
Dynamic Early Stopping for Naive Bayes

Aäron Verachtert, Hendrik Blockeel, and Jesse Davis
Department of Computer Science

KU Leuven
Celestijnenlaan 200A 3001 Leuven, Belgium

{aaron.verachtert, hendrik.blockeel, jesse.davis}@cs.kuleuven.be

Abstract
Energy efficiency is a concern for any software run-
ning on mobile devices. As such software employs
machine-learned models to make predictions, this
motivates research on efficiently executable mod-
els. In this paper, we propose a variant of the widely
used Naive Bayes (NB) learner that yields a more
efficient predictive model. In contrast to standard
NB, where the learned model inspects all features
to come to a decision, or NB with feature selection,
where the model uses a fixed subset of the features,
our model dynamically determines, on a case-by-
case basis, when to stop inspecting features. We
show that our approach is often much more effi-
cient than the current state of the art, without loss
of accuracy.

1 Introduction
Portable battery-powered devices such as tablets, smart-
phones, cameras, and intelligent sensors are ubiquitous in
our world. With this comes an increasing need to deploy
machine-learned models on such systems (see, e.g., [Badami
et al., 2016]). However, these devices have constraints on
their resources such as battery life, CPU power, memory and
disk space. In particular, the CPU time needed to make
a prediction with such models directly affects the energy-
efficiency of the device, and hence its autonomy. For this
reason, studying how to design models that make predictions
more efficiently has begun to attract attention [Seldin et al.,
2013; Herbrich et al., 2015].

In this paper, we study this question for Naive Bayes. NB
is a widely used learning method, in part because the learning
phase is efficient and the learned model is often very accurate.
However, in the prediction phase, NB can be relatively inef-
ficient, as it inspects all features of the query instance before
making a decision. This can be alleviated by performing fea-
ture selection: during training, a static subset of the features
is selected such that the model based on this subset performs
as well as a model based on all features.

We propose a novel model format and learner. Our model
format incorporates certain “stopping conditions” into the ba-
sic NB model in order to determine dynamically, for each

individual query instance, when to stop inspecting more fea-
tures. This “dynamic stopping” approach can be combined
with standard feature selection.

The basic idea is the following. As the NB model iter-
ates over the features, it updates a score for each class; the
class that scores highest in the end will be the one predicted.
In some cases, one class may be so far ahead of the others
that it seems unlikely that any other class will catch up. At
that point, we can stop and predict the class that is currently
ahead. Such an approach requires a very efficient stopping
criterion, otherwise the computational effort of evaluating the
criterion may outweigh the gain of not having to evaluate
more features. We propose algorithms for determining when
and where to include the stopping conditions and how to per-
form prediction with these models. Empirically, we find that
this approach yields substantial efficiency gains compared to
both static feature selection and several other baselines with-
out loss of predictive performance.

2 Naive Bayes
Assume we want to learn a classifier that predicts the class Y
from input variables X1, . . . , Xm

. For ease of explanation,
we assume nominal variables, and we systematically use y
and x

i

to denote a particular value from the domain of Y and
X

i

. The Naive Bayes classifier predicts the class y that maxi-
mizes p(y)

Q
m

i=1 p(xi

|y). This prediction is Bayes-optimal if
the X

i

are conditionally independent given the class; if not,
the classifier still works well in practice [Domingos and Paz-
zani, 1997].

Learning the Naive Bayes classifier is as simple as esti-
mating p(y) and p(x

i

|y) for all values of i, x
i

and y, and
storing these estimates in a table. The estimates are usually
based on frequency counts with Laplace smoothing. In prac-
tice, implementations often compute a sum of logs instead
of this product, to avoid numerical underflow. That is, with
l(·) = log p̂(·) and p̂(·) the estimate of p(·), practical imple-
mentations store the l values in a table during learning, and
for prediction return argmax

y

l(y) +
P

m

i=1 l(xi

|y).
For binary prediction, where Y can only have values 0 or 1,

one can equivalently store for each value of each attribute the
difference d(x

i

) = l(x
i

|1)� l(x
i

|0) and predict class 1 if and
only if l(1)� l(0) +

P
m

i

d(x
i

) > 0. In this case, it is known
that 0 is not always the optimal threshold, and it may be better
to treat this threshold as a tunable parameter t [Thai-Nghe et

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2082

al., 2010]. The decision criterion then becomes: predict class
1 if and only if

l(1)� l(0) +
mX

i=1

d(x
i

) > t. (1)

From here on, we focus on this implementation of Naive
Bayes.

One way to speed up Naive Bayes is to not include all m
attributes in the model, but only the k most informative ones.
These can be chosen using standard feature selection meth-
ods, which typically use some function to score attributes
according to expected informativeness and then select the k
highest-scoring ones.

Another way to speed up Naive Bayes is to stop inspecting
attributes as soon as it is clear that the outcome can no longer
change. For the positive class, this occurs if the accumulated
sum through attribute i is so far above t that it is impossible
for the remaining attributes to bring it down to below t; that
is

l(1)� l(0) +
iX

j=1

d(x
j

)� t > |
mX

j=i+1

min

xi2Dom(Xi)
d(x

i

)|.

In other words, even if all the unobserved values maximally
favor the negative class (d(x

i

) is maximally negative), the
end result cannot be lower than t. A similar rule holds for the
negative class when the accumulated sum is too far below t.

While this criterion is safe (stopping never gives a differ-
ent outcome from continuing), it is unlikely to bring any ef-
ficiency gain. The stopping condition assumes a worst-case
scenario for the unseen attributes. In the (unrealistic) best-
case scenario where the first attributes maximally favor class
1, one still expects the condition to be fulfilled only when i
is approximately m/2. In practice, i will be much closer to
m. Thus, the typical savings would be less than half of the
iterations, while the stopping condition makes each iteration
more than twice as expensive.

3 Related Work
The same-decision probability is a measure to evaluate the
probability that a prediction using only a subset of the avail-
able attributes will change after evaluating the remaining at-
tributes [Choi et al., 2012]. For Naive Bayes, this probabil-
ity can either be approximated or computed exactly [Chen
et al., 2014]. By ordering the attributes by informativeness,
the assumptions of the approximation techniques are violated
which could adversely affect the same-decision probability
estimate. In the worst case, computing an exact estimate is
exponential in the number of remaining attributes. In con-
trast, our approach can be viewed as a simple heuristic that
gains efficiency and seems to work well in practice but does
not offer guarantees.

Another area of related work is cost-sensitive learning
(e.g., [Elkan, 2001; Chai et al., 2004; Xu et al., 2013;
2014]). Typically, these approaches focus on whether the
cost associated with acquiring an attribute value outweighs
the expected improvement in performance. Our problem can
be translated into a cost-sensitive setting by defining the cost

of each attribute as the CPU time needed to incorporate its
value into the prediction. Chai et al. (2004) focus on costs
associated with acquiring and using attribute values at test
time. Their dynamic strategy for selecting which attributes
to acquire is computationally expensive as it evaluates at test
time what the benefit of each unobserved feature would be.
A more recent cost-sensitive approach is model cascades,
which uses a sequence of progressively more expensive mod-
els to classify an example. The process stops once there
is sufficient confidence in the prediction [Xu et al., 2013;
2014].

Both the same-decision probability and cost-sensitive
Naive Bayes can be used to dynamically stop prediction.
However, they both rely on performing calculations at predic-
tion time to decide when to stop evaluating extra attributes,
which could be computationally demanding. We propose a
more efficient method in the next section.

4 Dynamic Early Stopping during Naive
Bayes Prediction

In standard Naive Bayes, the learned model is a table that
contains the d(·) values. Prediction with this model involves
iterating over all included attributes, and updating a score for
each class after observing the value of each attribute. The
final prediction is made only after considering all attributes.
In contrast, our proposed approach dynamically decides at
test time how many attributes to consider when classifying
each example.

4.1 Predicting with Stop Points

Algorithm 1 Prediction with Stop Points
Input:

d: table with log-coefficients of the NB model;
S: list of stop points (k, u, l);
t: decision threshold;
x = (x1, . . . , xm

): instance to be classified
Output: prediction for x

� = d[0, 0]
start = 1

for all (k, u, l) in S, from low to high k, do
� = �+

P
k

i=start

d[i, x
i

]

if � > u then return 1
else if � < l then return 0
start = k + 1

� = �+

P
m

i=start

d[i, x
i

]

if � > t then return 1
else return 0

The key idea behind our approach is that instead of iter-
ating over all features, the prediction can stop after the kth

feature, if a certain stopping condition is fulfilled. To achieve
this, we extend the Naive Bayes model with a list of stop

points. Formally, a stop point is a tuple (k, u, l) where k is
an attribute index, and u and l are upper and lower thresholds

2083

on an example’s predicted probability of being positive after
observing the first k attributes.

When making a prediction in a model with stop points, in-
ference iterates over the attributes until it reaches a stop point.
Then if p(y = 1|x1, . . . , xk

) > u or p(y = 1|x1, . . . , xk

) <
l, inference is stopped and the current prediction is returned.
Algorithm 1 shows pseudocode for prediction with this ex-
tended model. It assumes d[i, j] with i > 0 contains the d(·)
value for value j of attribute i, and d[0, 0] contains l(1)� l(0)
(see Equation 1); u and l here denote the bounds in log space.

4.2 Identifying Stop Points
Incorporating stop points into the model complicates the
training algorithm. In addition to learning the table (like
standard Naive Bayes), it also needs to learn the list of stop
points (k, u, l). This entails deciding where to include stop
points (k) and picking the stopping thresholds u and l for that
position. As checking whether inference can be stopped in-
cludes a non-negligible computational cost, associating a stop
point with each attribute would likely outweigh any potential
efficiency gains. Therefore, we need to carefully consider
whether it is worthwhile to add a stop point.

Our training algorithm will include a stop point (k, u, l)
only if two criteria are fulfilled:

1. The support criterion: a sufficient proportion of the
instances reaching that stop point is expected to fulfill
the stopping condition, and

2. The accuracy criterion: the expected accuracy on these
instances, if they are assigned the currently higher-
scoring class, is high enough.

Note that both criteria rely on expected values. These are
estimated using a separate validation set.

In our implementation, the support criterion simply states
that the estimated proportion of instances that fulfill the stop-
ping condition (we call these “stopped instances”) must be
above a given threshold s, which is a parameter of the train-
ing algorithm.

The accuracy criterion is more complicated. The most in-
tuitive criterion is the following (R1): For the stopped in-

stances, the expected accuracy if they are assigned the cur-

rently highest-scoring class is at least as high as the expected

accuracy if they would be assigned the highest-scoring class

after seeing all features. In other words, early stopping does
not hurt accuracy. We found this rule not to work well, ap-
parently because it suffers from overfitting. This accounts
for possible overestimation of the early-stopping accuracy. In
addition, a second rule was added (R2): The expected ac-

curacy on stopped instances should be p% higher than the

full model’s accuracy on all instances, where p is a parame-
ter. This rule helps avoid that instances are stopped, not be-
cause their early-stopping accuracy is high, but because the
accuracy of the full model happens to be low. Here, p is an
additional countermeasure against overfitting. The accuracy
criterion is the conjunction of R1 and R2.

The training algorithm determines stop points as follows.
For each position k, it checks if a u and l can be found such
that (k, u, l) meets both the support criterion and the accuracy
criterion. The thresholds need to be set separately after each

attribute because NB’s probability estimates tend towards 0 or
1 as more attributes are observed. When multiple u and l are
found, it chooses the lowest u and highest l, as this maximizes
the proportion of instances that are stopped.

Algorithm 2 Training Naive Bayes with Stop Points
Input:

T : training set
V : validation set
M : ordering metric
s: support parameter
p: performance threshold

Output:
d: Naive Bayes model
S: list of stop points (k, u, l), where k is the position, u is
the upper bound, and l is the lower bound
t: decision threshold for instances that observe all at-
tributes

Order X from most to least informative using M
d = TRAINNB(T) // Train NB model with all attributes
d
i

= function mapping x to d’s score for x after the first i
attributes
V 0 = V // V 0 is the set of examples for which inference has not
been stopped
for i = 1 to m do

// Find candidate bounds that meet the accuracy re-
quirements

C = IDENTIFYCANDIDATETHRESHOLDS
U = {v 2 C|MEETSACCREQ({x 2 V 0|d

i

(x) > v})}
L = {v 2 C|MEETSACCREQ({x 2 V 0|d

i

(x) < v})}
// Choose those that eliminate the most examples
if U is empty then u = 1 else u = min(U)

if L is empty then l = �1 else l = max(L)
// If the support is high enough, insert stop point
Out = {x 2 V 0|d

i

(x) > u _ d
i

(x) < l}
if |Out| � s|V 0| then

add (i, u, l) to S
V 0 = V 0 �Out

t = PICKDECISIONTHRESHOLD(V 0)

function MEETSACCREQ(S)
return ACC(d

i

, S) > (1 + p)ACC(d
m

, V) &

ACC(d
i

, S) > ACC(d
m

, S)

Putting it all together Algorithm 2 provides pseudocode
for the training algorithm. As input, it receives a training
set T , a validation set V , an ordering metric M , a support
threshold s, and an improvement threshold p. Using the train-
ing data T , a Naive Bayes classifier is trained using all the
attributes. It statically orders the attributes according to M
such that the most informative ones are evaluated first in an
attempt to arrive at a decision as quickly as possible.

Next, the algorithm iterates over the attributes from most
to least informative and considers introducing a stop point af-
ter each attribute k. It treats the predicted probability of each
example in the validation data as a candidate upper (lower)

2084

Name #I #A #p / #n
RCV1-v2 804,414 47,236 381,327 / 423,087
KDD 2009 50,000 15,000 3,674 / 463,126
p53 31,422 5,408 152 / 31,270
Thrombin 2,545 139,351 193 / 2,352
YouTube 122,046 1,000 31,722 / 90,324
Gisette 7,000 5,000 3,500 / 3,500
IMDb.drama 120,670 1,001 43,679 / 76,991

Table 1: Summary of the used data sets. For each data set,
the number of instances (#I), the number of attributes (#A)
and the class distribution (#p / #n) is listed.

threshold1 and identifies all thresholds such that classifying
all examples in the validation data with a predicted probabil-
ity above (below) the threshold as positive (negative) satis-
fies the two accuracy conditions. Of the thresholds that meet
the accuracy requirements, it then picks the upper and lower
thresholds that apply to the largest number of examples. If the
two thresholds apply to at least s|V | examples in aggregate,
a stop point (k, u, l) is added. After adding a stop point, all
stopped examples are removed from the validation data.

5 Experimental Evaluation
The goal of our empirical evaluation is to answer the follow-
ing questions:

1. For a fixed attribute budget k, how does the dynamic
approach compare to the static one in terms of efficiency
and accuracy?

2. How does our proposed approach compare to same-
decision probability (SDP) [Choi et al., 2012] and cost-
sensitive Naive Bayes (csNB) [Chai et al., 2004]? These
represent two other ways to dynamically make a predic-
tion based on only a subset of the attributes.

To answer the first question, we train two types of models for
each attribute ordering. The baseline is a “static” model that
always uses k attributes to make a prediction. Then we learn a
dynamic model according to our proposed approach that can
consider at most k attributes at prediction time. To explore a
range of different operating conditions, we investigate various
values of k.

5.1 Data Sets
We perform an evaluation using seven data sets from various
domains, summarized in Table 1. Each data set has at least
1000 attributes. We treat each task as a binary classification
problem and we discretize numerical features by computing
the mean and standard deviation for each of these features
on the training data. We construct four bins. The first bin
contains 0, as most data sets are very sparse. The three re-
maining bins are: (�1, (µ � �)], ((µ � �), (µ + �)], and
((µ+ �),+1).

1This is analogous to the standard approach to discretizing a con-
tinuous feature in decision tree learning or building an ROC curve.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 10 100 1000

Sp
ee

du
p

fa
ct

or

Budget
IG Δ CP Greedy

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 10 100 1000En
er

gy
 S

av
in

gs
 F

ac
to

r

Budget
IG Δ CP Greedy

Figure 1: Time (left) and energy (right) efficiency of the dy-
namic approach, relative to the static one, measured on the
Raspberry Pi for the IMDb.drama data set.

5.2 Methodology
This section discusses the methodology of our empirical eval-
uation. First, we discuss the experimental setup, and then we
explain which evaluation metrics we use.

Experimental Details
We consider the following values for the budget k: 5, 10, 25,
50, 100, 200, 500, 1000. For our approach, we set p = 0.05
and s = 0.05 and did not try other values. For attribute or-
derings, we consider a greedy, hill-climbing wrapper-based
feature selection method (Greedy) [Kohavi and John, 1997];
FCBF [Yu and Liu, 2003], a correlation-based feature se-
lection method; information gain (IG) and chi square (Chi),
which are standard filter-based feature selection criteria; and
a novel metric tailored to Naive Bayes that estimates the dif-
ference in conditional probabilities (�CP), which is defined
as:

�CP (X
i

) =

X

xi2dom(Xi)

p̂(x
i

)|p̂(x
i

|1)� p̂(x
i

|0)|. (2)

Intuitively, this is a weighted average of how discriminative
a particular attribute is, given that Naive Bayes uses the con-
ditional probabilities to build up its “confidence” in a given
prediction.

Each data set is split into a training set, a validation set
and a test set. As RCV1-v2 is usually treated as a tempo-
ral data set, we use the standard chronological split [Lewis et

al., 2004], where the training set consists of the first 23,149
instances, the validation set consists of the next 23,149 in-
stances, and the test set consists of the remaining instances.
For the other data sets, we randomly select 40% of the exam-
ples for training, 20% for validation, and 40% for testing. We
repeat this procedure ten times and report an average across
all runs.

Evaluation Metrics
We want to measure two properties of the learned models:
efficiency and predictive performance. For efficiency, we be-
gin by using a Raspberry Pi system (Model B+, 512MB, with
Power Bank battery pack supplying 5V at a maximum of 1A)
running Raspbian and a Java Virtual Machine, and measure
energy consumption using a Tenma digital multimeter 72-
7730A. Energy consumption in kWh is calculated by multi-
plying the time it takes to make a prediction for all examples
in the test set by the average electric current during prediction
and the steady voltage of 5V.

Taking energy measurements with such a system is better
than using a device like a smartphone, where it is harder to

2085

 0

 1

 2

 3

 4

 5

 10 100 1000

Sp
ee

du
p

Fa
ct

or

Budget
IG Δ CP Greedy

 0

 1

 2

 3

 4

 5

 10 100 1000

Sp
ee

du
p

Fa
ct

or

Budget
IG Δ CP Greedy

0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

 10 100 1000W
ei

gh
te

d
Ac

cu
ra

cy

Budget
IGD

IGS

ΔCPD
ΔCPS

GreedyD
GreedyS

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64

 10 100 1000W
ei

gh
te

d
Ac

cu
ra

cy

Budget
IGD

IGS

ΔCPD
ΔCPS

GreedyD
GreedyS

Figure 2: Speedup factor and weighted accuracy as a function of attribute budget, for the RCV1-v2 (left) and YouTube (right)
data sets. For readability, we only show the curves for three attribute rankings: IG, �CP, Greedy. For the weighted accuracy
plots, the dynamic models (·

D

) are shown in solid lines and the static models (·
S

) in dashed lines. On the weighted accuracy
plots, the lines for the corresponding static and dynamic approaches are largely overlapping, indicating that using the dynamic
approach does not result in a loss of predictive performance. For example, on the RCV1-v2 data set, the curves for the dynamic
and static variants using Greedy attribute selection are completely overlapping.

control which other applications are running. Due the con-
strained environment, this type of evaluation is very time con-
suming. It has been observed elsewhere [Verachtert et al.,
2015] that CPU time correlates well with energy usage. After
double-checking this claim, we therefore use CPU time for
prediction as a proxy for energy usage.

Because several of our data sets have an imbalanced class
distribution, simply reporting accuracy would lead to several
cases where the majority classifier would achieve very good
performance. Therefore, we use weighted accuracy as our
metric, with a misclassification cost of 1 for a negative ex-
ample and f(0)/f(1) for a positive example, where f(y) is
the frequency of class y in the validation set. We estimate
the costs based on the class distribution in the validation data.
The same weighted accuracy metric is used for the accuracy
requirements in the training procedure. Note that using a
ranking metric such as area under the ROC curve would be
challenging for the dynamic approach as the number of at-
tributes it considers depends on the example. Thus, the prob-
ability estimates may not be comparable across stop points.

5.3 Results and Discussion
Figure 1 shows the result of an experiment with the Raspberry
Pi, using the IMDb.drama data set. The x-axis shows the bud-
get, the y-axis the speedup factor (left) or relative energy effi-

ciency (right) for the dynamic approach, relative to the static
approach. This graph confirms two things: (a) on the Rasp-
berry Pi, our approach can lead to significant energy savings;
and (b) speedup is a good proxy for energy efficiency (the
difference between these two is on average 0.03 in these data,
with one outlier of 0.11 at budget 25). Because CPU time
is much easier to measure, we henceforth focus on speedup
factors, measured on desktops.

Figure 2 shows the speedup factor and the difference
in weighted accuracy as a function of attribute budget for
two representative data sets: YouTube and RCV1-v2.2 For
RCV1-v2, regardless of the ordering heuristic, the dynamic
approach always results in faster prediction times than the
static approach. In terms of accuracy, the curves for the static
and dynamic approach for each ordering metric are largely
overlapping, indicating that the runtime improvements come
with no loss in predictive performance. For YouTube, the
prediction times for the dynamic approach are slightly slower
for small values of k, due to the extra cost associated with
filtering out examples. However, for values of k > 25 the
dynamic approach results in substantial savings in prediction
time. Furthermore, these are the values of k that result in the

2Full experimental results are available in the online supplement
at http://dtai.cs.kuleuven.be/software/dsnb

2086

Chi IG � CP Greedy FCBF
SF �wAcc SF �wAcc SF �wAcc SF �wAcc SF �wAcc

RCV1-v2 2.55 +0.44 3.15 +0.15 5.27 +1.60 1.63 +0.00 1.37 -1.18
KDD 2009 1.99 +0.04 1.11 -0.06 1.25 +0.56 1.53 -0.10 1.47 -0.34
p53 3.40 -1.36 2.83 +0.07 3.03 -0.57 1.89 -0.59 2.16 -3.51
Thrombin 1.60 -0.23 1.02 -0.40 4.88 -0.91 0.97 -0.22 1.13 -4.91
YouTube 1.93 +0.61 2.67 +0.40 2.26 +0.44 2.92 +0.60 2.26 -0.26
Gisette 4.43 +0.49 4.42 +0.71 4.12 +0.82 1.91 +0.02 1.38 -0.29
IMDb.drama 4.43 +0.49 4.42 +0.71 4.12 +0.82 1.91 +0.02 1.38 -0.29

Table 2: For the budget that maximizes the validation set accuracy of the static model (separately optimized for each data set),
the table lists the speedup factor (SF) and gain in weighted accuracy (�wAcc) of the dynamic model.

best predictive performance. Again, we observe that using
the dynamic approach results in nearly equivalent predictive
performance as the static approach.

Table 2 compares the static model with the attribute budget
that maximizes the validation set weighted accuracy to the
dynamic model with the same budget for each feature rank-
ing method in terms of speedup factor (SF) and difference
in weighted accuracy (�wAcc). Across the 35 settings, the
dynamic approach results in an improved runtime 34 times.
Speedup factors vary from 0.97 to 5.27. For �wAcc, positive
numbers indicate that the dynamic approach is better than the
static one. The dynamic and static models tend to have simi-
lar weighted accuracy scores: sometimes one is better, some-
times the other, with the difference typically below 1%. In
summary, the dynamic approach achieves substantial runtime
gains without sacrificing predictive performance.

Our approach makes these energy improvements while also
respecting the memory restrictions of a resource-constrained
environment. Augmenting the model with the stop points re-
quires storing one integer and two floating point numbers per
stop point. In practice, this corresponds to an increased mem-
ory use (averaged over our data sets) of 15% for k = 10, 3%
for k = 100 and 0.4% for k = 1000.

Finally, we compared our approach to csNB and SDP.
These can also be used to make a decision whether to stop
prediction, but require more calculations during the inference
process. In our experiments, the computation time csNB
needed to decide whether to make a prediction or see more
attributes depended linearly on the number of remaining un-
observed attributes, and was about 28 times that of simply
incorporating all remaining attributes into the prediction. For
SDP, we found that it is only faster than evaluating all remain-
ing attributes when less than 10 attributes are left; with 20 at-
tributes remaining, computing the SDP was more than 1000
times slower than simply evaluating the last 20 attributes.
Consequently, neither of these approaches offers much of an
improvement over static feature selection. In contrast, our
approach results in substantial efficiency improvements. Es-
sentially, the runtime cost csNB and SDP impose for dynam-
ically deciding when to stop the prediction will only yield
benefits when acquiring an attribute value is extremely ex-
pensive either in terms of energy (computation) or monetary
cost.

6 Conclusion
As deploying machine-learned models becomes more preva-
lent on devices with constrained resources, it becomes im-
portant to reduce the CPU burden associated with making
predictions. We tackled this problem for Naive Bayes by em-
ploying a dynamic strategy that stops the prediction process
for test examples whose label is sufficiently certain. Empir-
ically, we found that our dynamic approach can reduce the
energy consumption per example by over 80% compared to
a static approach, without significantly affecting accuracy. In
the future, we would like to explore how to incorporate fea-
ture extraction costs into the model data sets, and measure the
energy usage associated with predictions on a sensor.

Acknowledgments
Aäron Verachtert and Hendrik Blockeel are partially sup-
ported by FWO-Vlaanderen (G.0179.10, G0682.11) and KU
Leuven Research Fund (CREA/13/014, GOA/13/010). Jesse
Davis is partially supported by the KU Leuven Research
Fund (C22/15/015), and FWO-Vlaanderen (G.0356.12, SBO-
150033). We thank Jan Van Haaren, Wannes Meert, and the
anonymous reviewers for their feedback.

References
[Badami et al., 2016] Komail Badami, Steven Lauwereins,

Wannes Meert, and Marian Verhelst. A 90 nm CMOS,
6 µW power-proportional acoustic sensing frontend for
voice activity detection. IEEE Journal of Solid-State Cir-

cuits, 51(1):291–302, 2016.

[Chai et al., 2004] Xiaoyong Chai, Lin Deng, Qiang Yang,
and Charles X. Ling. Test-cost sensitive naive Bayes clas-
sification. In Proceedings of the 4th IEEE International

Conference on Data Mining, pages 51–58, 2004.

[Chen et al., 2014] Suming Jeremiah Chen, Arthur Choi, and
Adnan Darwiche. Algorithms and applications for the
same-decision probability. Journal Artificial Intelligence

Research, 49:601–633, 2014.

[Choi et al., 2012] Arthur Choi, Yexiang Xue, and Adnan
Darwiche. Same-decision probability: A confidence mea-
sure for threshold-based decisions. International Journal

of Approximate Reasoning, 53(9):1415–1428, 2012.

2087

[Domingos and Pazzani, 1997] Pedro Domingos and
Michael J. Pazzani. On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Machine

Learning, 29(2-3):103–130, 1997.
[Elkan, 2001] Charles Elkan. The foundations of cost-

sensitive learning. In Proceedings of the Seventeenth Inter-

national Joint Conference on Artificial Intelligence, pages
973–978, 2001.

[Herbrich et al., 2015] Ralf Herbrich, Venkatesh Saligrama,
Kilian Q. Weinberger, Joe Wang, Tolga Bolukbasi, and
Matt J. Kusner, editors. ICML Workshop on Resource-

Efficient Machine Learning, 2015.
[Kohavi and John, 1997] Ron Kohavi and George H. John.

Wrappers for feature subset selection. Artificial Intelli-

gence, 97(1-2):273–324, 1997.
[Lewis et al., 2004] David D. Lewis, Yiming Yang, Tony G.

Rose, and Fan Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning

Research, 5:361–397, 2004.
[Seldin et al., 2013] Yevgeny Seldin, Yasin Abbasi-Yadkori,

Koby Crammer, Ralf Herbrich, and Peter Bartlett, editors.
NIPS Workshop on Resource-Efficient Machine Learning,
2013.

[Thai-Nghe et al., 2010] Nguyen Thai-Nghe, DT Nghi, and
Lars Schmidt-Thieme. Learning optimal threshold on re-
sampling data to deal with class imbalance. In Proceed-

ings of IEEE RIVF International Conference on Comput-

ing and Telecommunication Technologies, pages 71–76,
2010.

[Verachtert et al., 2015] Aäron Verachtert, Wannes Meert,
Jesse Davis, and Hendrik Blockeel. Empirical study: En-
ergy usage of standard machine learning prediction. In
Proceedings of the ICML 2015 Workshop on Resource-

Efficient Machine Learning, 2015.
[Xu et al., 2013] Zhixiang Xu, Matt Kusner, Minmin Chen,

and Kilian Q Weinberger. Cost-sensitive tree of classifiers.
In Proceedings of the Thirtieth International Conference

on Machine Learning, pages 133–141, 2013.
[Xu et al., 2014] Zhixiang Eddie Xu, Matt J. Kusner, Kil-

ian Q. Weinberger, Minmin Chen, and Olivier Chapelle.
Classifier cascades and trees for minimizing feature eval-
uation cost. Journal of Machine Learning Research,
15(1):2113–2144, 2014.

[Yu and Liu, 2003] Lei Yu and Huan Liu. Feature selection
for high-dimensional data: A fast correlation-based filter
solution. In Proceedings of the Twentieth International

Conference on Machine Learning, pages 856–863, 2003.

2088

