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Abstract
We investigate the !1-constrained representation
which demonstrates robustness to quantization er-
rors, utilizing the tool of deep learning. Based
on the Alternating Direction Method of Multipliers
(ADMM), we formulate the original convex min-
imization problem as a feed-forward neural net-
work, named Deep !1 Encoder, by introducing
the novel Bounded Linear Unit (BLU) neuron and
modeling the Lagrange multipliers as network bi-
ases. Such a structural prior acts as an effective net-
work regularization, and facilitates the model ini-
tialization. We then investigate the effective use of
the proposed model in the application of hashing,
by coupling the proposed encoders under a super-
vised pairwise loss, to develop a Deep Siamese !1
Network, which can be optimized from end to end.
Extensive experiments demonstrate the impressive
performances of the proposed model. We also pro-
vide an in-depth analysis of its behaviors against
the competitors.

1 Introduction
1.1 Problem Definition and Background
While !0 and !1 regularizations have been well-known and
successfully applied in sparse signal approximations, it has
been less explored to utilize the !1 norm to regularize signal
representations. In this paper, we are particularly interested
in the following !1-constrained least squares problem:

min
x

||Dx − y||22 s.t. ||x||1 ≤ λ, (1)

where y ∈ Rn⇥1 denotes the input signal, D ∈ Rn⇥N the
(overcomplete) the basis (often called frame or dictionary)
with N < n, and x ∈ RN⇥1 the learned representation. Fur-
ther, the maximum absolute magnitude of x is bounded by
a positive constant λ, so that each entry of x has the small-
est dynamic range [Lyubarskii and Vershynin, 2010]. As a
result, The model (1) tends to spread the information of y
approximately evenly among the coefficients of x. Thus, x
is called “democratic” [Studer et al., 2014] or “anti-sparse”
[Fuchs, 2011], as all of its entries are of approximately the
same importance.

In practice, x usually has most entries reaching the same
absolute maximum magnitude [Studer et al., 2014], therefore
resembling to an antipodal signal in an N -dimensional Ham-
ming space. Furthermore, the solution x to (1) withstands
errors in a very powerful way: the representation error gets
bounded by the average, rather than the sum, of the errors in
the coefficients. These errors may be of arbitrary nature, in-
cluding distortion (e.g., quantization) and losses (e.g., trans-
mission failure). This property was quantitatively established
in Section II.C of [Lyubarskii and Vershynin, 2010]:
Theorem 1.1. Assume ||x||2 < 1 without loss of general-
ity, and each coefficient of x is quantized separately by per-
forming a uniform scalar quantization of the dynamic range
[−λ, λ] with L levels. The overall quantization error of x
from (1) is bounded by �

p
N

L

. In comparision, a least squares
solution x

LS

, by minimizing ||Dx
LS

− y||22 without any con-
straint, would only give the bound

p
n

L

.
In the case of N << n, the above will yield great robust-

ness for the solution to (1) with respect to noise, in particular
quantization errors. Also note that its error bound will not
grow with the input dimensionality n, a highly desirable sta-
bility property for high-dimensional data. Therefore, (1) ap-
pears to be favorable for the applications such as vector quan-
tization, hashing and approximate nearest neighbor search.

In this paper, we investigate (1) in the context of deep
learning. Based on the Alternating Direction Methods of
Multipliers (ADMM) algorithm, we formulate (1) as a feed-
forward neural network [Gregor and LeCun, 2010], called
Deep !1 Encoder, by introducing the novel Bounded Linear
Unit (BLU) neuron and modeling the Lagrange multipliers
as network biases. The major technical merit to be presented,
is how a specific optimization model (1) could be translated
to designing a task-specific deep model, which displays the
desired quantization-robust property. We then study its ap-
plication in hashing, by developing a Deep Siamese !1 Net-
work that couples the proposed encoders under a supervised
pairwise loss, which could be optimized from end to end. Im-
pressive performances are observed in our experiments.

1.2 Related Work
Similar to the case of !0/!1 sparse approximation problems,
solving (1) and its variants (e.g., [Studer et al., 2014]) re-
lies on iterative solutions. [Stark and Parker, 1995] proposed
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an active set strategy similar to that of [Lawson and Hanson,
1974]. In [Adlers, 1998], the authors investigated a primal-
dual path-following interior-point method. Albeit effective,
the iterative approximation algorithms suffer from their in-
herently sequential structures, as well as the data-dependent
complexity and latency, which often constitute a major bot-
tleneck in the computational efficiency. In addition, the joint
optimization of the (unsupervised) feature learning and the
supervised steps has to rely on solving complex bi-level opti-
mization problems [Wang et al., 2015]. Further, to effectively
represent datasets of growing sizes, a larger dictionaries D is
usually in need. Since the inference complexity of those it-
erative algorithms increases more than linearly with respect
to the dictionary size [Bertsekas, 1999], their scalability turns
out to be limited. Last but not least, while the hyperparame-
ter λ sometimes has physical interpretations, e.g., for signal
quantization and compression, it remains unclear how to be
set or adjusted for many application cases.

Deep learning has recently attracted great attentions
[Krizhevsky et al., 2012]. The advantages of deep learning
lie in its composition of multiple non-linear transformations
to yield more abstract and descriptive embedding represen-
tations. The feed-forward networks could be naturally tuned
jointly with task-driven loss functions [Wang et al., 2016c].
With the aid of gradient descent, it also scales linearly in time
and space with the number of train samples.

There has been a blooming interest in bridging “shallow”
optimization and deep learning models. In [Gregor and Le-
Cun, 2010], a feed-forward neural network, named LISTA,
was proposed to efficiently approximate the sparse codes,
whose hyperparameters were learned from general regres-
sion. In [Sprechmann et al., 2013], the authors leveraged a
similar idea on fast trainable regressors and constructed feed-
forward network approximations of the learned sparse mod-
els. It was later extended in [Sprechmann et al., 2015] to
develop a principled process of learned deterministic fixed-
complexity pursuits, for sparse and low rank models. Lately,
[Wang et al., 2016c] proposed Deep !0 Encoders, to model !0
sparse approximation as feed-forward neural networks. The
authors extended the strategy to the graph-regularized !1 ap-
proximation in [Wang et al., 2016b], and the dual sparsity
model in [Wang et al., 2016a]. Despite the above progress,
up to our best knowledge, few efforts have been made beyond
sparse approximation (e.g., !0/!1) models.

2 An ADMM Algorithm
ADMM has been popular for its remarkable effectiveness
in minimizing objectives with linearly separable structures
[Bertsekas, 1999]. We first introduce an auxiliary variable
z ∈ RN⇥1, and rewrite (1) as:

min
x,z

1
2 ||Dx − y||22 s.t. ||z||1 ≤ λ, z − x = 0.

(2)
The augmented Lagrangian function of (2) is:

1
2 ||Dx − y||22 + pT (z − x) + �

2 ||z − x||22 + Φ
�

(z). (3)

Here p ∈ RN⇥1 is the Lagrange multiplier attached to the
equality constraint, β is a positive constant (with a default
value 0.6), and Φ

�

(z) is the indicator function which goes to

infinity when ||z||1 > λ and 0 otherwise. ADMM minimizes
(3) with respect to x and z in an alternating direction manner,
and updates p accordingly. It guarantees global convergence
to the optimal solution to (1). Starting from any initialization
points of x, z, and p, ADMM iteratively solves (t = 0, 1, 2...
denotes the iteration number):

x update: min
xt+1

1
2 ||Dx − y||22 − pT

t

x + �

2 ||z
t

− x||22,
(4)

z update: min
zt+1

�

2 ||z − (x
t+1 − pt

�

)||22 + Φ
�

(z),
(5)

p update: p
t+1 = p

t

+ β(z
t+1 − x

t+1). (6)
Furthermore, both (4) and (5) enjoy closed-form solutions:

x
t+1 = (DTD + βI)�1(DT y + βz

t

+ p
t

), (7)

z
t+1 = min(max(x

t+1 − pt

�

, −λ), λ). (8)
The above algorithm could be categorized to the primal-

dual scheme. However, discussing the ADMM algorithm in
more details is beyond the focus of this paper. Instead, the
purpose of deriving (2)-(8) is to preparing us for the design of
the task-specific deep architecture, as presented below.

3 Deep `1 Encoder
We first substitute (7) into (8), in order to derive an update
form explicitly dependent on only z and p:

z
t+1 = B

�

((DTD + βI)�1(DT y + βz
t

+ p
t

) − pt

�

),
(9)

where B
�

is defined as a box-constrained element-wise oper-
ator (u denotes a vector and u

i

is its i-th element):

[B
�

(u)]
i

= min(max(u
i

, −λ), λ). (10)

W
y

λ
z+

S, b

Figure 1: The block diagram of solving solving (1).
.

Eqn. (9) could be alternatively rewritten as:

z
t+1 = B

�

(Wy + Sz
t

+ b
t

), where:
W = (DTD + βI)�1DT ,S = β(DTD + βI)�1,
b
t

= [(DTD + βI)�1 − 1
�

I]p
t

,
(11)

and expressed as the block diagram in Fig. 1, which outlines
a recurrent structure of solving (1). Note that in (11), while
W and S are pre-computed hyperparamters shared across it-
erations, b

t

remains to be a variable dependent on p
t

, and has
to be updated throughout iterations too (b

t

’s update block is
omitted in Fig. 1).

By time-unfolding and truncating Fig. 1 to a fixed number
of K iterations (K = 2 by default)1, we obtain a feed-forward

1We test larger K values (3 or 4). In several cases they do bring
performance improvements, but add complexity too.
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Figure 2: Deep !1 Encoder, with two time-unfolded stages.

(a) tanh (b) ReLU (c) SHeLU (d) HeLU (e) BLU

Figure 3: A comparison among existing neurons and BLU.

Figure 4: Deep !1 Siamese Network, by coupling two
parameter-sharing encoders, followed by a pairwise loss (12).

network structure in Fig. 2, named Deep !1 Encoder. Since
the threshold λ is less straightforward to update, we repeat
the same trick in [Wang et al., 2016c] to rewrite (10) as:
[B

�

(u)]
i

= λ
i

B1(u
i

/λ
i

). The original operator is thus de-
composed into two linear diagonal scaling layers, plus a unit-
threshold neuron, the latter of which is called a Bounded Lin-
ear Unit (BLU) by us. All the hyperparameters W, S

k

and
b
k

(k = 1, 2), as well as λ, are all to be learnt from data by
back-propogation. Although the equations in (11) do not di-
rectly apply to solving the deep !1 encoder, they can serve
as high-quality initializations.

It is crucial to notice the modeling of the Lagrange mul-
tipliers p

t

as the biases, and to incorporate its updates into
network learning. That provides important clues on how to
relate deep networks to a larger class of optimization models,
whose solutions rely on dual domain methods.
Comparing BLU with existing neurons As shown in Fig.
3 (e), BLU tends to suppress large entries while not penal-
izing small ones, resulting in dense, nearly antipodal repre-
sentations. A first look at the plot of BLU easily reminds the
tanh neuron (Fig. 3 (a)). In fact, with the its output range
[−1, 1] and a slope of 1 at the origin, tanh could be viewed as
a smoothened differentiable approximation of BLU.

We further compare BLU with other popular and recently

proposed neurons: Rectifier Linear Unit (ReLU) [Krizhevsky
et al., 2012], Soft-tHresholding Linear Unit (SHeLU) [Wang
et al., 2016b], and Hard thrEsholding Linear Unit (HELU)
[Wang et al., 2016c], as depicted in Fig. 3 (b)-(d), respec-
tively. Contrary to BLU and tanh, they all introduce sparsity
in the outputs, and thus prove successful and outperform tanh
in classification and recognition tasks. Interestingly, HELU
seems exactly the rival against BLU, as it does not penalize
large entries but suppresses small ones down to zero.

4 Deep `1 Siamese Network for Hashing
Rather than solving (1) first and then training the encoder as
general regression, as [Gregor and LeCun, 2010] did, we in-
stead concatenate encoder(s) with a task-driven loss, and opti-
mize the pipeline from end to end. In this paper, we focus on
discussing its application in hashing, although the proposed
model is not limited to one specific application.
Background With the ever-growing large-scale image data
on the Web, much attention has been devoted to nearest
neighbor search via hashing methods [Gionis et al., 1999].
For big data applications, compact bitwise representations
improve the efficiency in both storage and search speed.
The state-of-the-art approach, learning-based hashing, learns
similarity-preserving hash functions to encode input data into
binary codes. Furthermore, while earlier methods, such as
linear search hashing (LSH) [Gionis et al., 1999], iterative
quantization (ITQ) [Gong and Lazebnik, 2011] and spectral
hashing (SH) [Weiss et al., 2009], do not refer to any super-
vised information, it has been lately discovered that involv-
ing the data similarities/dissimilarities in training benefits the
performance [Kulis and Darrell, 2009; Liu et al., 2012].
Prior Work Traditional hashing pipelines first represent each
input image as a (hand-crafted) visual descriptor, followed by
separate projection and quantization steps to encode it into
a binary code. [Masci et al., 2014] first applied the siamese
network [Hadsell et al., 2006] architecture to hashing, which
fed two input patterns into two parameter-sharing “encoder”
columns and minimized a pairwise-similarity/dissimilarity
loss function between their outputs, using pairwise labels.
The authors further enforced the sparsity prior on the hash
codes in [Masci et al., 2013], by substituting a pair of LISTA-
type encoders [Gregor and LeCun, 2010] for the pair of
generic feed-forward encoders in [Masci et al., 2014] [Xia
et al., 2014; Li et al., 2015] utilized tailored convolution net-
works with the aid of pairwise labels. [Lai et al., 2015] further
introduced a triplet loss with a divide-and-encode strategy ap-
plied to reduce the hash code redundancy. Note that for the
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final training step of quantization, [Masci et al., 2013] relied
on an extra hidden layer of tanh neurons to approximate bi-
nary codes, while [Lai et al., 2015] exploited a piece-wise
linear and discontinuous threshold function.
Our Approach In view of its robustness to quantization
noise, as well as BLU’s property as a natural binarization ap-
proximation, we construct a siamese network as in [Masci et
al., 2014], and adopt a pair of parameter-sharing deep !1 en-
coders as the two columns. The resulting architecture, named
the Deep !1 Siamese Network, is illustrated in Fig. 4. As-
sume y and y+ make a similar pair while y and y� make
a dissimilar pair, and further denote x(y) the output repre-
sentation by inputting y. The two coupled encoders are then
optimized under the following pairwise loss (the constant m
represents the margin between dissimilar pairs):

L
p

:= 1
2 ||x(y) − x(y+)||2−

1
2 (max(0, m − ||x(y) − x(y�)||))2. (12)

The representation is learned to make similar pairs as close
as possible and dissimilar pairs at least at distance m. In this
paper, we follow [Masci et al., 2014] to use a default m = 5
for all experiments.

Once a deep !1 siamese network is learned, we apply
its encoder part (i.e., a deep !1 encoder) to a new input.
The computation is extremely efficient, involving only a few
matrix multiplications and element-wise thresholding opera-
tions, with a total complexity of O(nN + 2N2). One can
obtain a N -bit binary code by simply quantizing the output.

Table 1: Comparison of NNH, SNNH, and the proposed deep
!1 siamese network.

encoder neuron structural prior
type type on hashing codes

NNH generic tanh /
SNNH LISTA SHeLU sparse

Proposed deep !1 BLU nearly antipodal
& quantization-robust

5 Experiments in Image Hashing
Implementation The proposed networks are implemented
with the CUDA ConvNet package [Krizhevsky et al., 2012].
We use a constant learning rate of 0.01 with no momentum,
and a batch size of 128. Different from prior findings such as
in [Wang et al., 2016c; 2016b], we discover that untying the
values of S1, b1 and S2, b2 boosts the performance more than
sharing them. It is not only because that more free parameters
enable a larger learning capacity, but also due to the impor-
tant fact that p

t

(and thus b
k

) is in essence not shared across
iterations, as in (11) and Fig. 2.

While many neural networks are trained well with random
initializations, it has been discovered that sometimes poor ini-
tializations can still hamper the effectiveness of first-order
methods [Sutskever et al., 2013]. On the other hand, It is
much easier to initialize our proposed models in the right
regime. We first estimate the dictionary D using the standard

K-SVD algorithm [Elad and Aharon, 2006], and then inex-
actly solve (1) for up to K (K = 2) iterations, via the ADMM
algorithm in Section 2, with the values of Lagrange multiplier
p
t

recorded for each iteration. Benefiting from the analyti-
cal correspondence relationships in (11), it is then straightfor-
ward to obtain high-quality initializations for W, S

k

and b
k

(k = 1, 2). As a result, we could achieve a steadily decreasing
curve of training errors, without performing common tricks
such as annealing the learning rate, which are found to be
indispensable if random initialization is applied.

(a) NNH representation (b) NNH binary hashing code

(c) SNNH representation (d) SNNH binary hashing code

(e) Deep `1 representation (f) Deep `1 binary hashing code

Figure 5: The learned representations and binary hashing
codes of one test image from CIFAR10, through: (a) (b)
NNH; (c) (d) SNNH; (e) (f) proposed.

Datasets The CIFAR10 dataset [Krizhevsky and Hinton,
2009] contains 60K labeled images of 10 different classes.
The images are represented using 384-dimensional GIST de-
scriptors [Oliva and Torralba, 2001]. Following the classical
setting in [Masci et al., 2013], we used a training set of 200
images for each class, and a disjoint query set of 100 images
per class. The remaining 59K images are treated as database.

NUS-WIDE [Chua et al., 2009] is a dataset containing
270K annotated images from Flickr. Every images is asso-
ciated with one or more of the different 81 concepts, and is
described using a 500-dimensional bag-of-features. In train-
ing and evaluation, we followed the protocol of [Liu et al.,
2011]: two images were considered as neighbors if they share
at least one common concept (only 21 most frequent concepts
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Table 2: Performance (%) of different hashing methods on the CIFAR10 dataset, with different code lengths N .
Hamming radius  2 Hamming radius = 0

Method mAP Prec. Recall F1 Prec. Recall F1
N

KSH 48 31.10 18.22 0.86 1.64 5.39 5.6⇥10�2 0.11
64 32.49 10.86 0.13 0.26 2.49 9.6⇥10�3 1.9⇥10�2

AGH1 48 14.55 15.95 2.8⇥10�2 5.6⇥10�2 4.88 2.2⇥10�3 4.4⇥10�3

64 14.22 6.50 4.1⇥10�3 8.1⇥10�3 3.06 1.2⇥10�3 2.4⇥10�3

AGH2 48 15.34 17.43 7.1⇥10�2 3.6⇥10�2 5.44 3.5⇥10�3 6.9⇥10�3

64 14.99 7.63 7.2⇥10�3 1.4⇥10�2 3.61 1.4⇥10�3 2.7⇥10�3

PSH 48 15.78 9.92 6.6⇥10�3 1.3⇥10�2 0.30 5.1⇥10�5 1.0⇥10�4

64 17.18 1.52 3.0⇥10�4 6.1⇥10�4 1.0⇥10�3 1.69⇥10�5 3.3⇥10�5

LH 48 13.13 3.0⇥10�3 1.0⇥10�4 5.1⇥10�5 1.0⇥10�3 1.7⇥10�5 3.4⇥10�5

64 13.07 1.0⇥10�3 1.7⇥10�5 3.3⇥10�5 0.00 0.00 0.00

NNH 48 31.21 34.87 1.81 3.44 10.02 9.4⇥10�2 0.19
64 35.24 23.23 0.29 0.57 5.89 1.4⇥10�2 2.8⇥10�2

SNNH 48 26.67 32.03 12.10 17.56 19.95 0.96 1.83
64 27.25 30.01 36.68 33.01 30.25 9.8 14.90

Proposed 48 31.48 36.89 12.47 18.41 24.82 0.94 1.82
64 36.76 38.67 30.28 33.96 33.30 8.9 14.05

are considered). We use 100K pairs of images for training,
and a query set of 100 images per concept in testing.
Comparison Methods We compare the proposed deep !1
siamese network to six state-of-the-art hashing methods:

• four representative “shallow” hashing methods: kernel-
ized supervised hashing (KSH) [Liu et al., 2012], anchor
graph hashing (AGH) [Liu et al., 2011] (we compare
with its two alternative forms: AGH1 and AGH2; see
the original paper), parameter-sensitive hashing (PSH)
[Shakhnarovich et al., 2003], and LDA Hash (LH)
[Strecha et al., 2012] 2.

• two latest “deep” hashing methods: neural-network
hashing (NNH) [Masci et al., 2014], and sparse neural-
network hashing (SNNH) [Masci et al., 2013].

Comparing the two “deep” competitors to the deep !1
siamese network, the only difference among the three is the
type of encoder adopted in each’s twin columns, as listed in
Table 1. We re-implement the encoder parts of NNH and
SNNH, with three hidden layers (i.e, two unfolded stages
for LISTA), so that all three deep hashing models have the
same depth3. Recall that the input y ∈ Rn and the hash code
x ∈ RN , we immediately see from (11) that W ∈ Rn⇥N ,
S
k

∈ RN⇥N , and b
k

∈ RN . We carefully ensure that both
NNHash and SparseHash have all their weight layers of the
same dimensionality with ours4, for a fair comparison.

We adopt the following classical criteria for evaluation: 1)

2Most of the results are collected from the comparison experi-
ments in [Masci et al., 2013], under the same settings.

3The performance is thus improved than reported in their original
papers using two hidden layers, although with extra complexity.

4Both the deep `1 encoder and the LISTA network will intro-
duce the diagonal layers, while the generic feed-forward networks
not. Besides, neither LISTA nor generic feed-forward networks con-
tain layer-wise biases. Yet since either a diagonal layer or a bias
contains only N free parameters, the total amount is ignorable.

precision and recall (PR) for different Hamming radii, and
the F1 score as their harmonic average; 2) mean average pre-
cision (MAP) [Müller et al., 2001]. Besides, for NUS-WIDE,
as computing mAP is slow over this large dataset, we follow
the convention of [Masci et al., 2013] to compute the mean
precision (MP) of top-5K returned neighbors (MP@5K), as
well as report mAP of top-10 results (mAP@10).

(a) (b)

Figure 6: The comparison of three deep hashing methods on
NUS-WIDE: (a) precision curve; (b) recall curve, both w.r.t
the hashing code length N , within the Hamming radius of 2.

We have not compared with convolutional network-based
hashing methods [Xia et al., 2014; Li et al., 2015; Lai et
al., 2015], since it is difficult to ensure their models to have
the same parameter capacity as our fully-connected model in
controlled experiments. We also do not include triplet loss-
based methods, e.g., [Lai et al., 2015], into comparison be-
cause they will require three parallel encoder columns .
Results and Analysis The performance of different meth-
ods on two datasets are compared in Tables 2 and 3. Our
proposed method ranks top in almost all cases, in terms of
mAP/MP and precision. Even under the Hamming radius of
0, our precision result is as high as 33.30% (N = 64) for CI-
FAR10, and 89.49% (N = 256) for NUS-WIDE. The pro-
posed method also maintains the second best in most cases,
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Table 3: Performance (%) of different hashing methods on the NUS-WIDE dataset, with different code lengths N .
Hamming radius  2 Hamming radius = 0

Method mAP@10 MP@5K Prec. Recall F1 Prec. Recall F1
N

KSH 64 72.85 42.74 83.80 6.1⇥10�3 1.2⇥10�2 84.21 1.7⇥10�3 3.3⇥10�3

256 73.73 45.35 84.24 1.4⇥10�3 2.9⇥10�3 84.24 1.4⇥10�3 2.9⇥10�3

AGH1 64 69.48 47.28 69.43 0.11 0.22 73.35 3.9⇥10�2 7.9⇥10�2

256 73.86 46.68 75.90 1.5⇥10�2 2.9⇥10�2 81.64 3.6⇥10�3 7.1⇥10�3

AGH2 64 68.90 47.27 68.73 0.14 0.28 72.82 5.2⇥10�2 0.10
256 73.00 47.65 74.90 5.3⇥10�2 0.11 80.45 1.1⇥10�2 2.2⇥10�2

PSH 64 72.17 44.79 60.06 0.12 0.24 81.73 1.1⇥10�2 2.2⇥10�2

256 73.52 47.13 84.18 1.8⇥10�3 3.5⇥10�3 84.24 1.5⇥10�3 2.9⇥10�3

LH 64 71.33 41.69 84.26 1.4⇥10�3 2.9⇥10�3 84.24 1.4⇥10�3 2.9⇥10�3

256 70.73 39.02 84.24 1.4⇥10�3 2.9⇥10�3 84.24 1.4⇥10�3 2.9⇥10�3

NNH 64 76.39 59.76 75.51 1.59 3.11 81.24 0.10 0.20
256 78.31 61.21 83.46 5.8⇥10�2 0.11 83.94 4.9⇥10�3 9.8⇥10�3

SNNH 64 74.87 56.82 72.32 1.99 3.87 81.98 0.37 0.73
256 74.73 59.37 80.98 0.10 0.19 82.85 0.98 1.94

Proposed 64 79.89 63.04 79.95 1.72 3.38 86.23 0.30 0.60
256 80.02 65.62 84.63 7.2⇥10�2 0.15 89.49 0.57 1.13

in terms of recall, inferior only to SNNH. In particular, when
the hashing code dimensionality is low, e.g., when N = 48
for CIFAR10, the proposed method outperforms all else with
a significant margin. It demonstrates the competitiveness of
the proposed method in generating both compact and accurate
hashing codes, that achieves more precise retrieval results at
lower computation and storage costs.

The next observation is that, compared to the strongest
competitor SNNH, the recall rates of our method seem less
compelling. We plot the precision and recall curves of the
three best performers (NNH, SNNH, deep l1), with regard to
the bit length of hashing codes N , within the Hamming radius
of 2. Fig. 6 demonstrates that our method consistently outper-
forms both SNNH and NNH in precision. On the other hand,
SNNH gains advantages in recall over the proposed method,
although the margin appears vanishing as N grows.

Although it seems to be a reasonable performance tradeoff,
we are curious about the behavior difference between SNNH
and the proposed method. We are again reminded that they
only differ in the encoder architecture, i.e., one with LISTA
while the other using the deep l1 encoder. We thus plot the
learned representations and binary hashing codes of one CI-
FAR image, using NNH, SNNH, and the proposed method,
in Fig. 5. By comparing the three pairs, one could see that
the quantization from (a) to (b) (also (c) to (d)) suffer visible
distortion and information loss. Contrary to them, the output
of the deep l1 encoder has a much smaller quantization er-
ror, as it naturally resembles an antipodal signal. Therefore, it
suffers minimal information loss during the quantization step.

In view of those, we conclude the following points towards
the different behaviors, between SNNH and deep l1 encoder:

• Both deep l1 encoder and SNNH outperform NNH, by
introducing structure into the binary hashing codes.

• The deep l1 encoder generates nearly antipodal outputs
that are robust to quantization errors. Therefore, it excels
in preserving information against hierarchical informa-

tion extraction as well as quantization. That explains
why our method reaches the highest precisions, and per-
forms especially well when N is small.

• SNNH exploits sparsity as a prior on hashing codes. It
confines and shrinks the solution space, as many small
entries in the SNNH outputs will be suppressed down
to zero. That is also evidenced by Table 2 in [Masci et
al., 2013], i.e., the number of unique hashing codes in
SNNH results is one order smaller than that of NNH.

• The sparsity prior improves the recall rate, since its ob-
tained hashing codes can be clustered more compactly
in high-dimensional space, with lower intra-clutser vari-
ations. But it also runs the risk of losing too much infor-
mation, during the hierarchical sparsifying process. In
that case, the inter-cluster variations might also be com-
promised, which causes the decrease in precision.

Further, it seems that the sparsity and l1 structure priors
could be complementary. We will explore it as future work.

6 Conclusion
This paper investigates how to import the quantization-robust
property of an !1-constrained minimization model, to a
specially-designed deep model. It is done by first deriving
an ADMM algorithm, which is then re-formulated as a feed-
forward neural network. We introduce the siamese architec-
ture concatenated with a pairwise loss, for the application pur-
pose of hashing. We analyze in depth the performance and
behaviors of the proposed model against its competitors, and
hope it will evoke more interests from the community.
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