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Abstract

Convex Transductive Experimental Design
(CTED) is one of the most representative active
learning methods. It utilizes a data reconstruction
framework to select informative samples for
manual annotation. However, we observe that
CTED cannot well handle the diversity of selected
samples and hence the set of selected samples
may contain mutually similar samples which
convey similar or overlapped information. This is
definitely undesired. Given limited budget for data
labeling, it is desired to select informative samples
with complementary information, i.e., similar
samples are excluded. To this end, we proposes
Diversified CTED by seamlessly incorporating
a novel and effective diversity regularizer into
CTED, ensuring the selected samples are diverse.
The involvement of the diversity regularizer leads
the optimization problem hard to solve. We derive
an effective algorithm to solve an equivalent
problem which is easier to optimize. Extensive ex-
perimental results on several benchmark data sets
demonstrate that Diversified CTED significantly
improves CTED and consistently outperforms the
state-of-the-art methods, verifying the effective-
ness and advantages of incorporating the proposed
diversity regularizer into CTED.

1 Introduction
In many machine learning tasks, we need to collect the train-
ing data and manually annotate them by domain experts. This
process is usually time consuming and expensive. Active
learning [Settles, 2009] is a machine learning technique that
selects the most informative samples for labeling and uses
them as training data. It has been widely explored in the ma-
chine learning community for its capability of reducing hu-
man annotation effort.

Convex Transductive Experimental Design (CTED) [Yu
et al., 2008] is one of the most representative active learn-
ing methods and has received increasing attention in recent
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years. It uses a data reconstruction framework to select in-
formative samples for labeling, where the informativeness of
each sample is measured by its capacity to reconstruct the
target data set. Based on the data reconstruction framework,
several methods were developed. [Zhen and Yeung, 2010]
proposed supervised experimental design, which can lever-
age label information if it is available. [Nie et al., 2013;
Zhu and Fan, 2015] employed robust loss functions to mea-
sure the reconstruction error to develop methods which are
insensitive to outliers. [Cai and He, 2012] incorporated
manifold structure into this framework via manifold adap-
tive kernels. [Hu et al., 2013] performed active learning via
neighbourhood reconstruction to select samples by explor-
ing the local data structure. These methods have achieved
promising performance in text classification [Yu et al., 2008;
Cai and He, 2012] and other multimedia data classification
tasks [Nie et al., 2013; Hu et al., 2013; Zhu and Fan, 2015].

Observe that the data reconstruction framework assigns
each sample a score, which indicates the sample’s capacity to
reconstruct the target data set, and all the samples are ranked
based on these scores. Then the top ranked ones are selected
for labeling. Similar samples may get similar ranking scores,
because these similar ones have similar capacity for data re-
construction. As a result, the set of selected (i.e., top ranked)
samples may well contain samples which are mutually sim-
ilar. This is definitely undesired. Since the process of data
labeling is usually time consuming and expensive, the budget
for data labeling is always limited. To maximize our benefit,
it is desired to select those informative samples containing
complementary information, i.e., highly similar ones are ex-
cluded.

The above analysis motivates us to study the diversity prob-
lem with existing data reconstruction based active learning
methods. In particular, we propose to enhance CTED with
diversity mechanism by imposing a diversity regularizer over
sample selection. The diversity regularizer makes use of a
similarity matrix among samples to ensure that if two sam-
ples are informative but highly similar, only one of them gets
a high ranking score. A main challenge in applying the di-
versity regularizer is to define a good similarity matrix. One
direct way to obtain the similarity matrix is to pre-define it us-
ing the original data. Then it is fixed and used as an input to
the diversity regularizer. If the pre-defined similarity matrix is
not good, the effectiveness of the diversify regularizer will be
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limited. To obtain a reliable similarity matrix and seamlessly
integrate diversity into CTED, we embed similarity matrix
learning into CTED by leveraging a data representation ex-
tracted from the reconstruction matrix of CTED. As we will
discuss later, this data representation reflects the role of each
sample in the data reconstruction process. Therefore, simi-
larity matrix built on this representation can well character-
ize the similarities among samples in terms of their capacity
for reconstruction. The involvement of the diversity regular-
izer makes the obtained optimization problem hard to solve.
We find an equivalent problem which is easier to optimize
and derive an alternating minimization procedure to solve it.
We perform extensive experiments on several benchmark data
sets. Experimental results based on two classifiers all demon-
strate that, with diversification, our method (i.e., Diversified
CTED) significantly improves CTED and consistently out-
performs the state-of-the-art methods in the literature.

2 Related Work
The goal of active learning is to label as little data as pos-
sible, to achieve a certain classification performance, there-
fore saving considerable annotation cost for training a good
learner [Settles, 2009]. One representative active learning
algorithm is to select samples with maximum uncertainty
of labels measured by the distance from the classification
boundary [Tong and Koller, 2002; Lewis and Catlett, 1994;
Balcan et al., 2007; Yang et al., 2014]. Another popular
approach is query by committee, where a number of dis-
tinct classifiers are generated and a sample having the most
disagreement among these classifiers in predicting the label
is selected for labeling [Freund et al., 1997; Seung et al.,
1992]. When selecting samples, these methods need a pre-
trained classifier, which means they need some initially la-
beled data. Another line of research works aim to select sam-
ples in unsupervised setting. Clustering based active learning
methods were proposed in [Nguyen and Smeulders, 2004;
Nie et al., 2012]. [Chattopadhyay et al., 2012; 2013] pro-
posed an active learning method based on Maximum Mean
Discrepancy (MMD)[Borgwardt et al., 2006], with the goal
of minimizing the difference in the marginal probability dis-
tribution between the selected samples and remaining ones.
Data reconstruction based active learning methods, such as
CTED [Yu et al., 2008] and ARSS [Zhu and Fan, 2015], are
also typical methods in this category.

In this paper, our focus is on solving the diversity issue of
the data reconstruction based active learning methods. Par-
ticularly, we solve this problem on the base of CTED and
show that, with diversification, the sample selection power of
CTED can be significantly improved. The developed tech-
niques can also be used to other data reconstruction based
active learning methods.

3 Preliminaries
We summarize the notations and the definition of norms used
in this paper. Matrices are written as boldface uppercase let-
ters and vectors are written as boldface lowercase letters. For
an arbitrary matrix M, we denote its i-th row, j-th column and
(i, j)-th entry as mi, mj and mij , respectively. The `p-norm

of the vector v 2 Rn is defined as ||v||p = (

Pn
i=1 |vi|p)

1
p .

The Frobenius norm of the matrix M 2 Rn⇥m is defined as
||M||F =

qPn
i=1

Pm
j=1 m

2
ij . MT is the transpose of M and

Tr(M) is the trace of M. We use I to denote the identity ma-
trix with proper size.

Denote X 2 Rd⇥n as an unlabeled data set, where xi 2
Rd⇥1 is the i-th sample. The goal of active learning is to
select a subset Z 2 Rd⇥m (m < n) from X, such that the
selected samples can improve the classifier the most if they
are labeled and added to the training set. Since our work is
based on Convex Transductive Experimental Design (CTED),
we first review CTED in the next subsection.

3.1 Convex Transductive Experimental Design
Transductive Experimental Design (TED) [Yu et al., 2006]
aims at selecting a subset Z 2 Rd⇥m from the original un-
labeled data set X 2 Rd⇥n such that a function f trained on
Z has the smallest predictive variance on a given testing set.
The optimization problem of TED is

max

Z
Tr(XT Z(ZT Z + µI)�1ZT X)

s.t. Z ⇢ X, |Z| = m. (1)

where |Z| = m means that Z contains m samples and µ is a
tuning parameter. In order to solve the NP-hard optimization
problem in Eq. (1), [Yu et al., 2006] proposed a sequential
algorithm, which selects one sample each time. The obtained
result is suboptimal [Yu et al., 2008]. To tackle this issue,
Convex Transductive Experimental Design (CTED) was fur-
ther proposed in [Yu et al., 2008]. The optimization problem
of CTED is

min

A,b
||X � XA||2F +

nX

i=1

Pn
j=1 a

2
ij

bi
+ �||b||1

s.t. bi � 0, i = 1, 2, ..., n (2)

where aij is the (i, j)-th entry of A, and � is a nonnegative
trade-off parameter. As shown in Eq. (2), CTED utilizes
a data reconstruction framework to select informative sam-
ples for labeling. The matrix A contains reconstruction co-
efficients and b is the sample selection vector. The `1-norm
makes b to be sparse. In this way, the values corresponding
to less informative samples tend to be zero. Large value of bi
indicates the i-th sample has a large impact on the reconstruc-
tion. After solving the optimization problem in (2), CTED
ranks all samples based on bi(i = 1, 2, ..., n) in descending
order, and select the top ranked ones for labeling.

Under this data reconstruction framework, several meth-
ods have been proposed [Cai and He, 2012; Nie et al., 2013;
Zhen and Yeung, 2010; Zhu and Fan, 2015; Hu et al., 2013].
For example, [Cai and He, 2012] incorporated manifold infor-
mation into this framework. [Zhu and Fan, 2015] employed
robust loss functions to measure reconstruction error to han-
dle outliers in data. These methods have shown effectiveness
in text classification and other multimedia data classification
tasks. All these methods select informative samples via a
same mechanism, i.e., assigning ranking scores to samples
and selecting top ranked ones.
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As discussed above, similar samples may get similar rank-
ing scores, since these similar ones have similar capacity for
reconstruction. As a result, the set of top ranked samples may
well contain similar samples which convey overlapped infor-
mation. Given limited data labeling budget, if we can exclude
mutually similar samples and select ones with complemen-
tary information, the performance of these methods could be
improved. In this paper, we develop techniques to solve this
problem based on CTED.

4 Diversifying Convex Transductive
Experimental Design

In this section, we propose to diversify the selected samples
to improve CTED, i.e., highly similar samples are excluded.
We first introduce a similarity matrix S 2 Rn⇥n to model the
pairwise similarities among all the samples, such that larger
value of sij means higher similarity between the i-th sample
and the j-th one, and smaller value indicates their similarity
is lower. Intuitively, if two samples are highly similar to each
other, they tend to convey very similar information. In this
case, we intend the two samples not to be selected together.
To realize this, we enhance CTED with a diversity regularizer
by extending Eq. (2) to the following optimization problem

min

A,b
||X � XA||2F +

nX

i=1

Pn
j=1 a

2
ij

bi
+ �||b||1 + ↵bT Sb

s.t. bi � 0, i = 1, 2, ..., n (3)

From Eq. (3), we can see that if sij is large (i.e., the i-th sam-
ple and the j-th one are highly similar), bi and bj cannot be
large at the same time. This constraint guarantees that highly
similar samples would not have higher scores in sample se-
lection at the same time.

The effectiveness of the diversity regularizer in Eq. (3)
highly relies on the quality of the similarity matrix S. Prop-
erly defining a good S is the key for improving CTED by
encouraging diversity of selected samples. A direct way to
define S is to pre-calculate it based on the original data. Note
that once the similarity matrix is defined, it is fixed in the
following sample selection step. If the fixed similarity ma-
trix is not well defined, the effectiveness of the diversity reg-
ularizer will be limited. To obtain a faithful similarity ma-
trix and seamlessly incorporate diversity into CTED, we pro-
pose to embed similarity matrix learning into CTED via prop-
erly leveraging the special structure of the data reconstruction
framework.

We observe that, the data reconstruction matrix A encodes
relations among samples. Let us take a look at the i-th row of
A, i.e., ai, which corresponds to the i-th sample. aij means
the j-th sample’s reconstruction coefficient based on the i-th
sample. And ai encodes the reconstruction coefficients of all
the samples based on the i-th one. The i-th row of A (i.e.,
ai) can be treated as a data representation which reflects the
role of the i-th sample for data reconstruction. If i-th and j-th
samples are similar in terms of their capacity for reconstruc-
tion, they tend to have similar ai and aj . Therefore, we use
sij =

ai(aj)T
||ai||2||aj ||2 to characterize the similarity between the

i-th sample and j-th one. This similarity measure directly re-
flects the similarity relationship among samples in terms of
their ability for reconstruction. Based on the above analy-
sis, we define a novel and effective diversity regularizer and
use it to regularize CTED. We get the following optimization
problem of Diversified CTED (DCTED for short)

min

A,b
h(A, b) = ||X � XA||2F +

nX

i=1

Pn
j=1 a

2
ij

bi
+ �||b||1

+ ↵

nX

i=1

nX

j=1

ai(aj)T

||ai||2||aj ||2
bibj

s.t. bi � 0, i = 1, 2, ..., n (4)

Note that the similarity matrix in Eq. (4) is adaptively updated
in the learning process. We do not need to predefine a similar-
ity matrix. This nice property makes our model very practical
in real world applications. Our empirical studies also suggest
that this diversity term is more effective than the one with a
predefined similarity matrix. The involvement of the diversity
regularizer makes the optimization problem in Eq. (4) hard to
solve. In the next section, we derive an effective algorithm to
solve it.

5 Optimization
The optimization problem in Eq. (4) involves two groups of
variables, i.e., A and b. It is hard to solve due to the com-
plex structure of the diversity term. We first reformulate this
problem. Let A = diag(s)bA, where diag(s) is a diagonal
matrix whose diagonal elements are formed by the vector s.
The i-th element (i.e., si) of s is the `2-norm of the i-th row
of A. Therefore, ||bai||2 = 1. The problem in Eq. (4) can be
reformulated as

min

A,b,s
k(

bA, s, b) = ||X � Xdiag(s)bA||2F +

nX

i=1

s

2
i

Pn
j=1 ba2ij
bi

+ �||b||1 + ↵bT bAbA
T

b

s.t. bi � 0, si � 0, ||bai||2 = 1, i = 1, 2, ..., n (5)

Note that we can replace
Pn

j=1 ba2ij as 1. We keep it in Eq .(5)
to better illustrate the relationship between the optimization
problems in Eq. (4) and (5).
Theorem 1 The optimization problem in Eq. (5) is equiva-

lent to the one in Eq. (4).
Proof 1 If (A⇤

, b⇤) is the solution of the problem in Eq.

(4), then h(A⇤
, b⇤)  h(A, b). Let A⇤

= diag(s⇤)bA
⇤
,

where s

⇤
i is the `2-norm of the i-th row of A⇤

, we get

k(

bA
⇤
, s⇤, b⇤) = h(A⇤

, b⇤
). For (

bA, s, b), it is easy to get

k(

bA, s, b) = h(A, b) � h(A⇤
, b⇤

) = k(

bA
⇤
, s⇤, b⇤). This

means (

bA
⇤
, s⇤, b⇤) is the solution of the problem in Eq. (5).

Therefore, if we have the solution of the problem in Eq. (4),
we can readily to get the solution of the problem in Eq. (5).
Similarly, if we have the solution of Eq. (5), we can also read-

ily to get the solution of Eq. (4). Therefore, the optimization

problem in Eq. (5) is equivalent to the one in Eq. (4).
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In next, we derive an alternating minimization algorithm to
solve the problem in Eq. (5).

5.1 Update bA
The subproblem w.r.t. bA is

min

bA
f(

bA) = ||X � Xdiag(s)bA||2F + ↵Tr(

bA
T

bbT bA)

s.t. ||bai||2 = 1, i = 1, 2, ..., n (6)

We derive an algorithm to update bA based on projected gradi-
ent descent to decrease the objective value of Eq. (6). Denote
the gradient of f(bA) as rf(

bA). Then, bA is updated as

bA =

bA � µrf(

bA) (7)

where µ is the step size. Since bA should satisfies ||bai||2 = 1,
we achieve this by projecting each row of bA to the unit sphere.
We need to search the step size to ensure the objective value
is non-increasing under the updating rule of bA.

5.2 Update b
The subproblem w.r.t. b is

min

b

nX

i=1

s

2
i

bi
+ �||b||1 + ↵bT bAbA

T
b

s.t. bi � 0, i = 1, 2, ..., n (8)

The optimization problem is convex w.r.t. bi when the other
elements of b fixed. The subproblem w.r.t. bi is

min

bi

s

2
i

bi
+ bi(� + 2↵

nX

j 6=i

mijbj) + ↵miib
2
i

s.t. bi � 0 (9)

where mij is the (i, j)-th entry of M =

bAbA
T

. Set the deriva-
tive w.r.t. bi as zero, we get

2↵miib
3
i + (� + 2↵

nX

j 6=i

mijbj)b
2
i � s

2
i = 0 (10)

It is easy to check that there exists positive solution of Eq.
(10), which means the constraint bi � 0 can be satisfied. We
choose the positive solution to update bi.

5.3 Update s
The subproblem w.r.t. s is

min

s
||X � Xdiag(s)bA||2F +

nX

i=1

s

2
i

bi

s.t. si � 0, i = 1, 2, ..., n (11)

The optimization problem is convex w.r.t. si when other el-
ements of s fixed. We can find s

⇤
i which leads the derivative

w.r.t. si to be zero. However, s⇤i may be negative. Therefore,
we update si as

si = max{s⇤i , 0} (12)

Algorithm 1 The Optimization Algorithm for Diversified
CTED
Input: X, �, and ↵

Output: Sort all the samples according to bi (i =

1, 2, ..., n) and select the top m ranked ones
1: Initialize bA, s and b randomly
2: repeat
3: Update bA by Projected Gradient Descent
4: Update b by solving Eq. (10)
5: Update s by Eq. (12)
6: until Convergence

We summarize the whole procedure to solve the optimiza-
tion problem in Eq. (5) as Algorithm 1. Since updating bA
decreases the objective value of the optimization problem in
Eq. (5) and solving b and s also decrease it, therefore the
updating rules decrease the objective value of the optimiza-
tion problem in Eq. (5). As the optimization problem in Eq.
(5) is non-negative and lower bounded, therefore Algorithm
1 converges. Since the optimization problem in Eq. (5) is
not convex w.r.t. all the variables simultaneously, different
initializations of these variables may lead Algorithm 1 con-
verges to different values. For simplicity, we initialize these
variables randomly. Our empirical studies show that Algo-
rithm 1 works well with this simple initialization strategy.

6 Experiments
Following a same experimental protocol in [Yu et al., 2008],
we perform classification experiments on five benchmark data
sets to demonstrate the effectiveness of the proposed method
(i.e., Diversified CTED) and give analysis on the experimen-
tal results. We also perform experiments to study the effects
of the parameters.

6.1 Datasets
We conduct the experiments on 5 publicly available data sets,
including 2 digit recognition data sets (i.e., USPS [Wu and
Schölkopf, 2006] and MNIST [Liu et al., 2010]), 2 text data
sets (i.e., WebKB [Wang et al., 2011] and Newsgroup [Yu et

al., 2005]) and one face data set (i.e., ORL [Cai et al., 2006]).
The details of these data sets are summarized in Table 1.

Table 1: Summary of Data Sets

Dataset Size Dimensions Classes
USPS 3082 256 4

MNIST 10000 784 10
NewsGroup 3970 8014 4

WebKB 4199 1000 4
ORL 400 1024 40

6.2 Experimental Setup
Similar with [Yu et al., 2008], we conduct the experiments in
the following way. For each data set, we randomly select 50%
of the data samples to construct a candidate set, from which
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each of the comparing active learning methods is adopted to
select a given number m(= 10, 20, 30, ..., 100) of samples.
We train a classifier on the selected samples and their la-
bels, and then predict the labels of the remaining 50% data
samples. We use the classification accuracy on these 50%
data samples to measure the performance of these compar-
ing active learning methods. To avoid the bias of classifier,
we choose two classifiers, i.e., SVM with linear kernel and
K Nearest Neighbour (KNN) classifier, to predict the class
labels. All the experiments are repeated 10 times and the av-
erage prediction accuracy is reported.

To evaluate the effectiveness of the proposed Diversified
CTED (DCTED for short), we compare DCTED with the fol-
lowing closely related methods, including distribution match-
ing via Maximum Mean Discrepancy (MMD) [Chattopad-
hyay et al., 2012], Convex Transductive Experimental Design
(CTED) [Yu et al., 2008], Active Learning via Neighbour-
hood Reconstruction (ALNR) [Hu et al., 2013], and Acceler-
ated Robust Subset Selection (ARSS) [Zhu and Fan, 2015].
We also compare DCTED with the method corresponding
to Eq. (3). This method leverages a pre-defined and fixed
similarity matrix. We denote this method as DCTEDf . For
DCTEDf , we use gaussian function and linear function to
define the pairwise similarities among samples and report the
best result DCTEDf can achieve. The results of random se-
lection are also reported. To fairly compare the above algo-
rithms, we tune the parameters for all these methods from a
large range of {10�3

, 10

�2
, ..., 10

3}. We will give the sensi-
tive analysis of the parameters of DCTED later in this section.

6.3 Experimental Results
We first show the comparisons between the original CTED
method and Diversified CTED to investigate whether encour-
aging diversity can improve the performance of CTED. The
experimental results are shown in Tables 2, 3, 4, 5 and 6.
The first column of these tables indicate the number of se-
lected samples and C, Df and D indicate CTED, DCTEDf

and DCTED. Each table contains the results based on SVM
and KNN classifier. In the reported results, the best one and
those having no significant difference (i.e., p > 0.05 accord-
ing to t-test) with the best one are marked in bold. We have
the following observations: 1) SVM achieves better perfor-
mance than KNN classifier in most cases. 2) By encourag-
ing diversity, both DCTEDf and DCTED significantly out-
perform CTED in most cases. Let us take the USPS data
set as an example. When the number of selected samples is
10, DCTEDf and DCTED achieve the accuracy of 0.747 and
0.785, which improve the original CTED method by 29.2%
and 35.81%. We also observe that, the original CTED method
needs 40 samples to achieve 0.76 while DCTED method only
needs 10 samples to achieve 0.785. This indicates that, the
set of selected samples by DCTED is more informative since
highly similar samples are excluded. 3) DCTED outperforms
DCTEDf in most cases. This verifies the effectiveness of
DCTED, which adaptively updates the similarity matrix de-
fined on a new data representation. DCTED is more prefer-
able in practice since it does not need to predefine the simi-
larities among samples.

Now we show the comparisons with the state-of-the-art ac-

Table 2: Results on USPS
SVM KNN

m C Df D C Df D
10 0.578 0.747 0.785 0.595 0.694 0.754
20 0.661 0.825 0.836 0.658 0.776 0.806
30 0.705 0.849 0.859 0.716 0.811 0.833
40 0.760 0.864 0.873 0.765 0.832 0.848
50 0.824 0.874 0.884 0.815 0.849 0.862
60 0.854 0.878 0.890 0.834 0.861 0.873
70 0.858 0.882 0.894 0.846 0.868 0.884
80 0.864 0.884 0.898 0.857 0.872 0.890
90 0.870 0.887 0.901 0.858 0.875 0.894

100 0.872 0.890 0.902 0.867 0.879 0.902

Table 3: Results on MNIST
SVM KNN

m C Df D C Df D
10 0.269 0.427 0.426 0.277 0.400 0.431
20 0.357 0.537 0.549 0.363 0.507 0.527
30 0.476 0.600 0.609 0.466 0.569 0.591
40 0.562 0.633 0.643 0.553 0.603 0.622
50 0.626 0.655 0.683 0.605 0.627 0.661
60 0.661 0.676 0.711 0.636 0.644 0.682
70 0.699 0.691 0.727 0.665 0.659 0.701
80 0.720 0.696 0.740 0.687 0.671 0.715
90 0.735 0.704 0.750 0.700 0.681 0.724

100 0.752 0.710 0.760 0.712 0.689 0.736

Table 4: Results on NewsGroup
SVM KNN

m C Df D C Df D
10 0.581 0.611 0.626 0.575 0.596 0.614
20 0.690 0.684 0.720 0.663 0.662 0.694
30 0.732 0.742 0.770 0.690 0.700 0.717
40 0.760 0.776 0.802 0.715 0.719 0.736
50 0.788 0.793 0.820 0.730 0.733 0.749
60 0.815 0.808 0.832 0.742 0.741 0.760
70 0.832 0.830 0.844 0.752 0.754 0.767
80 0.840 0.838 0.856 0.758 0.762 0.774
90 0.846 0.847 0.861 0.763 0.766 0.780

100 0.853 0.853 0.863 0.772 0.769 0.780

Table 5: Results on WEBKB
SVM KNN

m C Df D C Df D
10 0.595 0.626 0.634 0.555 0.609 0.609
20 0.659 0.685 0.693 0.601 0.636 0.641
30 0.703 0.716 0.725 0.632 0.650 0.651
40 0.716 0.740 0.754 0.641 0.661 0.659
50 0.722 0.761 0.774 0.647 0.666 0.668
60 0.732 0.776 0.784 0.657 0.671 0.675
70 0.743 0.782 0.799 0.659 0.673 0.679
80 0.753 0.797 0.808 0.665 0.679 0.683
90 0.758 0.806 0.821 0.670 0.684 0.688

100 0.765 0.815 0.828 0.674 0.686 0.691
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Table 6: Results on ORL
SVM KNN

m C Df D C Df D
10 0.167 0.185 0.221 0.163 0.175 0.211
20 0.306 0.313 0.346 0.274 0.285 0.327
30 0.396 0.418 0.439 0.360 0.377 0.411
40 0.467 0.475 0.519 0.430 0.436 0.479
50 0.524 0.537 0.589 0.481 0.495 0.544
60 0.562 0.570 0.636 0.517 0.525 0.586
70 0.601 0.614 0.698 0.555 0.567 0.628
80 0.622 0.642 0.728 0.582 0.604 0.668
90 0.666 0.680 0.766 0.616 0.628 0.705

100 0.700 0.716 0.786 0.641 0.655 0.728

Table 7: Results Based on SVM
Methods USPS MNIST NewsG WEBKB ORL
Random 0.718 0.565 0.695 0.701 0.497
CTED 0.784 0.586 0.774 0.715 0.501
ALNR 0.813 0.492 0.763 0.712 0.494
ARSS 0.847 0.614 0.765 0.715 0.517
MMD 0.841 0.640 0.755 0.719 0.494

DCTEDf 0.858 0.633 0.778 0.750 0.515
DCTED 0.872 0.660 0.799 0.762 0.573

tive learning methods. Due to the space limit, we report the
averaged results over different number of selected samples.
The results are shown in Tables 7 and 8. From the tables, we
see that active learning methods achieve better performance
than random selection in most cases. Our method (DCTED)
outperforms the other comparing methods on these datasets.

6.4 Parameter Study

Now we study the effects of parameters. Compared with
the original CTED method, our DCTED method introduces
a new hyper parameter, i.e., ↵. It is interesting to investi-
gate how this parameter affects the performance of DCTED.
To illustrate the effects of ↵, we fix the number of selected
samples as 50. For CTED, we report the best performance it
achieves. For our method, i.e., DCTED, we vary the value
of ↵ in [10

�3
, 10

�2
, ..., 10

3
] and report the corresponding re-

sults. Same as the setting in the previous subsection, the ex-
periments are repeated 10 times with different data partitions
and the average results are reported. The results are shown
in Figs. 1 and 2. The results in these two figures show that
our method (i.e., DCTED) achieves better performance than
CTED in a wide range of ↵. This again verifies that, the
ability of CTED can be improved by imposing diversity on
sample selection. We also observe that, the performance of
DCTED generally becomes better when the value of ↵ in-
creases. In a certain value of ↵, DCTED achieves the best
performance. If we continue to increase the value of ↵, the
performance of DCTED starts to decrease. The reason is that,
when ↵ is too large, the diversity regularizer will dominate
the objective function and the reconstruction part has little ef-
fects on sample selection, leading to select samples which do
not have good capacity for data reconstruction.

Table 8: Results Based on KNN Classifier
Methods USPS MNIST NewsG WEBKB ORL
Random 0.710 0.590 0.638 0.613 0.453
CTED 0.781 0.566 0.716 0.640 0.462
ALNR 0.819 0.475 0.717 0.637 0.456
ARSS 0.849 0.590 0.705 0.639 0.475
MMD 0.838 0.617 0.696 0.625 0.450

DCTEDf 0.832 0.605 0.720 0.662 0.474
DCTED 0.855 0.639 0.737 0.664 0.528
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Figure 1: Parameter Study on MNIST and WEBKB
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Figure 2: Parameter Study on ORL and USPS

7 Conclusion

In this paper, we proposed to enhance CTED with diversity
mechanism by imposing a diversity regularizer over sample
selection. Our proposed method, i.e., Diversified CTED, can
select informative samples with complementary information
and exclude highly similar ones which convey overlapped in-
formation. Extensive experimental results demonstrated that,
with diversification, Diversified CTED significantly improves
CTED and consistently outperforms the state-of-the-art active
learning methods.
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