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Abstract
Considerable work has focused on enhancing the
semantics of Hierarchical Task Networks (HTNs) in
order to advance the state-of-the-art in hierarchical
planning. For instance, the Hierarchical Goal Net-
work (HGN) formalism operates over a hierarchy of
goals to facilitate tighter integration of decompo-
sitional planning with classical planning. Another
example is the Action Notation Markup Language
(ANML) which adds aspects of generative planning
and task-sharing to the standard HTN semantics.
The aim of this work is to formally analyze the
effects of these modifications to HTN semantics
on the computational complexity and expressivity
of HTN planning. To facilitate analysis, we unify
goal and task planning into Goal-Task Network
(GTN) planning. GTN models use HTN and HGN
constructs, but have a solution-preserving mapping
back to HTN planning. We then show theoretical
results that provide new insights into both the ex-
pressivity as well as computational complexity of
GTN planning under a number of different seman-
tics. Our work lays a firm footing to clarify ex-
act semantics for recent planners based on ANML,
HGNs, and similar hierarchical languages.

1 Introduction
Hierarchical Task Network (HTN) planning [Erol et al., 1994]
is a task planning formalism that is widely used in real-world
applications [Nau et al., 2005]. HTN planners use methods
as recipes to recursively decompose tasks into primitive ac-
tion sequences. We focus on two hierarchical formalisms,
the Action Notation Markup Language (ANML) [Smith et al.,
2008] and Hierarchical Goal Network (HGN) planning [Shiv-
ashankar et al., 2012], and their relationship with the more
widely known HTN planning. All these formalisms now have
systems that implement subsets of their features, yet little re-
search examines the differences between them, either in terms
of their computational complexity or their semantics.
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GTNI
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Figure 1: Summary of plan-preserving translations between
problem classes. An edge (X,Y ) indicates problem instances
under X’s semantics can be translated to problem instances
under Y ’s semantics while preserving the solution set. Sub-
scripts indicate task insertion (I) or sharing (S) semantics.
Solid lines indicate translations within complexity classes and
dotted lines indicate translations across complexity classes.
With the exception of the two HTN results, all results are new.

HGN planning bridges classical planning and totally or-
dered task networks by operating over sequences of goals
with methods that decompose goals with further subgoals. By
attaching goals to methods, HGN planning adds explicit se-
mantics to methods, making it easy to adapt classical heuris-
tics to HGN planning [Shivashankar et al., 2016].

The Action Notation Markup Language (ANML) is a tem-
poral planning framework with a hierarchical component
[Smith et al., 2008], designed to address common challenges
faced when modeling problems that require sophisticated
temporal or resource reasoning within a single language that
combines generative and hierarchical task planning [Smith
and Cushing, 2008]; an essential feature of ANML is its abil-
ity to embed complex procedures as tasks. A translation from
ANML to a variant of PDDL [Bonasso et al., 2009] and the
planning system FAPE [Dvorak et al., 2014] have imple-
mented subsets of ANML.

One of the unique features of ANML is that it allows sub-
tasks to be shared between multiple tasks. For example, let
us assume an ANML planner is considering two tasks t1 and
t2 that are unordered with respect to one another which de-
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compose into the same setup task; so, t1 decomposes into
hsetup, a1i (read ”do setup, then do a1”), while t2 de-
composes into hsetup, a2i. According to standard HTN
planning semantics, the only solution would involve two
setup tasks. ANML, however, also allows for sharing the
same setup task across both task-decompositions, and can
therefore generate a solution with a single setup task.

Traditional HTN planners strictly follow the method hierar-
chy when composing a plan. This rigidity is a liability in dy-
namic environments when actions may fail and the plan needs
to be repaired [Ayan et al., 2007]. Task Insertion semantics
modifies HTN semantics to allow planners to insert actions
whenever they are useful, regardless of methods [Geier and
Bercher, 2011]. Task insertion is also used in the HTN lit-
erature to capture plan repair and partial method knowledge.
These semantics are also implemented as part of HGNs [Shiv-
ashankar et al., 2013] and are explicitly supported in ANML.
It is not known how task insertion interacts with task sharing.

Contributions. The central aim of this paper is to unify
these various families of hierarchical planning and their se-
mantics as summarized in Figure 1. In particular,

• A Unified Formalism: We define Goal-Task Network
(GTN) planning that models partially ordered HTN plan-
ning and extends HGN planning with partially-ordered
sets of subgoals. We present standard semantics for GTN
that extends HTN semantics with goals. We then extend
these semantics with the addition of task insertion se-
mantics, denoted GTNI, with the addition of task sharing
GTNS, and finally, with the combined semantics of GTNIS.

• Expressivity Results: We show that every GTN prob-
lem with any combination of the above semantics can be
translated in a solution preserving manner to HTN plan-
ning with standard semantics, which is in general semi-
decidable.

• Membership Results: For certain classes of GTN plan-
ning, we improve the semi-decidable upper bound by
proving that HGNI is in PSPACE, while GTNIS and GTNI
planning are in NEXPTIME.

2 A Unified Hierarchical Planning Formalism

To precisely describe the relationship between HTN and HGN
planning, we model both in a single framework called Goal-
Task Network (GTN) planning1. GTN planning has already
been extremely useful in formalizing goal reasoning [Roberts
et al., 2016]. We augment the set-theoretic notation of
Geier and Bercher [2011] with goal decomposition from HGN
planning [Shivashankar et al., 2012] and with SHOP2-style
method preconditions [Nau et al., 2003]. After formaliz-
ing GTNs, we clarify their operations before discussing GTN
problems and their solutions.

1GTN was partly inspired by conversations with Ghallab et al.
following their paper [Ghallab et al., 2014] and upcoming book
[Ghallab et al., in press] wherein they argued for use of a hybrid
task-planning formalism for Planning and Acting.

2.1 Preliminaries
Let L be a propositional language and T be a set of task
names represented as propositional symbols not appearing in
L with L \ T = ;, and let O and C be a partition of T
(O [ C = T , O \ C = ;). O will correspond to primitive
tasks, or actions that can be executed directly, while C rep-
resents Compound or non-primitive tasks which need to be
recursively decomposed into primitive tasks before they can
be executed.

Then HTN planning is over partially-ordered multisets of
task names in T representing activities to accomplish, while
HGN planning is over totally-ordered subgoals in L which
must be met in sequence. GTNs elegantly models both, and
in addition extends the scope of HGN planning to allow for
partially-ordered sets of subgoals.

2.2 Goal-Task Networks (GTNs)
A goal-task network is a tuple (I,�,↵) where I is a set of
instance symbols which are placeholders for task names and
goals, �⇢ I ⇥ I is a partial order on I , and ↵ : I ! L[ T
maps each instance symbols to a goal or task name.

Some symbol instances are special because they occur first
or last in a network. An instance symbol i is unconstrained if
no symbols are constrained before it (8

i

02I

i0 ⌃ i) and last if
it constrained after all other symbols (8

i

02I

i0 � i). We refer
to i as a task if ↵(i) 2 T and as a subgoal if ↵(i) 2 L; recall
that L and T are disjoint.

Two goal-task networks, (I1,�1,↵1) and (I2,�2,↵2) are
isomorphic if there exists a bijection f : I1 ! I2 such
that: (1) (i, i0) 2�1 iff (f(i), f(i0)) 2�2 and (2) ↵1 (i) =
↵2 (f(i)) for all i 2 I1.

Methods. We distinguish the methods for GTNs by the
kind of symbol they decompose. A task method m

t

is a tuple
(n,�, gtn) where n 2 C is a non-primitive task name, � 2 L
is m

t

’s precondition, and gtn is a goal-task network over L
and T . A task method is relevant to a task i in a goal-task
network (I,�,↵) if n = ↵ (i). The method m

t

is a specific
decomposition of a task n into a partially-ordered set of sub-
tasks and subgoals, and there may be many such methods.

A goal method m
g

, similarly, is a tuple (g,�, gtn) where
g,� 2 L are the goal and precondition of m

g

and gtn is
a goal-task network. A goal method is relevant to a sub-
goal i in a goal-task network (I,�,↵) if at least one literal
in the negation-normal form (NNF) of g matches a literal
in the NNF of ↵ (i) (e.g., accomplishing g ensures that at
least part of ↵ (i) is true). By convention, the goal-task net-
work gtn = ((I,�,↵) has a last instance symbol i 2 I with
↵(i) = g to ensure that m

g

accomplishes its own goal.
Task and goal methods are respectively identical to meth-

ods in HTN and HGN planning.

Operators. An operator o is a tuple (n,�, e) where n 2 O
is a primitive task name (assumed unique to o), � is a propo-
sitional formula in L called o’s precondition (or prec(o)), and
e is a set of literals from L called o’s effects. We refer to the
set of positive literals in e as add(o) and the negated liter-
als as del(o). An operator is relevant to primitive task i

t

if
n = ↵(i

t

) and to a subgoal i
g

if the effects of o contain a
matching literal from the NNF of ↵(i

g

).
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States. A state s ⇢ L
sym

is any subset of L
sym

, the
propositional symbols of L; the set of all states is 2Lsym .
A set of operators O forms a transition (partial) function
� : 2Lsym ⇥ O ! 2Lsym as follows: � (s, o) is defined
iff s |= prec(o) (the precondition of o holds in s), and
� (s, o) = (s \ del(o)) [ add(o).

2.3 GTN Nodes and Node Operations
A node is a (state, goal-task network) pair N = (s, gtn). GTN
planning allows four operations on nodes, described below.

We use the term progression as an umbrella term for the
various GTN node operations. We write N �!

P

N 0 if any of
the operations can make that transition between nodes. For
progression sequences from N to N 00, we write N �!⇤

P

N 00.
Operator application of an operator o to a node

(s, gtn), with gtn = (I,�,↵), written as (s, gtn)
i,o�!

A

(s0, gtn0), is defined if s |= prec(o) and o is rele-
vant to an unconstrained instance symbol i in gtn. If
i is a primitive task with task name n, then this cor-
responds to primitive task application in HTNs; the re-
sult of application is given by s0 = �(s, o) and gtn0 =
(I \ {i} , {(i1, i2) 2�| i1 6= i} , {(i0, n) 2 ↵ | i0 6= i}), tran-
sitioning the state and removing the instance symbol from
the network. If i is a relevant goal task instead, this corre-
sponds to primitive task application in HGNs; in this case,
gtn0 = gtn, and the subgoal remains while the state changes.

Goal release for an unconstrained subgoal i, writ-
ten (s, gtn)

i�!
G

(s, gtn0), is defined whenever s |=
↵(i

g

). Goal release can remove a subgoal when-
ver it is satisfied by s, and so gtn0 is given by
(I \ {i} , {(i1, i2) 2�| i1 6= i} , {(i0, n) 2 ↵ | i0 6= i}), just
as in operator application.

Task decomposition for an unconstrained task i by a rele-
vant task method m = (c,�, gtn

m

), written (s, gtn)
i,m��!

D

(s, gtn0), is defined whenever s |= �. Task decomposition
expands i in gtn, replacing it with the network gtn

m

. Let
(I,�,↵) = gtn

m

and (I
m

,�
m

,↵
m

) = gtn
m

, assuming
without loss of generality that I \ I

m

= ;. Then the result of
task decomposition, gtn0 = (I 0,�0,↵0) is given by:

I 0 := (I \ {i}) [ I
m

�0 := {(i, i0) 2 � | i, i0 2 I 0} [ �
m

[ {(i1, i2) 2 I
m

⇥ I | (i, i2) 2 �}
↵0 := {(i, n) 2 ↵ | i 2 I 0} [ ↵

m

Goal decomposition for an unconstrained subgoal i
by a relevant goal method m = (g

m

,�, gtn
m

), also
written (s, gtn)

i,m��!
D

(s, gtn0), is defined whenever
s |= �. Goal decomposition prepends i with gtn

m

,
leaving the subgoal in place, so that gtn0 is given by
(I [ I

m

,� [�
m

[ {(i
m

, i) 2 I
m

⇥ {i}} ,↵ [ ↵
m

).

3 GTN Planning Problems and Solutions
A problem is a tuple P = (L,O,M, N0) where L is propo-
sitional language for defining the set of operators (O), the set
of goal and task methods (M), and N0 is the initial node con-
sisting of the the initial goal-task network gtn0, and the initial

state s0. O and C are implicitly defined by O and M. Nodes
are isomorphic if their goal-task networks are isomorphic and
their states are identical.

We say P is solvable under GTN semantics iff there is a
progression N0 �!⇤

P

N
k

, where N
k

= (s
k

, gtn;), sk is any
state, gtn; is the empty network. The subsequence of opera-
tor applications of that progression is a plan for P .

Whenever all networks (method and initial) in a problem
P contain only tasks, we call it an HTN problem since goal
release and goal decomposition are irrelevant, and so the se-
mantics are identical to HTN planning under progression [Al-
ford et al., 2012]. Whenever all networks contain only sub-
goals, we call it an HGN problem, since the semantics are
identical to HGN planning with a straightforward extension to
partially-ordered networks [Shivashankar et al., 2012].

3.1 Task-Insertion Semantics
Formally, task insertion of an operator o is defined when-
ever o’s precondition is supported by the state, and is written
(s, gtn)

o�!
I

(s0, gtn), where s0 = � (s, o). Note that this
combines two operations, insertion of o and operator applica-
tion of o.

If a node (s0, gtn0) is reachable from another node (s, gtn)
via any sequence of progressions and insertions, we write
(s, gtn) �!⇤

PI

(s0, gtn0). We say that a problem P is solvable
under GTN semantics with task insertion (GTNI semantics) iff
(s0, gtn0) �!⇤

PI

(s, gtn;) where s is any state and gtn; is
the empty goal-task network. HTNI planning is NEXPTIME-
complete [Alford et al., 2015b].

3.2 Task-Sharing Semantics
We formalize task sharing here using a task merging oper-
ation that takes two task symbols in the goal-task network
that map to the same task name and merges them into one
task symbol. Formally, task merging of two unconstrained
tasks i1, i2 in a network gtn = (I,�,↵) is applicable when-
ever the tasks share a task name (↵ (i1) = ↵ (i2)). The
operation, written (s, gtn)

i1,i2���!
M

(s, gtn0), is given by
gtn0 = (I \ {i2} ,�0,↵0), where:

�0 := {(i, i0) 2 � | i 6= i2}
[ {(i1, i) 2 I ⇥ I | (i2, i) 2 �}

↵0 := {(i, n) 2 ↵ | i 6= i2}
We say a problem P with initial node (s, gtn) is solvable

under GTN semantics with task sharing (GTNS) if there is any
sequence of progression and merging to a node (s0, gtn;),
written (s, gtn) �!⇤

PM

(s0, gtn;). Solvability under both task
insertion and sharing (GTNIS semantics) is defined similarly,
with the sequence denoted as (s, gtn) �!⇤

PIM

(s0, gtn;).

4 Plan-preserving translations
We can study the computational complexity of GTN planning
by reductions, which are transformations between problems
and/or formalisms. In this section, we use a special kind of re-
duction we call plan-preserving translations, which preserve
the solution set of the problem across translation. For ex-
ample, we can trivially use a GTN planner to solve a GTNI
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problem P by adding a new task to the initial node along
with methods that decompose it into any sequence of opera-
tors. Since this transformation preserves the set of plans, (1)
an optimal plan from the GTN planner is an optimal plan P ,
and (2) when creating GTNI planners, the transformation is a
procedure for using any admissible GTN heuristic as a GTNI
heuristic. Further, we know that GTN planning is at least as
expressive as GTNI planning, since the (possibly infinite) set
of solutions for any problem under GTNI semantics can be
exactly expressed as the solutions of the translated problem
under GTN semantics.

Same-semantic translations from GTNs to HTNs
In this section, we provide a plan preserving translation from
GTN problems to HTN problems that preserves plans under
like semantics (GTN to HTN, GTNI to HTN with task inser-
tion, etc.). This establishes that GTN planning is no harder
in the general case than HTN planning across all the semantic
variants we discuss.

Construction 4.1. Let P be a problem. We iteratively con-
struct an HTN problem P 0 as follows:

Let g be a subgoal appearing in the initial network or
any method network. Let t

g

be a fresh task name, and let
m

g

= (t
g

, g, gtn;), which will act as the goal release op-
eration for t

g

. Let N 0
0 and M0 be the P ’s initial node and

set of methods where each instance of g in a network is
replaced by t

g

. Let MOg

be a set methods of the form
m

og

=
�
t
g

, true, gtn
og

�
for each operator o relevant to g,

where gtn
og

contains the task o preceding the task t
g

. Fi-
nally, let MMg

be a set of methods of the form m
mg

=�
t
g

,�, gtn
mg

�
for each goal method (g0,�, gtn) 2 M0 rel-

evant to g, where gtn
mg

is gtn with a new task for t
g

con-
strained to come after all other instance symbols. Then
P 0 = (L,O,M0 [MOg

[MMg

[ {m
g

} , N 0
0). Iterate un-

til no goal appears in a network, and remove all goal methods.

Theorem 4.2. For a problem P with initial node N0, use
Construction 4.1 to construct an HTN problem P 0. Then, un-
der GTN semantics, a sequence of actions is a plan for P iff it
is a plan for P 0. The same result holds under GTNI semantics.

Proof. We prove this theorem by showing that for each iter-
ation of Construction 4.1, after replacing g with t

g

, P and P 0
have the same set of plans.

()) Let N0 �!⇤
P

N
k

be a derivation of a plan p for P ,
where N1 . . . Nk�1 are the intermediate nodes. Construct
N 0

0 �!⇤
P

N 0
k

as follows: N 0
0 is isomorphic to N0 with g re-

placed with t
g

. Suppose N 0
i

is isomorphic to N
i

with g re-
placed with t

g

. The following cases ensure the same for N 0
i+1

and N
i+1:

If N
i

i,o�!
A

N
i+1 is an application of o to goal task g,

then decompose the corresponding i in N 0
i

with m
og

and

immediately apply o (N 0
i

i,m

og���!
D

N 00
i

i

0
,o��!

A

N 0
i+1). If

N
i

i�!
G

N
i+1, then g is satisfied in N

i

’s state (identical
to the state of N 0

i

), so decompose the corresponding i from
N 0

i

with m
g

, removing i, to get the corresponding N 0
i+1. If

N
i

i,m��!
D

N
i+1 corresponds to goal-method decomposition,

then N 0
i

i,m

mg����!
D

N 0
i+1 is applicable and produces the cor-

responding N 0
i+1. Otherwise, the operation does not involve

g, so apply it directly to N 0
i

. Since this preserves operator
applications in the derivation, p is also a plan for P 0.

(() Let N 0
0 �!⇤

P

N 0
k

be a derivation of a plan p for P 0.
Note that decomposition with any m

og

can be push back in
the derivation until it is immediately before the application
of o. Then the inverse of the above procedure can produce a
derivation of p for P .

Since the set of GTN problems includes all HTN problems
and HTN planning is semi-decidable [Erol et al., 1996], by the
above theorem, GTN planning is also semi-decidable:
Corollary 4.3. Deciding whether a solution exists for a prob-
lem under GTN semantics is semi-decidable.

We know by Alford et al. [2015b] that HTN planning with
task insertion is NEXPTIME-complete, so by the above, the
same result extends to GTNI planning:
Corollary 4.4. Deciding whether a solution exists for a prob-
lem under GTNI semantics is NEXPTIME-complete.

We can also show that Construction 4.1 preserves plan sets
under GTNS semantics:
Theorem 4.5. For a problem P , let P 0 be the resulting HTN
problem from Construction 4.1. Then, under GTNS semantics,
a sequence of actions is a plan for P iff it is a plan for P 0.
The same result holds under GTNIS semantics.

Proof. Again, we show that for each iteration of Construc-
tion 4.1, after removing g, P and P 0 have the same set of
plans.

()) Task merging does not involve goals, so given a
derivation N0 �!⇤

PM

N
k

of a plan p for P , extend the ())
procedure of Theorem 4.2 with merging so that N

j

i1,i2���!
M

N
j+1 maps to N 0

j

i1,i2���!
M

N 0
j+1.

(() Once g is replaced by t
g

, there are two threats to in-
verting the above procedure to find a derivation of a plan p
for P from p’s derivation from P 0: (1) two tasks for t

g

may
be merged, and (2) a primitive task for an operator o may be
merged with another task for o.

For (1), if there is a merge N
j

i1,i2���!
M

N
j+1 where

↵(i1) = t
g

in the derivation of p, then there must also be
an N

q

(q > j) where the method corresponding to goal re-
lease is applied (meaning g holds in the state of N

q

). Then,
since i1 and i2 are not ordered with respect to each other, an-
other derivation of p is to skip the merge of i2, and decompose
i2 with m

g

immediately after N
q

, since g must hold in that
node’s state.

For (2), assume WLOG that the task i2 (↵(i2) = o) was
inserted via decomposition with m

og

of a task i3. The deriva-
tion of p must include a decomposition of i3 with m

og

, which
replaces i3’s task for t

g

with the tasks o preceding t
g

. Later
in the derivation, the task for o is merged with another task,
and later applied, all before any further decomposition of t

g

.
Then another derivation of p is just to skip the first decompo-
sition of i3 and subsequent merge.

Since we can eliminate any merging of t
g

or its related
primitive tasks, we can invert ()) to find a derivation of p for
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P from a derivation of P 0.

As a special case, consider that HGN problems have the
same plan set under GTNS semantics as under GTN seman-
tics, as there are no tasks to merge. So by the above theo-
rem, Construction 4.1 is a plan-preserving translation of HGN
problems to HTNS planning:
Corollary 4.6. For any HGN problem P , let P 0 be the result-
ing HTN problem from Construction 4.1. Then a sequence of
actions is a plan for P under GTN semantics iff it is a plan
for P 0 under GTNS semantics. The same result holds under
GTNIS semantics.

So HGN planning is neither harder nor more expressive
than HTN planning with sharing.

Translating from GTNS to GTN
In this section, we give a plan preserving translation from
GTNS semantics to standard GTN semantics as part of our
proof that GTNS planning is semi-decidable. To start, we note
that, at least as far as solvability goes, GTNS semantics are
equivalent to a sharing semantics that only allows merging of
primitive operators.
Lemma 4.7. Let N0 �!⇤

PM

N
k

be the derivation of a plan p
for a problem P . Then there is another derivation N0 �!⇤

PM

N
k

that any merging only happens for primitive tasks.

Proof. We can iteratively remove merging of non-primitive
tasks from N0 �!⇤

PM

N
k

as follows: Let N
j

i1,i2���!
M

N
j+1

be the first merge of any two non-primitive tasks i1, i2 in the
derivation p. Since i1 is a non-primitive task, there is a subse-
quent decomposition N

k

i1,m���!
D

N
k+1. Let N

i

�!⇤
PM

N 0
k+1

be the same sequence of progressions above with the initial
merge omitted (including the decomposition of i1). Then de-
compose i2 with the same method as i1 and merge all its re-
sulting tasks with those from the decomposition of i1. The
resulting node is isomorphic with N

k+1.

We can now reduce GTNS planning to GTN relying on op-
erators asserting in the state when they have been applied:
Construction 4.8. Let P = (L,O,M, N0) be a GTN prob-
lem. We iteratively construct a new GTN problem P 0 as fol-
lows: For each primitive task name o, we introduce a new
non-primitive task symbol t

o

, as well as a new propositional
symbol fin

o

. Let L0 = L [ {fin
o

| o 2 O}. Let O0 be the
set of operators of O modified so that each operator o asserts
fin

o

and retracts fin
o

0 for all o0 6= o. Let N 0
0 and M0 be

N0 and M with all primitive tasks in their networks replaced
with the corresponding t

o

. Finally, let MO contain two meth-
ods for each operator o: m

oa

= (t
o

, true, gtn
o

), where gtn
o

contains only the task o, and m
om

= (t
o

, fin
o

, gtn;), which
can remove t

o

from a network immediately after o is applied.
Then P 0 = (L0,O0,M0 [MO, N 0

0).
There are two important points to note in the above con-

struction. First, fin
o

is set up in such a way that it is true
iff o was the last operator applied. Second, we use fin

o

to
simulate task-sharing under GTN semantics by providing two
methods m

oa

and m
om

for each o. These respectively intro-
duce and don’t introduce a new instance of o after one in-
stance of o has already been applied; m

om

thus simulates the

task-sharing option. Below, we formally prove that this con-
struction indeed simulates task-sharing under GTN semantics:
Theorem 4.9. Let P 0 be the result of applying Construc-
tion 4.8 to a problem P . Then a sequence of operators p is a
plan for P under GTNS semantics iff p is a plan for P 0 under
GTN semantics. This also holds for P under GTNIS semantics
and P 0 under GTNI semantics.

Proof. ()) By Lemma 4.7, there is a derivation of P under
GTNS semantics that only merges primitive operators. We can
also assume WLOG that merging comes immediately before
operator application. For a derivation of p from P 0 under GTN
semantics, replace each sequence of merges then application
of an operator o with decomposition by m

oa

, application of
o, and decomposition with m

om

for the remaining merges.
(() Since m

oa

has no precondition, we can always move
it back in a derivation of p until just before the application of
o. Similarly, we can move forward any m

om

before any inter-
vening decompositions until they come just after application
of o. Then invert ()) to obtain the appropriate merging.

The only threat to this step under task insertion is that there
an insertion of o followed by applications of m

om

. If this
happens, then there must be at least one unconstrained task
for o in the current network. We can replace the insertion and
first m

om

with decomposition by m
oa

and o’s application.

Since we have a plan-preserving polynomial translation of
GTNS planning into HTN planning, GTNS planning is not com-
putationally harder nor more expressive than HTN planning.

5 Encoding HTNs as HGNs
Although there are a wide array of complexity classes for
specific restrictions of HTN planning [Alford et al., 2015a],
HTN planning in general is semi-decidable [Erol et al., 1996].
Erol et al.’s proof of undecidability encodes the intersec-
tion of context free grammars (CFGs) as an HTN problem
with totally-ordered methods and two partially-ordered ini-
tial tasks. The two tasks function as producer and consumer -
one producing a sequence of symbols from one CFG, and the
other consuming them in the order of another. The reachable
tasks from both initial tasks are disjoint. Thus, any progres-
sion of the initial problem leads to a task network composed
of two totally-ordered sets of tasks. Under GTNS semantics,
no task within one of the sets can be merged (they are all or-
dered with respect to each other), and no task between sets
can be merged (the two sets have distinct task names). Thus,
Erol et al.’s construction has the same set of solutions under
GTN semantics as GTNS semantics.

For HGNs, Shivashankar et al. [2012] gave a bidirectional
encoding of totally-ordered HGNs and HTNs, encoding task
names as new goals. This easily extends to encode Erol et
al.’s construction in partially-ordered HGN planning:
Theorem 5.1. Deciding whether a solution to an HGN
or GTNS problem exists under GTNS semantics is semi-
decidable.

These results do not easily extend to task insertion with
sharing. In particular, the proof that HTNI planning is
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NEXPTIME-hard encodes a Turing machine into the task net-
work where an exponential number of partially-ordered tasks
are synchronized through the state. In the following lemma
and construction, we show that if there is a plan where two
mergeable tasks were not merged, we can always merge the
two tasks and replace the lost task’s primitive descendants
with task insertion.

In a derivation N0 �!⇤
P

N
k

, we say that an instance symbol
i0 in a node N

j

is a child of a symbol i in node N
j�1 iff (1)

i = i0 and was not otherwise involved in the progression or
(2) i0 was introduced in a decomposition N

j�1
i,m��!

D

N
j

. A
descendant symbol of i is any child in the subsequent node,
or a descendant of those children in following nodes, while
the reverse holds for ancestors.

Lemma 5.2. Let N0 �!⇤
PIM

N
k

be a derivation of a plan
p for a problem P under GTNIS semantics, and let N

j

be a
node in that sequence with two mergeable tasks i1 and i2.
Then there is a progression N 0

j

�!⇤
PIM

N
k

which preserves
the remain sequence of operator application after merging i1
and i2.

Proof. Assume WLOG that i1 constrains some instance
symbol i0, and i0 is progressed before any other instance sym-
bol constrained by i1 or i2 in the derivation N

j

�!⇤
PIM

N
k

, or
that i1 and i2 constrain no tasks. Modify the derivation as fol-
lows: Let N

j

i1,i2���!
M

N 0
j

. Drop any decomposition or goal
release of descendant symbols of i2. For any operator appli-
cation to a descendant of i2, replace with task insertion.

Construction 5.3. Let P be an HTN problem (by Construc-
tion 4.1 if necessary). Alford et al. [2015b] extends the work
of Geier and Bercher [2011] to show that any solvable task-
insertion problem can be solved with acyclic progression,
which never decomposes a task’s ancestor of the same task
name. We modify it for merging as follows: Where acyclic
progression maintains a history of ancestral task names, in-
stead associate each task with a counter, starting the counters
in the initial node with |C| (the number of non-primitive task
names). Decompose only tasks with a positive counter, and
associate a decremented counter with the resulting children.
When merging two tasks, the new task receives the greater of
the two counters. Finally, after every decomposition or action
application, all mergeable task names are merged.

So GTNIS planners can merge all mergeable tasks after ev-
ery operation, leaving at most |C| unconstrained tasks, which
is incompatible with HTNI’s hardness proof. This leaves us
with a looser bound for GTNIS planning:

Theorem 5.4. Deciding whether a problem is solvable under
GTNIS semantics is PSPACE-hard and in NEXPTIME.

Meanwhile, HGNI planning is trivially in PSPACE: with
insertion, one only needs to guess a totally-ordered sequenc-
ing of the initial subgoals, and solve it as a series of sequential
propositional planning problems [Bylander, 1994]:

Theorem 5.5. Deciding whether an HGN problem is solvable
under GTNI semantics is PSPACE-complete.

6 Conclusion and Future Work
A number of hierarchical planning formalisms modify the
standard HTN semantics in different ways; HGN planning uses
goals in lieu of tasks, while ANML uses both tasks and goals
as well as task insertion and sharing. Despite increased inter-
est in using these planners in practice, there is little insight on
how these modifications change the theoretical properties of
HTN planning, both in terms of expressivity or computational
complexity. Our key contributions against this are:
• We formalized GTN planning, a hybrid formalism that

supports both task and goal decomposition. We also for-
malized task insertion and task-sharing semantics under
this formalism, capturing features of HGNs and ANML.

• We provided plan-preserving translations from GTN prob-
lems with any combination of task insertion and sharing
semantics to standard HTN semantics, thus showing that
they are no more expressive than HTN planning, which in
general is semi-decidable.

• We showed that HGN planning is also semi-decidable. In
fact, we showed that HGN, HTN, and HTNS planning are
all equivalent complexity-wise.

• We provided plan-preserving translations from HGN prob-
lems to HTN problems with task sharing semantics, thus
showing than HGN is no more expressive than HTNS.

• Finally, we provided new upper bounds for subsets of
GTN planning, showing that that HGNI is in PSPACE, and
that GTNIS and GTNI planning are in NEXPTIME.

While we show that HGNs and GTNs (with and without task
sharing and insertion) can be compiled to HTN planning, we
do not claim that this is a superior method of planning. Goals,
sharing, and insertion all provide explicit semantics that are
obscured by the compilation process. This reduces both the
ability to analyze the domain for correctness and the appli-
cability of some heuristic search techniques [Shivashankar et
al., 2016].

Future Work. There are several avenues to extend this
work, some of which are:
• We showed only that GTNIS belong in NEXPTIME. We

conjecture GTNIS planning may be PSPACE-complete.
• For HGN planning, we derived a semi-decidability re-

sult for partially ordered problems, which complements a
known EXPTIME-completeness result [Shivashankar et
al., 2012]. A more nuanced classification of HGN plan-
ning (similar to the classification of HTN planning [Alford
et al., 2012]) would also extend to GTN planning.

• We provided plan preserving translations only in one di-
rection, e.g. HGN! HTNS, GTNS! GTN, and GTN!
HTN. We suspect some of the inverse plan-preserving
translations are possible and others are not. Proving the
non-existence of any of these translations would provide
a firm separation in expressivity [Höller et al., 2016].

• Given the partially-ordered nature of GTN planning, it
seems natural to extend it to planning with concurrent ac-
tions. Even PDDL 3 semantics [Gerevini and Long, 2005]
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for trajectory constraints assume linear planning, which
does not appear to increase complexity; it is not clear if
partial order planning plus trajectory constraints increases
complexity.
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