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Abstract
Variance Reducing (VR) stochastic methods
are fast-converging alternatives to the classical
Stochastic Gradient Descent (SGD) for solving
large-scale regularized finite sum problems, espe-
cially when a highly accurate solution is required.
One critical step in VR is the function sampling.
State-of-the-art VR algorithms such as SVRG
and SAGA, employ either Uniform Probability
(UP) or Importance Probability (IP), which is
deficient in reducing the variance and hence leads
to suboptimal convergence rate. In this paper, we
propose a novel sampling scheme that explicitly
computes some Adaptive Probability (AP) at each
iteration. Analysis shows that, equipped with
AP, both SVRG and SAGA yield provably better
convergence rate than the ones with UP or IP,
which is confirmed in experiments. Additionally,
to cut down the per iteration computation load,
an efficient variant is proposed by utilizing AP
periodically, whose performance is empirically
validated.

1 Introduction
Minimization of the Regularized Finite Sum (MRFS) is a
class of problems often encountered in Artificial Intelligence
and Machine Learning applications. Generally, MRFS has
the following form:

min

w2Rd
{P(w) := F(w) +G(w)} , (1)

where F(w) is the average of finite smooth convex compo-
nent functions fi(w), i = 1, . . . , n, and G(w) is a regular-
ization function, which is convex but may not be smooth.
In practice, many Empirical Risk Minimization (ERM) prob-
lems [Hastie et al., 2005], such as ridged regression, regular-
ized logistic regression, SVM with smooth loss, and Lasso,
can be formulated as (1).

The standard Gradient Decent (GD) method [Chen and
Rockafellar, 1997; Nesterov, 1998; Beck and Teboulle, 2009;
Nesterov, 2013] for MRFS evaluates the gradients of all n
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component functions at each iteration, which is computa-
tionally prohibitive for large datasets. An alternative strat-
egy is to estimate the full gradient using a solo rfjk in the
kth iteration, with fjk drawn from some distribution. This
is called Stochastic Gradient Descent (SGD). On the bright
side, since no full gradient computation is involved, SGD has
low per iteration cost. However, the variance introduced by
the stochastic gradient precludes the using of large step-size
and leads to a sublinear convergence rate [Hu et al., 2009;
Bottou, 2010; Duchi et al., 2011].

In the past few years, much of the development for
stochastic techniques has been driven by the variance re-
ducing (VR) stochastic methods, such as SVRG [Johnson
and Zhang, 2013], Mixed Optimization [Mahdavi et al.,
2013], S2GD [Konečnỳ and Richtárik, 2013; Konecny et
al., 2015], SDCA [Shalev-Shwartz and Zhang, 2013b; 2016;
2013a], SAGA [Defazio et al., 2014], SAG [Schmidt et al.,
2013], IProx-SVRG [Xiao and Zhang, 2014], and IProx-
SDCA [Zhao and Zhang, 2014]. The difference between VR
stochastic methods and the vanilla SGD is that the former en-
sures the expected distance between some modified stochas-
tic gradient and the full gradient diminishes to zero, while the
latter will not significantly decrease the variance of the esti-
mation as the algorithm converges. It has been proved that
such diminishing variance enables the constant step size as in
GD, and guarantees linear convergence in the strongly convex
case, e.g. [Xiao and Zhang, 2014]. Thus VR stochastic meth-
ods are more efficient than the slow-converging SGD when a
highly accurate solution is required.

Generally, VR stochastic methods include two major com-
ponents: the strategy to adjust the stochastic gradient at each
iteration, and the scheme to sample functions or coordinates.
For the sampling scheme, Uniform probability (UP) has been
widely used in the literature [Johnson and Zhang, 2013;
Defazio et al., 2014]. While UP can be implemented effi-
ciently, it is observed that, for many VR algorithms, uniform
sampling may result in a suboptimal convergence rate. Sev-
eral VR methods, e.g. IProx-SVRG [Xiao and Zhang, 2014]
and SAGA-NUS [Schmidt et al., 2015], use a non-uniform
probability, titled Importance Probability (IP), as remedy.
Specifically, the probability that fi is sampled will be pro-
portional to its smoothness parameter.

Recently, Csiba et al. (2015) proposed a variant of SDCA
named AdaSDCA and its heuristic version AdaSDCA+. The
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authors prove that AdaSDCA would converge faster than
IProx-SDCA, if the sampling probability takes the solution
of another (maybe non-convex) optimization problem at each
iteration. However, such solution is in closed form only when
all f 0

is, i = 1, . . . , n are quadratic, and is numerically difficult
to approximate otherwise.

By analyzing the variance of the modified stochastic gradi-
ent used in SVRG and SAGA, we propose adaptive sampling
schemes for these two methods. Our contributions are listed
as follows.

i. Our schemes compute the sampling probability in closed
form, and can handle any smooth convex loss function,
e.g. Logistic Regression, instead of being restricted to
quadratic ones.

ii. By utilizing our adaptive sampling schemes, two VR
methods, namely AdaSVRG and AdaSAGA, are pro-
posed as alternatives to SVRG and SAGA respectively.
We prove that they have better convergence rate than the
originals and confirm our analysis with experiments.

iii. Moreover, we devise a hybrid method, named HVRG,
with low amortized computational cost per iteration.
Our experiments show that HVRG enjoys fast conver-
gence as AdaSVRG and AdaSAGA.

2 Preliminaries
2.1 Notations and Assumptions
For x 2 Rd, we use kxk to denote the Euclidean norm and
rF(x) to denote the gradient of a function F(·) at x. The
proximal operator prox⌘,G(·) : Rd ! Rd is defined as

prox⌘,G(y) := argmin

x2Rd

1

2⌘
kx� yk2 +G(x).

We use w⇤
= argmin

w2Rd P(w) to denote the minimizer of
the whole problem. A function f(·) : Rd ! R is said to be
L-smooth if for any w1,w2 2 Rd

f(w1)  f(w2) + hrf(w2),w1 �w2i+ L

2

kw1 �w2k2,
and we call L the smoothness parameter of f . A function
f(·) : Rd ! R is said to be µ-strongly-convex if for any
w1,w2 2 Rd

f(w1) � f(w2) + hrf(w2),w1 �w2i+ µ

2

kw1 �w2k2.
In this paper, the expectations are taken with respect to the

random variable jk, which indicates the function fjk is se-
lected in the kth iteration, and are conditioned on all previous
iterations, for example

E[rfjk (w
(k�1)

)

npjk
]

= Ejk⇠{pi}ni=1
[

rfjk (w
(k�1)

)

npjk
|w(1), . . . ,w(k�1)

]

=

nX

i=1

pi
rfi(w

(k�1)
)

npi
= rF(w(k�1)

),

where {pi}ni=1 denotes the distribution of jk, i.e. Pr{jk =

i} = pi. For a random vector g, we define V[g] := Ekg �
E[g]k2 = E[kgk2] � [E[kgk]]2, which will be critical in our
analysis.

2.2 Variance Reducing
Recall that in the kth iteration of SGD, some function fjk is
sampled according to {pi}ni=1, and the variable is updated as

w

(k)
:= prox⌘k,G{w(k�1) � ⌘kg

(k)}, (2)

where ⌘k is the step size and g

(k)
= rfjk(w

(k�1)
)/npjk is

the stochastic gradient.
For ease of discussion, we assume in this paragraph that

G(w) ⌘ 0. Since E[g(k)
] = F(w

(k�1)
), we have V[g(k)

] =

Ekg(k)k2 � krF(w

(k�1)
)k2. However, such term may not

converge to zero when w

(k�1) ! w

⇤, because while we al-
ways have rF(w

(k�1)
) ! 0, Ekg(k)k2 does not converge to

0 since rfi(w(k�1)
) 9 0 in general. To counteract the influ-

ence of variance, SGD adopts a diminishing step size scheme
(usually O(

1
k ) or O(

1p
k
)) and yields sublinear convergence.

The key to accelerate the convergence is to reduce V[g(k)
]

as much as possible, since it obstructs the utilization of large
step size. We describe two important techniques designed to-
wards this goal, namely gradient adjustment and non-uniform
sampling. Note that they are complementary to each other
and should be used jointly.

Gradient Adjustment
Gradient adjustment is a technique that modifies the stochas-
tic gradient to ensure V[g(k)

] ! 0 when w

(k�1) ! w

⇤. For
example, SVRG maintains a periodically updated variable ˜

w

and modifies g(k) as
g

(k)
:= (rfjk(w

(k�1)
)�rfjk( ˜w))/npjk +rF(

˜

w). (3)
Clearly, g(k) is an unbiased estimation of rF(w

(k�1)
), and it

is proved that V[g(k)
] ! 0 when w

(k�1) ! w

⇤ [Johnson and
Zhang, 2013]. Another example is SAGA which memorizes
the latest computed gradient of each function fi in ↵(k�1)

i and
uses their average ↵̄(k�1) as a surrogate of rF(

˜

w) in SVRG.
Thus the updating rule can be written as

g

(k)
:= (rfjk(w

(k�1)
)� ↵(k�1)

jk
)/npjk + ↵̄(k�1). (4)

Defazio et al. (2014) proves that SAGA ensures V[g(k)
] ! 0

when w

(k�1) ! w

⇤. By substituting the modified stochas-
tic gradient (3) and (4) with g

(k) in SGD, SVRG and SAGA
perform the update (2) to finish the iteration.

Non-Uniform Sampling
While the asymptotic property of V[g(k)

] is improved by gra-
dient adjustment, its value also depends on the sampling prob-
ability, see (8). To improve upon UP, Zhao and Zhang (2014)
propose to use the Importance Probability (IP) for sampling
in SGD and SDCA, which is defined as

pIi :=

LiPn
i=1 Li

, i = 1, . . . , n, (5)

where Li is the smoothness parameter of each function
fi. Such probability can be used in SVRG and SAGA to
improve their bounds on V[g(k)

]

[Xiao and Zhang, 2014;
Defazio et al., 2014]. Note that IP is left unchanged through-
out the iterations and only minimizes some loose upper bound
on V[g(k)

]. In the next section, we present an adaptive sam-
pling scheme that directly minimizes V[g(k)

] to reduce the
variance to a larger extent.
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Algorithm 1 AdaSVRG

Input: w(0), ⌘,m,K
Output: w(K)

1: Initialize ˜w = w(0),↵(0)
i := rfi(w

(0)
), i = 1, . . . , n

2: ↵̄(0)
:= rF( ˜w)

3: for k := 1 to K do
4: Compute the probability {p(k)i }ni=1 according to (7)
5: Sampling index jk according to {p(k)i }ni=1

6: g(k)
:= (rfjk (w

(k�1)
)�rfjk ( ˜w))/np(k)jk

+ ↵̄(k�1)

7: v(k)
:= w(k�1) � ⌘g(k)

8: w(k)
:= Prox⌘,G(v(k)

)

9: if k mod m = 0 then
10: ˜w :=

1
m

Pm�1
i=0 w(k�i)

11: w(k)
:=

˜w
12: ↵̄(k)

:= rF( ˜w)

13: else
14: ↵̄(k)

:= ↵̄(k�1)

15: end if
16: end for

Algorithm 2 AdaSAGA

Input: w(0), ⌘,K
Output: w(K)

1: Initialize ↵(0)
i := rfi(w

(0)
), i = 1, . . . , n

2: ↵̄(0)
:=

1
n

Pn
i=1 ↵

(0)
i

3: for k := 1 to K do
4: Compute the probability {p(k)i }ni=1 according to (7)
5: Sampling index jk according to {p(k)i }ni=1

6: g(k)
:= (rfjk (w

(k�1)
)� ↵(k�1)

jk
)/np(k)jk

+ ↵̄(k�1)

7: v(k)
:= w(k�1) � ⌘g(k)

8: w(k)
:= Prox⌘,G(v(k)

)

9: ↵(k)
i :=

(
rfjk (w

(k)
) if i = jk

↵(k�1)
i otherwise

10: ↵̄(k)
:=

1
n

Pn
i=1 ↵

(k)
i

11: end for

3 Methodology
In the kth iteration, denoting rfjk( ˜w) with ↵(k�1)

jk
and

rF(

˜

w) with ↵̄(k�1), we can write the stochastic gradient
g

(k) of SVRG and SAGA in a uniform way:

g

(k)
:= �(k)

jk
/npjk + ↵̄(k�1), (6)

where �(k)
jk

:= rfjk(w
(k�1)

)�↵(k�1)
jk

and �(k)
jk

/npjk can be
regarded as a calibration to ↵̄(k�1) to produce an up-to-date
stochastic gradient. We define the Adaptive Probability (AP)
as

p(k)i =

k�(k)
i k

Pn
i=1 k�(k)

i k
, i = 1, . . . , n, (7)

i.e. fi is sampled with probability proportional to k�(k)
i k.

The next lemma shows that AP is the minimizer of V[g(k)
].

Lemma 1. Using the notation in (6), we have that

V[g(k)
] = Ek�(k)

j /npjk2 � krF(w

(k�1)
)� ↵̄(k�1)k2 (8)

is minimized by taking pi = p(k)i , which is defined in (7).

3.1 Algorithms
Two new algorithms, AdaSVRG and AdaSAGA, are devised
by employing AP in SVRG and SAGA respectively. We
summarize them in Algorithm 1 and Algorithm 2. Note that
when mod(k, n) = 1 in AdaSVRG or k = 1 in AdaSAGA,
(7) is not well defined since both the numerator and the de-
nominator are zero. However, in such situation, we will
have g

(k)
= ↵̄(k�1) for any jk, and thus we directly set

g

(k)
= ↵̄(k�1).

The following two lemmas bound V[g(k)
] in AdaSVRG

and AdaSAGA respectively. They will be used in the conver-
gence analyses of our algorithms in Section 4.
Lemma 2. Assume that each function fi is Li-smooth and
define ¯L :=

1
n

Pn
i=1 Li. In AdaSVRG, we have

V[g(k)
]  4L(k)

A [P(w

(k�1)
)�P(w

⇤
) +P(

˜

w)�P(w

⇤
)]

where L(k)
A  ¯L for each k 2 {1 . . .m}.

Remark 1. When UP or IP is used for sampling, similar
bound can be obtained, but with L(k)

A replaced with maxi Li

and ¯L respectively. Since we have L(k)
A  ¯L  maxi Li, our

bound is tighter and will lead to faster convergence. Note that
L(k)
A , ¯L, and maxi Li will appear in the convergence results

when the corresponding distribution is used for sampling.

Remark 2. L(k)
A is potentially equal to ¯L as AP could be

identical to IP, e.g. all fi’s are identical. However, we find
L(k)
A much smaller than ¯L in experiments.

Lemma 3. Assume each function fi is Li-smooth and define
¯L :=

1
n

Pn
i=1 Li. In AdaSAGA, we have that, in the kth

iteration,
n

2L(k)
A ⌘2

Ekv(k) �w

(k�1) � ⌘rF(w

⇤
)k2


nX

i=1

1

Li

h
kf 0

i(x
(k�1)

)� f 0
i(x

⇤
)k2 + k↵(k�1)

i � f 0
i(x

⇤
)k2

i

for some constant L(k)
A , where L(k)

A  ¯L.
Remark 3. We use this lemma to bound the Lyapunov func-
tion (11) when proving the convergence of SAGA. Similar
to the previous lemma, when IP or UP is used for sam-
pling, L(k)

A degenerates to ¯L and maxi Li respectively, with
L(k)
A  ¯L  maxi Li.

3.2 AP vs. IP in SVRG
In this section, we discuss the relation between AP and IP in
SVRG and present a concrete example to demonstrate their
disparity. As for SAGA, the discussion is similar. Here we as-
sume that every fi is of the form fi(w) := �i(X

>
i w), where

Xi is the non-zero feature vector of the ith sample. We have
rfi(w) = �0

i(X
>
i w)Xi and r2fi(w) = �00

i (X
>
i w)XiX

>
i .

If we assume each �i(·) to be ↵-smooth, we can compute
the smoothness parameter Li of fi

Li = max

w

kr2fi(w)k = ↵kXik2
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and hence IP:

pIi =

kXik2Pn
i=1 kXik2 . (9)

Now we compute AP

p(k)i =

|�0
i(X

>
i w

(k)
)� �0

i(X
>
i ˜

w)|kXikPn
i=1 |�0

i(X
>
i w

(k)
)� �0

i(X
>
i ˜

w)|kXik
. (10)

Note that AP degenerates to IP when we substitute each
|�0

i(X
>
i w

(k)
)� �0

i(X
>
i ˜

w)| with its upper bound

|�0
i(X

>
i w

(k)
)� �0

i(X
>
i ˜

w)|  ↵kXikkw(k) � ˜

wk.
However, such upper bound can be rather loose, and AP
therefore can be quite different from IP. Consider the case
where Xi1 = w

⇤, kXi1k = kXi2k, but Xi2 ? w

⇤, and
�i2 = �i1 . Additionally, assume that both w

(k) and ˜

w are
close to w

⇤, which happens as the algorithm converges. In
such case, both X

>
i1w

(k) and X

>
i1
˜

w are close to kw⇤k2, but
X

>
i2w

(k) and X

>
i2
˜

w are close to 0. According to (9) and (10),
the sampling probabilities of fi1 and fi2 are equal in IP, but
can be far from each other in AP.

4 Analysis
In this section, we show that both AdaSVRG and AdaSAGA
converge faster than the originals with IP. The proof utilizes
the tightened variance bound we derived in the previous sec-
tion and is left to the long version of this paper due to limita-
tion of space.

4.1 Convergence Analysis of AdaSVRG
To present the convergence result, let us first define

⇢µ(⌘, L,m) :=

1

µ⌘(1� 4L⌘)m
+

4L⌘(m+ 1)

(1� 4L⌘)m
,

where µ is some fixed constant. A useful fact about ⇢µ is
that, ⇢µ(⌘, L1,m)  ⇢µ(⌘, L2,m) for any 0 < ⌘ < 1

4L2
and

positive m, if L1  L2. This can be easily checked by com-
puting the derivative of ⇢µ with respect to L. Additionally,
auxiliary variables { ˜w(t)}Tt=0 are defined as: ˜

w

(0)
:= w

(0),
and ˜

w

(t)
:=

˜

w when ˜

w is updated for the tth time.
Theorem 1. Assume that F(w) is µ-strongly convex and
each fi is Li-smooth. Define ˜L(t)

A := maxi2{1,...,m} L
(tm�i)
A ,

where L(k)
A is defined in Lemma 2. Taking m and ⌘t 2

(0, 1

4L̃(t)
A

) such that ⇢µ(⌘t, ˜L
(t)
A ,m) < 1, we have

EP(

˜

w

(T )
)�P(w

⇤
)


TY

t=1

⇢µ(⌘t, ˜L
(t)
A ,m)[P(

˜

w

(0)
)�P(w

⇤
)].

Remark 4. Xiao and Zhang (2014) have shown that IProx-
SVRG has the following convergence result

EP(

˜

w

(T )
)�P(w

⇤
) 

TY

t=1

⇢µ(⌘̄, ¯L,m)[P(

˜

w

(0)
)�P(w

⇤
)]

where ⌘̄ 2 (0, 1
4L̄

) is some fixed step-size. If we use the
same fixed step-size in AdaSVRG, i.e. ⌘t = ⌘̄ for each
t 2 {1 . . . T}, then we have ⇢µ(⌘̄, ˜L

(t)
A ,m)  ⇢µ(⌘̄, ¯L,m)

and thus Theorem 1 entails that AdaSVRG enjoys a faster
convergence. Additionally, it indicates that we can choose a
larger step-size in AdaSVRG, e.g. ⌘t =

LI

L̃(t)
A

⌘̄ � ⌘̄, which

leads to faster convergence in practice. Note that in such
case, ⇢µ(⌘t, ˜L

(t)
A ,m) is still smaller than ⇢µ(⌘̄, ˜LI ,m).

4.2 Convergence Analysis of AdaSAGA
Before diving into the convergence theorem of AdaSAGA,
we first define �(k)

i := w

(k0
i�1) for i = 1, . . . , n, where

k0i  k is the last iteration when fi is sampled. We define
�(0)
i = w

(0). Following this definition, we have ↵(k�1)
i =

f 0
i(�

(k�1)
i ) for all i = 1, . . . , n. Note that �(k)

i is only used
for analysis and it is not memorized over iterations. We then
define the Lyapunov function T , which is an upper bound of
1

2n⌘kw �w

⇤k2 due to the convexity of fi:

T (w, {�i}ni=1) :=
1

2n⌘
kw �w

⇤k2

+

1

n

nX

i=1

[fi(�i)� fi(w
⇤
)� hf 0

i(w
⇤
),�i �w

⇤i]
(11)

where ⌘ is some positive constant.
Theorem 2. Assume that F(w) is µ-strongly convex and
each fi is Li-smooth, and define ¯L =

1
n

Pn
i=1 Li. For

AdaSAGA1, let T (k) be:

T (k)
:= T (w(k), {�(k)

i }ni=1)

with ⌘ =

1
4L̄

being the step size. We have

ET (k+1)  (1� k)T
(k)

where k = min{ 1
2n ,

µ

8L(k)
A

} and L(k)
A is defined in Lemma 3.

Remark 5. If there is no regularization, i.e. G(w) ⌘ 0, and
IP is used for sampling, Schmidt et al. (2015) prove that

ET (k+1)  (1� )T (k),

where  = min{ 1
3n ,

µ
8L̄

} < 1. Our result is better since
(1� k)  (1� ) for all k = 1, . . . ,m. Besides, it is valid
even if G(w) 6= 0. From this theorem, it is clear that w(k)

converges to the optimal w⇤ linearly:

Ekw(m) �w

⇤k2  2n⌘T (0)
[

mY

k=1

(1� k)]. (12)

5 Efficient Variant
Theorem 1 and 2 suggest that AdaSVRG and AdaSAGA

converge faster than SVRG and SAGA respectively. How-
ever, exactly computing (7) takes O(nd) operations, which

1Though unnecessary in practice, some additional uniform sam-
ples are needed in our analysis, similar to [Schmidt et al., 2015]
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Algorithm 3 HVRG
Input: w0, ⌘,K, c, ⇢
Output: wK

1: for k := 1 to K do
2: if k mod cn = 1 then
3: Synchronous Update of ↵i’s:
4: ↵(k�1)

i := rfi(w(k�1)
), i = 1, . . . , n

5: ↵̄(k�1)
:=

1
n

Pn
i=1 ↵

(k�1)
i

6: end if
7: if k mod cn = 2 then
8: Compute {pi}ni=1 according to (7)
9: end if

10: Sampling index jk according to {pi}ni=1

11: g

(k)
:= (rfjk(w

(k�1)
)� ↵(k�1)

jk
)/npjk + ↵̄(k�1)

12: v

(k)
:= w

(k�1) � ⌘g(k)

13: w

(k)
:= Prox⌘,G(v

(k)
)

14: ↵(k)
i :=

(
rfjk(w

(k)
) if i = jk

↵(k�1)
i otherwise

15: ↵̄(k)
:=

1
n

Pn
i=1 ↵

(k)
i

16: Probability Shrinkage:
17: pjk := pjk/⇢; for i 6= jk, pi are left unchanged.
18: pj := pj/

Pn
i=1 pi, j = 1, . . . , n

19: end for

makes our algorithms less practical when handling large scale
problems. To ameliorate this shortcoming, we present a
variant called Hybrid Variance Reducing Gradient descent
method (HVRG), which computes AP exactly every c epochs
(cn iterations). For ease of notation, we suppress the super-
scripts of ↵i’s in this section .

Like AdaSAGA, HVRG keeps auxiliary variables ↵i, i =
1, . . . , n to store the latest computed gradient for every fi.
And like AdaSVRG, it updates all ↵i to rfi(w(k)

) syn-
chronously every c epochs. However, unlike both methods,
HVRG exactly computes AP only after updating all ↵i’s syn-
chronously, and shrink pjk for the sampled index jk in the kth
iteration. We summarize HVRG in Algorithm 3 and discuss
the details as follows.
Synchronous Update of ↵i’s: When uniform probability
is used for sampling, we know from the coupon collector’s
problem that it takes ⇥(n log n) iterations in expectation for
every function fi to be sampled at least once. This means
that some function fj will not be visited in ⇥(log n) epochs,
nor will the corresponding ↵j be updated. As ↵̄ is kept as
the average of all ↵j’s, leaving some ↵j out of date poten-
tially undermines the convergence of algorithm. Such situa-
tion will get even more severe when non-uniform probability
is employed, because the minimum time at which every func-
tion is sampled will be further postponed in expectation. To
circumvent this pitfall, a periodically full update of all ↵j’s is
needed.
Shrinkage of pjk : After kth iteration, ↵jk is updated, and
the information of rfjk has been incorporated into ↵̄ for es-
timating of the full gradient in the future iterations. There-
fore, the randomness related to fjk is reduced. So we shrink

Table 1: Statistics of datasets.

Dataset n p �2

w7a 24, 692 300 1/n
ijcnn1 49, 990 22 1/n

a9a 32, 561 123 1/n
covtype 581, 012 54 1

rcv1 20, 242 47, 236 10

�4

YearPredictionMSD 463, 715 90 10

5/n

its sampling probability pjk by ⇢, in order to allow other un-
explored components to be sampled with higher probability.
Csiba et al. (2015) also use similar adaptive sampling method
for AdaSDCA+ in dual space.
Maintenance of Cumulative Distribution Function: In the
last line of Algorithm 3, we normalize {pi}ni=1 to make it a
distribution. However, such operation takes O(n) operations,
which is quite expensive. To alleviate such high cost, we use
the Vitter algorithm [Vitter, 1987] to maintain the Cumula-
tive Distribution Function (CDF) of the sampling probability
{pi}ni=1 to avoid such normalization procedure. Since we up-
date only one probability per iteration, the maintain operation
can be done in O(log n) by this algorithm. Additionally, the
sampling operation can be done with the same complexity.
An alternative strategy is [Nesterov, 2012] .
Amortized Per Iteration Complexity Updating all ↵i’s, ex-
actly computing AP, and constructing the Hoffman tree for
CDF take O(nd+n log n) operations, which add O(d+log n)
operation to per iteration of HVRG in average, since they
are performed only every cn iterations. Addtionally, it takes
O(log n) operations to maintain and sample from the CDF as
we discussed above. Thus the amortized per iteration com-
plexity is O(d+ log n).

6 Experiment
In this section, we present results of several numerical exper-
iments to validate our theoretical analyses of AdaSVRG and
AdaSAGA and to show the empirical efficiency of HVRG.
Experiments on l2-Logistic Regression, l1l2-Logistic Regres-
sion, and Ridge Regression are conducted. We use datasets
from LIBSVM [Chang and Lin, 2011] and list their statistics
in Table 1. The parameters of the l2-regularization are also in-
cluded in that table. In our experiments, no normalization is
performed on the data. We added an additional feature to all
samples to represent the bias term, which is a common prac-
tice. SVRG, IProx-SVRG, SAGA2, and AdaSDCA+ are in-
cluded in our experiments for comparison. Since AdaSVRG
and AdaSAGA have high per iteration computation load, we
only test them on small problems (w7a, ijcnn1, and a9a) to
validate our theoretical analysis. The parameter m in SVRG,
IProx-SVRG, and AdaSVRG is set to 2n uniformly, as sug-
gested in [Xiao and Zhang, 2014]. We tune the step size (typ-
ically from 1

4L̄
to 1

L̄
) for different methods so that they give

the best performance. The parameters c and ⇢ in HVRG are
fixed to 5 and 1.5 respectively. As for initialization, w0 is set
to zero in all experiments. We define the log-suboptimality at

2SAGA-NUS [Schmidt et al., 2015] is omitted for its poor per-
formance in our experiments
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Figure 1: L2 Logistic Regression. Left to Right, w7a, ijcnn1,
and a9a. X-axis is iteration.

effective pass (epoch)
0 50 100 150

lo
g

-s
u

b
o

p
ti

m
al

it
y

-8

-6

-4

-2

0
HVRG
SAGA
SVRG
IProx-SVRG

effective pass (epoch)
0 5 10 15 20

lo
g

-s
u

b
o

p
ti

m
al

it
y

-8

-6

-4

-2

0
HVRG
SAGA
SVRG
IProx-SVRG

effective pass (epoch)
0 10 20 30 40

lo
g

-s
u

b
o

p
ti

m
al

it
y

-8

-6

-4

-2

0
HVRG
SAGA
SVRG
IProx-SVRG

effective pass (epoch)
0 10 20 30 40 50

lo
g

-s
u

b
o

p
ti

m
al

it
y

-3

-2.5

-2

-1.5

-1

-0.5

0
HVRG
SAGA
SVRG
IProx-SVRG

Figure 2: L2 Logistic Regression. From left to right, up to
down, we have w7a, ijcnn1, a9a, and covtype. X-axis is ef-
fective pass over dataset.

w as log10
P(w)�P(w⇤)
P(w0)�P(w⇤) and the effective pass as the evalu-

ation of n component gradients. These quantities are used to
evaluate the performance of algorithms. Due to the random-
ness of the algorithms, the reported results are the average of
10 independent trials.

6.1 l2-Logistic Regression
Four datasets are used in l2-Logistic Regression, namely
w7a, ijcnn1, a9a, and covtype. We set fi(w) = log(1 +

exp(�yiX>
i w)) +

�2
2 kwk2 and G(w) = 0, the same as that

in [Xiao and Zhang, 2014]. First, we compare the conver-
gence rate of different algorithms in Figure 1. The results
show that AdaSAGA and AdaSVRG are the best, conform-
ing to our analysis. We also report the log-suboptimality over
the effective pass over the dataset in Figure 2. HVRG either
matches or outperforms all the other methods.

6.2 l1l2-Logistic Regression
The rcv1 dataset [Lewis et al., 2004] is used to test the per-
formance of HVRG in l1l2-Logistic Regression, which is
a problem with non-zero regularization. We set fi(w) =

log(1 + exp(�yiX>
i w)) +

�2
2 kwk2, G(w) = �1kwk, and

�1 = 10

�5, as suggested in [Xiao and Zhang, 2014]. A crit-
ical criterion in such problem is the number of non-zero en-
tries in the variable. We include this quantity in comparison
in addition to the log-suboptimality (see Figure 3). HVRG
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Figure 3: l1l2-Logistic Regression. X-axis is effective pass
over dataset.
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Figure 4: Ridge Regression. X-axis is effective pass over
dataset.

uses the least effective passes to obtain a high accuracy solu-
tion and to correctly identify the support of w⇤.

6.3 Ridge Regression
Since AdaSDCA+ can only handle quadratic loss, we in-
clude it in comparison by conducting Ridge Regression on
the YearPredictionMSD dataset. We set fi(w) =

1
2kX>

i w�
yik2 + �2

2 kwk2 and G(w) = 0. The results are provided in
Figure 4. Since the condition number is large in this problem,
all algorithms converge slowly. AdaSDCA+ does not seem
to converge in primal, although we do find its dual value as-
cending monotonically. We believe that this has to do with the
large condition number. It is clear that HVRG outperforms all
the other methods substantially.

7 Conclusion
In this paper, we propose a new adaptive sampling scheme
called AP for SVRG and SAGA, and devise two adaptive al-
ternatives, namely AdaSVRG and AdaSAGA, with provably
better convergence rate. We validate our analysis with ex-
periments. Additionally, to cut down the per iteration com-
putation load, an efficient variant called HVRG is proposed,
whose performance is empirically demonstrated.
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