals, where each image is with size of 192 ⇥ 168. The
COIL20 data set contains 1,440 samples distributed over 20
objects, where each image is with the size of 32 ⇥ 32. The
used BF0502 data set [Xiao et al., 2015] contains 1200 fa-
cial images detected from the TV series “Buffy the Vampire
Slayer”, where each category includes 200 samples.

For a comprehensive study, other than the raw data (i.e.

gray value), we also extract the following two features from
YaleB and COIL20 for evaluations, i.e. dense scale-invariant
feature transform (DSIFT) [Lowe, 2004] and the histogram of
oriented gradients (HOG) [Dalal and Triggs, 2005]. For com-
putational efficiency, we perform PCA to reduce the feature
dimension of all data sets to 300.

Evaluation Criteria: We adopt five metrics to evaluate
the clustering quality, i.e. Accuracy, normalized mutual in-
formation (NMI), the adjusted rand index (ARI), Precision,
and Fscore. Higher value of these metrics indicates better
performance. For each data set, we repeat each algorithm five
times and report the mean and the standard deviation of these
metrics.

4.2 Comparison with State of The Art
In this section, we first evaluate the performance of PARTY
on two image databases, i.e. the COIL20 object images and
the YaleB facial images. Tables 1 and 2 report the results
which show the superiority of our method. 1) On the COIL20,
the Accuracy of PARTYs is 2.36% and 4.42% at least higher
than that of the other methods regarding to DISFT and HOG.
2) On the YaleB, PARTYs again achieves the best results, of
which the Accuracy is 4.78% and 4.14% higher than the sec-
ond best method w.r.t. these two features. 3) In most cases,

PARTYk2 PARTYs2 PARTYk4 PARTYs4 SSC30%

40%

50%

60%

70%

80%

90%

100%

 

 

Accuracy NMI ARI Precision Fscore

Figure 2: Deep vs. Shallow models on the BF0502 data
set. PARTYk2, PARTYs2, PARTYk4, and PARTYs4 corre-
spond to PARTY with kmeans (M=2), with SSC (M=2), with
kmeans (M=4), and with SSC (M=4), respectively.

PARTYs outperforms PARTYk, which may attribute to that
the former performs subspace clustering in the latent space
instead of the original space and the latent space is more dis-
criminative than the original one.

4.3 Deep Model vs. Shallow Models
We investigate the performance of our neural network with
different depths on the BF0502 data set. Specifically, we re-
port the performance of PARTY with five layers (M = 4) and
three layers (M = 2), respectively. In the case of M = 2, the
network is with the neurons of 300-150-300. In the experi-
ment, we fix the parameter �1 of PARTY as 10�2 and 10

�3

for M = 2 and M = 4, respectively. Moreover, we report
the result of SSC as a baseline.

Fig. 2 shows that a deeper model will bring a better per-
formance to our method. For example, PARTYs4 is 3.75%,
6.05%, 8.59%, 7.87%,7.11% higher than PARTYs2 regarding
to Accuracy, NMI, ARI, Precision, and Fscore, respectively.
Moreover, PARTYs remarkably outperforms SSC and the ad-
vantage is more distinct when a deeper network is built.

4.4 Influence of Activation Functions
In this section, we report the performance of our model
with four different activation functions on the YaleB data
set. The used activation functions includes tanh, sig-

moid, non-saturating sigmoid (nssigmoid), and softplus

which is the smooth version of the rectified linear unit
(ReLU) [Krizhevsky et al., 2012]. From Fig. 3, we can see
that the tanh function outperforms the other three activation
functions in the tests and the nssigmoid function achieves the
second best result which is very close to the best one.

5 Conclusion
In this paper, we proposed a deep learning based subspace
clustering method which simultaneously considers the lo-
cality and globality of data set. Extensive experimental re-
sults have shown that our method remarkably outperforms 13
state-of-the-art subspace clustering methods in terms of five
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Table 1: Performance comparison on the COIL20 data set. Results in boldface are significantly better than the others, according
to the t-test with a significance level at 0.05.

Features DISFT HOG
Methods Accuracy NMI ARI Precision Fscore Accuracy NMI ARI Precision Fscore

PARTYk 76.18±2.31 81.62±1.11 68.65±1.80 68.50±2.17 70.24±1.70 72.08±4.09 77.79±2.10 61.08±6.36 59.51±7.89 63.80±5.84
PARTYs 85.76±4.70 91.19±0.89 84.80±3.79 82.45±5.97 85.58±3.54 85.50±2.37 91.19±0.66 81.92±1.18 79.12±2.44 82.86±1.10
SAEg 65.36±3.70 77.09±1.57 56.59±3.61 51.47±5.40 59.07±3.28 74.93±2.61 89.26±0.78 74.25±1.75 66.65±2.18 75.70±1.63
SAEs 56.57±4.78 65.06±3.76 39.82±8.23 34.73±8.11 43.65±7.32 71.93±2.37 87.01±1.22 70.43±0.22 63.47±2.16 72.08±2.09
SSC 83.40±2.78 91.04±1.03 82.58±1.97 74.60±2.63 83.54±1.84 81.08±1.10 90.12±0.18 80.20±1.34 72.80±3.85 81.30±1.23
KSSC1 82.42±4.20 90.39±1.55 80.62±4.20 74.86±6.26 81.67±3.95 70.94±0.88 84.08±0.66 66.37±1.46 61.23±2.45 68.22±1.35
KSSC2 76.43±2.17 90.11±0.81 77.05±1.09 69.95±2.38 78.32±1.03 75.17±1.16 86.53±0.65 69.53±1.43 63.63±1.23 71.21±1.35
LS3C 30.98±1.18 49.23±1.06 17.91±1.19 16.20±0.97 23.90±0.98 30.37±1.16 40.50±0.66 16.36±0.54 16.13±0.46 21.98±0.50
LRR 79.08±1.98 89.72±0.59 78.17±1.70 69.63±2.11 79.40±1.59 58.42±1.10 76.91±0.90 39.64±1.96 29.82±2.15 44.05±1.69
KLRR1 70.28±1.22 81.49±0.42 62.69±1.01 59.06±0.66 64.71±0.97 73.72±0.67 81.28±0.51 68.39±0.76 69.52±0.67 69.96±0.72
KLRR2 78.58±1.04 83.88±0.99 72.69±1.99 72.70±2.46 74.07±1.88 74.19±1.32 83.80±0.70 67.27±1.73 62.92±2.24 69.04±1.62
LRSC 71.15±0.98 78.38±1.20 62.13±2.30 61.05±2.14 64.09±2.18 44.03±1.32 57.23±0.77 31.73±0.93 28.96±1.20 35.91±0.79
LSR1 61.54±2.45 71.27±0.94 51.06±2.94 50.05±3.56 53.65±2.74 64.74±1.73 73.01±1.27 52.44±1.96 48.88±2.42 55.09±1.81
LSR2 64.72±2.59 72.78±1.29 54.77±2.93 54.57±3.41 57.11±2.74 61.75±1.43 71.11±1.31 50.17±1.59 46.41±1.77 52.98±1.49
SMR 80.49±2.00 89.42±0.75 78.94±1.37 77.40±2.12 80.01±1.29 74.86±1.57 84.47±1.43 68.72±1.60 64.73±1.61 70.40±1.51

Table 2: Performance comparison on the YaleB data set.
Features DSIFT HOG
Methods Accuracy NMI ARI Precision Fscore Accuracy NMI ARI Precision Fscore

PARTYk 45.36±2.04 52.36±1.08 21.90±1.11 19.53±0.25 24.43±1.03 74.48±2.92 87.55±1.29 69.00±2.90 65.97±2.78 69.85±2.81
PARTYs 88.55±1.76 90.85±0.23 83.00±0.81 79.52±1.68 83.45±0.78 92.08±2.42 96.91±0.77 90.25±2.85 87.07±4.34 89.46±2.76
SAEg 82.30±1.69 87.54±0.47 75.82±1.40 70.90±2.37 76.50±1.35 84.78±3.54 93.43±1.48 82.57±4.61 75.86±6.79 83.07±4.46
SAEs 80.73±1.93 85.92±0.73 73.37±1.77 68.04±2.71 74.12±1.70 81.43±3.77 92.48±1.46 80.45±3.79 73.35±5.11 81.01±3.67
SSC 83.77±1.37 90.02±0.55 78.83±1.10 74.74±1.48 79.42±1.11 85.10±0.98 92.82±0.61 81.62±1.38 76.73±2.23 82.13±1.34
KSSC1 81.44±0.96 89.07±0.41 68.01±1.52 61.25±2.08 68.94±1.47 80.51±1.83 88.66±0.72 70.51±2.77 64.06±4.16 71.37±2.67
KSSC2 77.66±1.77 84.43±0.69 60.55±1.71 52.44±2.14 61.76±1.64 75.39±2.24 80.39±0.87 60.87±1.25 56.81±0.89 61.98±1.22
LS3C 49.90±1.26 59.84±0.78 28.80±0.89 25.76±0.82 31.03±0.86 49.11±0.78 53.53±0.80 17.94±1.20 15.01±1.10 20.91±1.09
LRR 81.62±2.79 89.16±0.78 73.51±2.05 65.94±2.81 74.29±1.98 81.00±2.73 93.01±1.19 78.21±4.81 68.03±6.22 78.87±4.65
KLRR1 69.99±1.08 74.72±0.41 48.23±1.67 42.46±2.28 49.80±1.58 78.91±3.67 86.18±2.16 70.23±3.89 67.10±3.76 71.05±3.78
KLRR2 66.15±0.87 72.37±0.46 46.18±1.67 41.24±2.37 47.80±1.59 60.19±1.25 68.97±0.73 33.77±1.48 27.93±1.83 35.99±1.37
LRSC 68.29±1.42 73.40±1.03 51.33±1.37 47.74±1.57 52.72±1.32 68.68±1.37 73.20±0.75 40.03±3.45 32.99±4.09 42.03±3.25
LSR1 72.86±0.21 77.66±0.24 55.29±2.09 50.53±3.04 56.59±2.00 76.55±0.93 81.05±0.59 55.68±2.32 48.67±3.31 57.03±2.21
LSR2 73.38±1.35 77.42±0.57 54.03±1.02 48.77±1.21 55.38±0.98 76.06±1.11 80.41±0.37 55.47±3.03 49.04±4.70 56.81±2.88
SMR 81.49±2.78 85.29±0.61 68.18±1.31 62.82±1.64 69.08±1.27 87.94±1.24 92.76±0.77 82.84±1.31 79.95±1.18 83.31±1.27
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Figure 3: The performance of PARTY with four different activation functions on the YaleB data set.

evaluation metrics. Our deep learning based framework is
general and not limited to the sparsity prior. We plan to in-
corporate other structure priors such as low rank in future.
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