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Abstract

Discovering association rules from transaction
databases is one of the most studied data mining
task. Many effective techniques have been pro-
posed over the years. All these algorithms share
the same two steps methodology: frequent item-
sets enumeration followed by effective association
rules generation step. In this paper, we propose a
new propositional satisfiability based approach to
mine association rules in a single step. The task is
modeled as a Boolean formula whose models cor-
respond to the rules to be mined. To highlight the
flexibility of our proposed framework, we also ad-
dress two other variants, namely the closed and in-
direct association rules mining tasks. Experiments
on many datasets show that on both closed and in-
direct association rules mining tasks, our declara-
tive approach achieves better performance than the
state-of-the-art specialized techniques.

1 Introduction

Association analysis is one of the fundamental data mining
task. It aims to discover interesting relationships hidden in
large data sets. Such relationships between sets of items are
presented in the form of implications, called association rules,
along with metrics to quantify the rule’s relevance. Since
the first well known application [Agrawal and Srikant, 1994],
usually referred to as market basket data analysis, several new
application domains have been identified, including among
others, bioinformatics, medical diagnosis, networks intrusion
detection, web mining, and scientific data analysis. This
broad spectrum of applications enabled association analysis
to be applied to a variety of data sets, including sequential,
spatial, and graph-based data.

There has been considerable work developing a nice theory
and fast algorithms for mining association rules. Among the
existing techniques, Apriori [Agrawal and Srikant, 1994] and
FP-Growth [Han et al., 2004] are some of the most known
algorithms. All these algorithms share the same two steps
methodology. The first step is to find all itemsets with ade-
quate supports and the second step is to generate association
rules with high confidence by combining these frequent or

large itemsets. Support and confidence are two important sta-
tistical measures. For a given rule r : X ! Y , the support is
defined as the percentage of transactions containing X [ Y ,
while the confidence provides an estimate of the conditional
probability p(X/Y ) of Y given X usually defined as the ra-
tio between the supports of X [ Y and X . Association rules
mining aims to identify all rules meeting user specified con-
straints such as minimum support and minimum confidence.
Supports is used to eliminate uninteresting rules, while con-
fidence measures the reliability of the inference made by the
rule. The higher the confidence, the more likely it is for Y to
be present in transactions that contain X .

From this brief overview, two observations can be made.
First, one can easily guess why association rules mining tech-
niques follow a two steps based approach. Secondly, we can
also observe that the relevance of the rules to be mined are
expressed using constraints. As pointed out in [Raedt et al.,
2011], on many data mining tasks, constraints are often part
of the problem specification. This observation led to a new
active and multidisciplinary research field, initiated by Luc
De Reardt et al. [Raedt et al., 2008], focussing on cross
fertilization between data mining and artificial intelligence
(AI). Two well-known AI representation and solving models,
namely constraint programming (CP) and propositional satis-
fiability (SAT) have been used to model and solve several data
mining tasks, including pattern mining [Guns et al., 2011;
Négrevergne and Guns, 2015; Jabbour et al., 2015a; 2015b]
and clustering [Davidson et al., 2010; Métivier et al., 2012;
Dao et al., 2013]. This new framework offers a declarative
and flexible representation model. Indeed, in data mining,
new constraints often require new implementations, while
they can be easily integrated in such declarative models.

Following this research trend, in this paper, we propose a
new propositional satisfiability based approach to mine asso-
ciation rules in a single step. The task is modeled as a propo-
sitional formula whose models correspond to the rules to be
mined. As the number of association rules can grow rapidly,
especially as we lower the frequency requirements, limiting
the number of rules produced without information loss has
be recognized as an important issue. It has also been noted
that some of the infrequent patterns, such as indirect associa-
tions, provide useful insight into the data. In our second con-
tribution, we consider two well-known variants designed to
overcome these two main limitations, namely closed [Taouil
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et al., 2000] and indirect [Tan et al., 2000] association rules
mining tasks. Our goal is to highlight the flexibility and the
nice declarative features of our proposed framework.

The paper is organized as follows. After some prelimi-
naries about propositional satisfiability and association rules
mining, we present in Section 3 our SAT-based encoding
of the association rules mining task. Section 4 presents the
two variants mentioned above, namely closed and indirect as-
sociations rules. In Section 5, our proposed approches are
extensively evaluated on many data sets, demonstrating that
declarative approaches can achieve better performances with
respect to specialized techniques particularly on closed and
indirect association rules.

2 Preliminaries

2.1 Propositional Logic and SAT Problem

In this section, we define the syntax and the semantics of
propositional logic. Let Prop be a countable set of propo-
sitional variables. We use the letters p, q, r, etc to range over
Prop. The set of propositional formulas, is defined induc-
tively started from Prop, the constant ? denoting false, the
constant > denoting true, and using the usual logical con-
nectives ¬, ^, _, !, and $. We use P(A) to denote the
set of propositional variables appearing in the formula A. A
Boolean interpretation I of a formula A is defined as a func-
tion from P(A) to {0, 1} (0 corresponds to false and 1 to
true). A model of a formula A is a Boolean interpretation I
that satisfies A, i.e. I(A) = 1. A formula A is satisfiable if
there exists a model of A. A formula in conjunctive normal
form (CNF) is a conjunction (^) of clauses, where a clause is
a disjunction (_) of literals. A literal is a propositional vari-
able (p) or a negated propositional variable (¬p). The two
literals p and ¬p are called complementary. Let us mention
that any propositional formula can be translated to a CNF for-
mula equivalent w.r.t. satisfiability, using linear Tseitin’s en-
coding [Tseitin, 1968]. The SAT problem consists in deciding
wether a given CNF formula admits a model or not.

2.2 Association Rules

Let ⌦ be a finite non empty set of symbols, called items. From
now on, we assume that this set is fixed. We use the letters a,
b, c, etc to range over the elements of ⌦. An itemset I over ⌦
is defined as a subset of ⌦, i.e., I ✓ ⌦. We use 2⌦ to denote
the set of itemsets over ⌦ and we use the capital letters I , J ,
K, etc to range over the elements of 2⌦.

A transaction is an ordered pair (i, I) where i is a natural
number, called transaction identifier, and I an itemset, i.e.,
(i, I) 2 N ⇥ 2⌦. A transaction database D is defined as a
finite non empty set of transactions (D ✓ N ⇥ 2⌦) where
each transaction identifier refers to a unique itemset.

Given a transaction database D and an itemset I , the
cover of I in D, denoted C(I,D), is defined as follows:
{i 2 N | (i, J) 2 D and I ✓ J}. The support of I in D,
denoted S(I,D), corresponds to the cardinality of C(I,D),
i.e., S(I,D) = |C(I,D)|. An itemset I ✓ ⌦ such that
S(I,D) � 1 is a closed itemset if, for all itemsets J with
I ⇢ J , S(J,D) < S(I,D).

For instance, consider the transaction database D in

Tid Itemset
1 a b c d

2 a b e f

3 a b c

4 a c d f

5 g

6 d

7 d g

Table 1: A Transaction Database D.

Table 1. In this case, we have C({a, b},D) = {1, 2, 3} and
S({a, b},D) = 3 while S({f},D) = 2. The itemset {a, b}
is closed, while {f} is not closed.

In this work, we are interested in the problem of mining
association rules. An association rule is a pattern of the form
X ! Y where X (called the antecedent) and Y (called the
consequent) are two disjoint itemsets. In association rules
mining, the interestingness predicate is defined using the no-
tions of support and confidence. The support of an associ-
ation rule X ! Y in a transaction database D, defined as
S(X ! Y,D) = S(X[Y,D)

|D| , determines how often a rule is
applicable to a given data set, i.e., the occurrence frequency
of the rule. The confidence of X ! Y in D, defined as
Conf(X ! Y,D) = S(X[Y,D)

S(X,D) , provides an estimate of
the conditional probability of Y given X . A valid associa-
tion rule is an association rule with support and confidence
greater or equal to the minimum support (↵) and minimum
confidence (�) thresholds. More precisely, given a transac-
tion database D, a minimum support threshold ↵ and a mini-
mum confidence threshold �, the problem of mining associa-
tion rules consists in computing the following set:
MAR(D,↵) = {X ! Y | X,Y ✓ ⌦ ^ S(X ! Y,D) �
↵ ^ Conf(X ! Y,D) � �}

From Table 1, we get S({a} ! {b},D) = 3/7 and
Conf({a} ! {b},D) = 3/4.

3 SAT-Based Association Rules Mining

In this section, we describe a SAT encoding for the problem
of mining association rules. The basic idea consists in the
use of propositional variables to represent the covers of the
itemsets X and X [ Y for each candidate rule X ! Y .
These variables are used in 0/1 linear inequalities to deter-
mine wether the support and the confidence of the candidate
rule are greater than the specified minimum thresholds for the
support and the confidence.

Let D = {(1, I1), . . . , (m, Im)} be a transaction database,
↵ a minimum support threshold and � a minimum con-
fidence threshold. To represent the two itemsets of each
candidate rule X ! Y , we associate two propositional
variables xa and ya to each item a. The variables of the
form xa (resp. ya) are used to represent the antecedent (resp.
consequent) of each candidate rule. Then, to represent the
cover of X and X [ Y , we associate to each transaction
identifier i 2 {1 . . .m} two propositional variables pi and
qi. The variables of the form pi (resp. qi) are used to
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represent the cover of X (resp. X [ Y ). More precisely,
given a Boolean interpretation I, the candidate rule is
X = {a 2 ⌦ | I(xa) = 1} ! Y = {b 2 ⌦ | I(yb) = 1},
the cover of X is {i 2 N | I(pi) = 1}, and the cover of
X [ Y is {i 2 N | I(qi) = 1}.

We now describe our SAT-based encoding using the propo-
sitional variables described previously. The first propositional
formula allows us to express the constraint X \ Y = ;:

^

a2⌦

(¬xa _ ¬ya) (1)

To obtain the cover of the itemset X , we use the following
propositional formula:

m̂

i=1

(¬pi $
_

a2⌦\Ii

xa) (2)

In this formula, pi is false if and only if X contains an item
that does not belong to the transaction i. As a consequence,
the cover of X is {i 2 N | I(pi) = 1}.

In the same way as the previous formula, we use the fol-
lowing formula to capture the cover of X [ Y :

m̂

i=1

(¬qi $ ¬pi _ (
_

a2⌦\Ii

ya)) (3)

It is worth noticing that we use the propositional variables pi
to prevent the reuse of the variables xa. This allows us to
obtain a more compact formula.

Let us now introduce the formula expressing that the sup-
port of the candidate rule has to be greater than or equal to
the specified threshold m⇥ ↵ (in percentage):

mX

i=1

qi � m⇥ ↵ (4)

This formula means that the number of variables qi (i 2
{1 . . .m}) assigned to 1 has to be greater than or equal to
↵, which is equivalent to the fact that the support of X [Y is
greater than or equal to m⇥ ↵.

Finally, we describe the formula expressing the fact that �
is a minimum confidence threshold:

Pm
i=1 qiPm
i=1 pi

� �

We here consider that � is given in percentage format �%
where � is a positive integer. Thus, the previous formula can
be rewritten as follows:

100 ⇤
mX

i=1

qi � � ⇤
mX

i=1

pi � 0 (5)

The two propositional formulas (4), (5) corresponds to
0/1 linear inequalities, usually called cardinality (resp.
Pseudo Boolean) constraints. The first linear encoding of
general 0/1 linear inequalities to CNF has been proposed
by J. P. Warners in [Warners, 1998]. Several authors have
addressed the issue of finding an efficient encoding of

cardinality (e.g. [Asin et al., 2011; Jabbour et al., 2013a;
Warners, 1998]) or Pseudo Boolean (e.g. [Abı́o et al., 2012;
Eén and Sörensson, 2006; Warners, 1998]) constraints as
a CNF formula. Efficiency refers to both the compactness
of the representation (size of the CNF formula) and to the
ability to achieve the same level of constraint propagation
(generalized arc consistency) on the CNF formula.

We use EAR(D,↵,�) to denote the encoding correspond-
ing to the conjunction of formulas (1), (2), (3), (4), and (5).

4 Closed and Indirect Association Rules

In this section, we highlight the nice declarative and flexible
aspects of the proposed SAT framework for mining associ-
ation rules. To this end, we consider two well-known as-
sociation rules variants, namely closed [Taouil et al., 2000]
and indirect association rules [Tan et al., 2000]. The first has
been proposed to avoid redundant rules using condensed rep-
resentation, while the second aims to find indirect relations
in data. Indirect association, extensively used to build web
recommandation systems [Kazienko, 2009], refers to a pair
of items that rarely occur together but highly depend on the
presence of a mediator itemset.
Definition 1 (Closed Association Rule) An association rule
r : X ! Y is a Closed association rule iff r : X ! Y is a
valid association rule and X [ Y is closed.

Intuitively, we obtain a closed association rule by maximiz-
ing either its antecedent or its consequent while decreasing
neither the support nor the confidence.

A SAT encoding of the problem of mining closed associa-
tion rules, noted ECAR(D,↵,�), can be simply obtained by
extending the encoding described previously (EAR(D,↵,�))
with the following formula:

^

a2⌦

(
m̂

i=1

(qi ! a 2 Ii) ^ ¬xa ! ya) (6)

This formula means that if we have C(X [Y,D) = C(X [
Y [ {a},D) then the item a has to belong to Y , i.e., a 2 Y .
As a consequence, if X ! Y and X ! Y ] {a} are two
valid association rules (] stands for disjoint union), then the
Boolean interpretation that corresponds to the rule X ! Y

is a counter-model of (6). Moreover, if there is no item a

such that X ! Y ] {a} is a valid association rule, then the
Boolean interpretation corresponding to X ! Y is a model
of (6). Furthermore, it is worth noticing that the formula (6)
encodes that X [ Y is closed. Indeed, we do not need to
add a formula to maximize the antecedent of the rule as it
is implicitly encoded in the formula (6). More precisely, the
formula remains the same if we substitute ¬xa (resp. ya) by
¬ya (resp. xa). Thus, the formula (6) describes a necessary
and sufficient requirement for mining the closed association
rules. We can also note that the number of clauses added by
the formula (6) is equal to the number of items.

We now consider a second mining task related to the prob-
lem of mining association rules. It consists in mining indirect
rules, which allow to discover items that rarely occur together
but frequently occur with other items [Tan et al., 2000].
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Definition 2 Let D be a transaction database. Two items a0
and b0 are indirectly associated via an itemset M , called me-
diator, w.r.t. a maximum support threshold �, a minimum sup-
port threshold ↵ and a mediator dependence threshold � iff
the following conditions hold:

• S({a0} ! {b0},D)  � (Itempair Support Condi-
tion)1.

• There exists a non empty itemset M such that:

1. S({a0} ! M,D) � ↵ and S({b0} ! M,D) � ↵

(Mediator Support Condition)
2. Dep({a0},M,D) � � and Dep({b0},M,D) � �

where Dep(p,Q,D) is a dependence measure be-
tween p and Q w.r.t. D (Dependence Condition)

In other words, in the problem of mining indirect rules, we
look for pairs of items that are infrequent (or rare) but sepa-
rately involved in interesting association rules with the same
consequent.
Over the year, several measures of dependence between two
itemsets X and Y have been proposed, including IS measure
[Tan et al., 2002] and classical confidence. The relevance of
such measures depends on the target application. In this pa-
per, as a dependency measure, we simply use the confidence
of X ! Y . This last dependence measure is for example em-
ployed in [Kazienko, 2005] for a web recommendation appli-
cation. Using confidence as a dependency measure and min-
imum confidence threshold instead of mediator dependance
threshold the two conditions (mediator support and depen-
dence) in Definition 2 can be simply stated as: {a0} ! M

and {b0} ! M are two valid association rules w.r.t. the min-
imum support ↵ and minimum confidence � thresholds.

In order to define a SAT encoding for the problem of
mining indirect association rules, we have to use proposi-
tional variables that allow us to capture the cover of the as-
sociation rule {a0} ! {b0} and we adapt the encoding
EAR(D,↵,�) to constrain the antecedent of the two associ-
ation rules {a0} ! M and {b0} ! M to contain only a
single item. We use the propositional variables x

a0
c and x

b0
c

for each item c to represent a0 and b0 respectively. Simi-
larly, we use the same set of variables ya for each item a as in
EAR(D,↵,�) to capture the elements of the mediator. More-
over, we introduce variables of the form p

a0
i (resp. p

b0
i ) to

express the cover of the item a0 (resp. b0) in the same way
as in EAR(D,↵,�) and variables of the form q

a0
i and q

b0
i to

express the covers of M [ {a0} and M [ {b0} respectively.
Finally, we also introduce variables of the form ri to capture
the cover of {a0, b0}.

The following formula allows us to capture the association
rule {a0} ! M :

EAR(D,↵,�) ^ (
X

a2⌦

x

a0
a = 1) (7)

where the variables of the form xa, pi and qi are replaced in
EAR(D,↵,�) with x

a0
a , pa0

i and q

a0
i respectively. The cardi-

nality constraint
P

a2⌦ x

a0
a = 1 is used to require that an-

tecedent of the rules contains a single item.

1We can equivalently write S({a0,b0},D)
|D|  �

In the same way as (7), we use the following formula to
capture the association rule {b0} ! M :

EAR(D,↵,�) ^ (
X

a2⌦

x

b0
a = 1) (8)

where the variables of the form xa, pi and qi are replaced in
EAR(D,↵,�) with x

b0
a , pb0i and q

b0
i respectively.

We now describe the formula that allows us to capture the
cover of {a0, b0}:

ri $ (pa0
i ^ p

b0
i ) (9)

Finally, we introduce the formula expressing that {a0} !
{b0} is infrequent w.r.t. the maximum support threshold �:

mX

i=1

ri  m⇥ � (10)

In Definition 2, the items a0 and b0 are interchangeable
leading to symmetrical indirect association rules. To avoid
enumerating such redundant indirect association rules, we
break symmetries between a0 and b0 by adding the con-
straints a0 < b0 over the set of items ⌦ expressed as:

^

a,a02⌦,a0a

¬xa0
a _ ¬xb0

a0 (11)

We use EIR(D,�,↵,�) to denote the encoding of the prob-
lem of mining indirect rules (7) ^ (8) ^ (9) ^ (10) ^ (11).

5 Experiments

In this section, we present a comparative experimental evalu-
ation of our proposed approaches with specialized association
rules mining algorithms. We consider, three mining tasks,
namely classical (pure), closed, and indirect association rules.

For our SAT based association rules mining, to enumerate
all the models of a given propositional CNF formula, we use
an adaptation of modern SAT solvers proposed in [Jabbour et
al., 2014]. For cardinality and pseudo Boolean constraints,
similarly to constraint programming, a propagator is associ-
ated to each constraint, obtained by maintaining the sum of
its assigned variables. Managing such constraints on the fly
outperforms our previous implementation based on the state-
of-the-art SAT encodings [Jabbour et al., 2013b].

Another advantage, is that for each association rules min-
ing instance, as the constraints (1), (2) and (3) does not de-
pend on the specified thresholds, the propositional formula is
generated only once. On all the considered data, the encoding
phase does not exceed 5 seconds CPU time.

Let us note that our approach can be easily encoded using
MiningZinc, a general framework for constraint-based pat-
tern mining [Guns et al., 2013]. MiningZinc is a nice declar-
ative framework, it offers a high level modeling language with
a toolchain component for finding solutions.

In the experiments, we indicates by SFAR R with R 2
{pure, closed, indirect}, our SAT based approach for min-
ing the corresponding (R) association rules. We compare
our approaches to two specialized association rules mining
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SFAR Pure ZART Pure SFAR Closed ZART Closed SFAR Indirect SPMF Indirect
avg. avg. avg. avg. avg. avg.

data (#items, #trans, density) #S time(s) #S time(s) #S time(s) #S time(s) #S time(s) #S time(s)
Audiology (148, 216, 45%) 20 855.00 20 855.01 20 855.00 20 855.01 124 453.74 61 680.45
Zoo-1 (36, 101, 44%) 400 19.12 400 6.37 400 0.52 400 11.28 250 0.15 250 9.12
Tic-tac-toe (27, 958, 33%) 400 0.09 400 0.24 400 0.09 400 0.23 250 0.09 250 0.20
Anneal (93, 812, 45%) 101 709.50 101 678.41 147 604.09 103 679.31 171 309.69 55 702.04
Australian-credit (125, 653, 41%) 245 370.17 264 321.62 268 323.29 226 403.72 232 121.06 156 339.56
German-credit (112, 1000, 34%) 306 246.88 322 192.52 329 198.02 304 238.79 244 49.07 210 154.49
Heart-cleveland (95, 296, 47%) 284 286.38 301 252.27 304 251.05 262 340.15 235 64.97 203 300.48
Hepatitis (68, 137, 50) 305 241.41 304 228.00 324 206.02 266 312.26 245 32.98 205 187.92
Hypothyroid (88, 3247, 49%) 85 732.12 121 665.41 107 686.95 64 761.59 163 336.40 81 621.29
Kr-vs-kp (73, 3196, 49%) 172 552.92 203 487.73 192 523.66 146 590.89 204 206.47 114 499.33
Lymph (68, 148, 40%) 336 181.64 338 170.37 387 63.22 291 281.35 250 6.10 211 170.19
Mushroom (119, 8124, 18%) 366 109.12 387 46.00 400 30.32 390 42.84 250 8.89 250 29.62
Primary-tumor (31, 336, 48%) 400 3.68 400 1.17 400 2.03 400 18.82 250 0.15 250 2.63
Soybean (50, 650, 32%) 400 2.90 400 1.50 400 0.17 400 7.94 250 0.05 250 0.76
Splice-1 (287, 3190, 21%) 380 53.44 400 3.52 380 54.04 400 3.25 250 61.73 250 0.50
Vote (48, 435, 33%) 380 66.74 400 1.46 400 32.40 398 30.22 250 0.84 250 1.48
Total 4560 279.76 4741 247.29 4838 242.24 4470 286.10 3618 103.27 3046 231.25

Table 2: Pure, Closed, and Indirects Associations Rules: SFAR vs ZART and SFAR vs SPMF

algorithms Coron 2 and SPMF 3[Fournier-Viger et al., 2014].
Coron and SPMF are two multi-purpose data mining toolk-
its, implemented in Java, which incorporate a rich collection
of data mining algorithms. For pure and closed association
rules, we compare our approach to the ZART algorithm im-
plemented in the Coron toolkit, which is one of the recent
state-of-the-art algorithms for enumerating closed association
rules [Szathmary et al., 2007]. For indirect association rules,
we compare our solver to the SPMF implementation.

To give an idea on the size of our encodings, for classi-
cal association rule mining, the smallest (resp. the biggest)
formula corresponds to the encoding of zoo-1 (resp. mush-
room) data and contains 274 variables and 4379 clauses (resp.
16486 variables and 1616795 clauses).

To compare the performances of the different mining ap-
proaches, for each data we proceed as follows:

• For pure and closed association rules, the support is var-
ied from 5% to 100% with an interval of size 5%. The
confidence is varied in the same way. Then, for each
data, a set of 400 configurations is generated.

• For indirect association rules, there are an additional pa-
rameter �. The frequency and confidence are varied
from 20% to 100% with an interval of size 20%. � is
varied from 10% to 100% with an interval of size 10%.
This leads to 250 configurations for each data.

All the experiments were done on Intel Xeon quad-core
machines with 32GB of RAM running at 2.66 Ghz. For each
instance, we fix the timeout to 15 minutes of CPU time.

Table 2 describes our comparative results. We report in col-
umn 1 the name of the data and its characteristics in parenthe-
sis: number of items (#items), number of transactions (#trans)
and density. For each algorithm, we report the number of
solved configurations (#S), and the average solving time
(avg.time in seconds). For each unsolved configuration, the
time is set to 900 seconds (time out). In the last row of Table
2, we provide the total number of solved configurations and
the global average CPU time in seconds.

2Coron: http://coron.loria.fr/site/system.php
3SPMF: http://www.philippe-fournier-viger.com/spmf/

Pure rules: The performances of ZART algorithm are bet-
ter than SFAR. It solves 181 configurations more and it is
better on all the considered data. ZART performs the enumer-
ation of pure association rules in two steps. We observed that
ZART performs the first step efficiently. Its CPU time does
not exceed few seconds on the majority of the considered
configurations. For the pure rules, the second step remains
easy enough to perform. On classical association rules, the
specialized algorithm ZART is better than SFAR.

Closed association rules: On this category, our SAT based
approach outperform ZART. It solves 368 configurations
more than ZART. Except for Splice-1 data, SFAR is the
best on all the data in terms of the number of solved con-
figurations and average CPU time. Let us remark that for
Splice-1 data, the number of closed association rules is
very limited (less than 4000). This explains why SFAR is
worse than ZART on this data.

Let us recall that ZART finds the closed association rules
in two steps. In the first step, the set of all frequent closed
itemsets are efficiently enumerated (in few seconds), while
in the second step, the extraction of association rules from
the closed itemsets already generated is more time consum-
ing. For instance, on Lymph data, SFAR is remarkably ef-
ficient. It solves about 100 configurations more than ZART.
More generally, the higher the density of the data, the better
are the performances of SFAR.

Indirect association rules: The performances of SFAR are
very impressive. SFAR approach solves 572 instances more
than SPMF. Here again, the approach is better on all the con-
sidered data. As we can remark the time needed by SFAR
to obtain all indirect association rules is relatively stable and
very low compared to SPMF. The number of indirect asso-
ciations is very small compared to classical or closed asso-
ciation rules. However, SPMF takes a lot of time to find
them. For example, if we take the Hepatitis data with
frequency = 40%, confidence = 40% and � = 20%,
SPMF takes 122.56 seconds to find just 359 indirect associ-
ation rules, while SFAR does not exceed 1 second. We also
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Figure 1: Highlights: Australian-credit and Kr-vs-kp

frequency (%) 40 45 50 55 60 65 70
Kr-vs-kp 7.67 5.68 3.64 2.99 2.46 1.95 1.67
Australian-credit 12.38 8.13 5.61 4.29 3.23 2.62 2.01

Table 3: Pure vs Closed: #Purerules/#Closed rules

noticed that for some configurations, SPMF takes excessive
CPU time without finding any indirect association rule under
the time limit. As a summary on indirect association rules,
SFAR outperforms SPMF.

In Figure 1, the behavior of the considered ap-
proaches are highlighted on two representative data,
Australian� credit and Kr� vs� kp. We varied one
parameter, while maintaining the others fixed. For pure as-
sociation rules, ZART and SFAR present similar behavior.
When the frequency decreases, the time needed to find all
rules increases. Let us remark that for some particular pa-
rameters values, our approach can outperforms the one of
ZART on pure rules as is the case for Kr-vs-kp. Simi-
lar behavior is also observed for frequent closed association
rules. However, we can note that when the confidence goes
from 100% to 80%, the CPU time dramatically increases.
Such a gap is more visible with SFAR on classical associa-
tion rules and with ZART on closed association rules. Indeed,
for Kr-vs-kp instance, using SFAR, we vary between 0 to
70 seconds while with ZART approach, the variation range is
from 40 to 240 seconds.

Throughout this experimental study, we noticed that the
specialized algorithms like ZART performs the first frequent
(resp. closed) itemsets enumeration step efficiently. However,
they take excessive CPU time in the second rules extraction
step. Additionally, the extraction step is more time consum-
ing for closed rules than classical rules even if the number of
closed rules is lower in general. In Table 3, we provide the
variation of the ratio between the number of classical (pure)
rules and the number of closed rules. As we can observe,

as the frequency decreases, the number of classical rules in-
creases rapidly compared to the number of the closed rules.
This last observation explains why SFAR is more efficient on
the enumeration of closed rules than on the enumeration of
classical ones. Overall, ZART solves more configurations for
pure rules than for closed ones, while SFAR is more efficient
in mining closed rules and indirect rules than classical ones.

As a summary of our experiments, we can say that for min-
ing tasks combining several constraints, our declarative and
flexible approach is better than specialized mining tools.
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7 Conclusion and perspectives

In this paper we developed a novel association rules min-
ing approach that accurately discovers association rules ef-
ficiently. Our declarative approach contrasts with all the pre-
vious techniques as the mining of association rules is per-
formed in a single step, thanks to our SAT based encoding.
As a second contribution, we have shown that our proposed
framework is flexible and declarative, as one can easily model
other important variants, such as closed and indirect associ-
ation rules mining. The experiments particularly show that
on closed and indirect association rules mining, our proposed
approaches achieves better performance with respect to spe-
cialized mining techniques.

Our work opens several perspectives. First, our results on
closed and indirect association rules provide new research di-
rections for association rules mining. Indeed, several other
variants can be addressed more efficiently by extending our
proposed framework. Such rules include among others top-k
association rules, weighted association rules [Tao et al., 2003]
and disjunctive association rules [Nanavati et al., 2001].
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