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Abstract
We investigate learning heuristics for domain-
specific planning. Prior work framed learning a
heuristic as an ordinary regression problem. How-
ever, in a greedy best-first search, the ordering
of states induced by a heuristic is more indicative
of the resulting planner’s performance than mean
squared error. Thus, we instead frame learning a
heuristic as a learning to rank problem which we
solve using a RankSVM formulation. Addition-
ally, we introduce new methods for computing fea-
tures that capture temporal interactions in an ap-
proximate plan. Our experiments on recent In-
ternational Planning Competition problems show
that the RankSVM learned heuristics outperform
both the original heuristics and heuristics learned
through ordinary regression.

1 Introduction
Forward state-space greedy heuristic search is a powerful
technique that can solve large planning problems. However,
its success is strongly dependent on the quality of its heuristic.
Many domain-independent heuristics estimate the distance
to the goal by quickly solving easier, approximated plan-
ning problems [Hoffmann and Nebel, 2001; Helmert, 2006;
Helmert and Geffner, 2008]. While domain-independent
heuristics have enabled planners to solve a much larger class
of problems, there is a large amount of room to improve their
estimates. In particular, the effectiveness of many domain-
independent heuristics varies across domains, with poor per-
formance occurring when the approximations in the heuristic
discard a large amount of information about the problem.

Previous work has attempted to overcome the limitations
of these approximations by learning a domain-specific heuris-
tic correction [Yoon et al., 2006; 2008]. Yoon et al. formu-
lated learning a correction for the FastForward (FF) heuris-
tic [Hoffmann and Nebel, 2001] as a regression problem and
solved it using ordinary least-squares regression. While the
resulting planner is no longer domain-independent, the learn-
ing process is domain independent, and the learned heuristic
is more effective than the standard FF heuristic.

In this paper, we improve on these results by framing the
learning problem as a learning to rank problem instead of an

ordinary regression problem. This is motivated by the insight
that, in a greedy search, the ranking induced by a heuris-
tic, rather than its numerical values, governs the success of
the planning. By optimizing for the ranking directly, our
RankSVM learner is able to produce a heuristic that outper-
forms heuristics learned through least-squares regression.

Additionally, we introduce new methods for constructing
features for heuristic learners. Like Yoon et al., we derive
our features from an existing domain-independent heuris-
tic [Yoon et al., 2006; 2008]. However, our features focus
on the ordering and interaction between actions in approxi-
mate plans. Thus, they can be based on any existing heuris-
tic that implicitly constructs an approximate plan, such as
the context-enhanced additive (CEA) heuristic [Helmert and
Geffner, 2008]. These features can be easily constructed and
still encode a substantial amount of information for heuristic
learners.

In our experiments, we evaluate the performance of the dif-
ferent configurations of our learners on several of the Interna-
tional Planning Competition learning track problems [Vallati
et al., 2015]. We find that the learned heuristics using the
RankSVM approach allow more problems to be solved suc-
cessfully than using the popular FF and CEA heuristics alone.
Additionally, they significantly surpass the performance of
heuristics learned through ordinary regression.

2 Related Work
Prior work in learning for planning spans many types of
domain-specific planning knowledge [Jiménez et al., 2012];
our focus in this paper is on learning heuristic functions.

Yoon et al. were the first to improve on a heuristic function
using machine learning [Yoon et al., 2006; 2008]. They cen-
tered their learning on improving the FF Heuristic [Hoffmann
and Nebel, 2001], using ordinary least-squares regression to
learn the difference between the actual distance-to-go and the
estimate given by the FF heuristic. Their key contribution
was deriving features using the relaxed plan that FF produces
when computing its estimate. Specifically, they used taxo-
nomic syntax to identify unordered sets of actions and pred-
icates on the relaxed plan that shared common object argu-
ments. Because there are an exponential number of possi-
ble subsets of actions and predicates, they iteratively intro-
duced a taxonomic expression that identifies a subset greed-
ily based on which subset will give the largest decrease in
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mean squared error. This process resulted in an average of
about 20 features per domain [Xu et al., 2009]. In contrast,
our features encode ordering information about the plan and
can be successfully applied without any taxonomic syntax or
iterative feature selection.

Xu et al. built on the work of Yoon et al. and incorporated
ideas from structural prediction [Xu et al., 2007; 2009]. They
adapted the learning-as-search optimization framework to the
context of beam search. They learn a discriminative model
to rank the top b successors per state to include in the beam
search. In subsequent work, they used RankBoost to more
reliably rank successors by bootstrapping the predictions of
action-selection rules [Xu et al., 2010]. Although we also
use a ranking approach, we use ranking as a loss function to
train a heuristic from the position of states along a trajectory,
resulting in a global heuristic that can be directly applied to
greedy best-first search.

Arfaee et al. learned heuristics by iteratively improving
on prior heuristics for solving combinatorial search prob-
lems [Arfaee et al., 2011]. They used neural networks and
user defined features. Finally, Virseda et al. learned combina-
tions of existing heuristics values that would most accurately
predict the cost-to-go [Virseda et al., 2013]. However, this
strategy does not use features derived from the structure of
the heuristics themselves.

Wilt et al. investigated greedy heuristic search perfor-
mance in several combinatorial search domains [Wilt and
Ruml, 2012]. Their results suggest that heuristics that ex-
hibit strong correlation with the distance-to-go are less likely
to produce large local minima. And large local minima
are thought to often dominate the runtime of greedy plan-
ners [Hoffmann, 2005; 2011]. They later use the Kendall
rank correlation coefficient (⌧ ) to select a pattern database
for some of these domains [Wilt and Ruml, 2015]. Their use
of ⌧ as a heuristic quality metric differs from our own use be-
cause they score ⌧ using sampled states near the goal while
we score ⌧ by ranking the states on a plan.

3 Planning domains and training data
Our goal is to learn a heuristic that will improve the cover-
age, or the number of problems solved, for greedy forward-
search planning on very large satisficing planning problems.
Secondary goals are to decrease the resulting plan length and
time to solve these problems. The search control of our plan-
ners is greedy best first search (GBFS) with alternating, dual
open lists [Richter and Helmert, 2009]. The preferred opera-
tors in the second open list are computed by the base heuris-
tic which, as we will later see, is used to generate our learn-
ing features [Hoffmann and Nebel, 2001]. We use the lazy
variant of greedy best first search which defers heuristic eval-
uation of successors. We consider STRIPS planning prob-
lems [Fikes and Nilsson, 1971] with unit costs, and with-
out axioms or conditional effects, but our techniques can be
straightforwardly generalized to handle them.
Definition 1 (Planning Domain). A planning domain D =
hP,Ai consists of a set of predicate schemas P and a set
of action schemas A. Each action schemas contains a set
of precondition predicates and effect predicates. A predicate

schema or action schema can be instantiated by assigning ob-
jects to its arguments.
Definition 2 (Planning Problem). A planing problem ⇧ =
hD, O, s0, g, i is given by a domain D, a set of objects O, an
initial state s0, and a goal partial-state g. The initial state s0
is fully specified by a set of predicates. The goal partial-state
g is only partially specified by its set of predicates.

The overall approach will be, for each planning domain,
to train a learning algorithm on several planning problem in-
stances, and then to use the learned heuristic to improve plan-
ning performance on additional planning problems from that
same domain. Note that the new problem instances use the
same predicate and action schemas, but may have different
universes of objects, initial states, and goal states.

In order to learn a heuristic for a particular domain, we
must first gather training examples from a set of existing
training problems within the domain [Jiménez et al., 2012].
Suppose that we have a distribution over problems for a do-
main D, which will be used to generate testing problems. We
will sample a set of training problems {⇧1, ...,⇧n} from D.
From each problem ⇧i, we generate a set of training examples
in which the jth training example is the pair hxi

j , y
i
ji where

xi
j = hsij ,⇧ii is the input composed of a state sij and the

problem ⇧i. Let yij be the length of a plan from sij to gi.
Ideally, yij would be the length of the shortest plan, but be-
cause obtaining optimal plans is intractable for the problems
we consider, we construct approximately optimal plans and
use their lengths as the y values in the training data.

We use the set of states on a single high-quality plan from
the initial state to the goal state as training examples. Un-
fortunately, we have observed that using low-quality plans,
which are more easily found, can be dangerous, as it intro-
duces large amounts of noise into the training data. This
noise can produce conflicting observations of yij for similar
xi
j , which can prevent the learner from identifying any mean-

ingful predictive structure. Reducing at least this kind of local
noise is important for the learning process even if the global
plan is still suboptimal. Thus, we post-process each candidate
plan using two local search methods: action elimination and
plan neighborhood graph search [Nakhost, 2010].

In separate experiments, we attempted learning a heuris-
tic by instead using a sampled set of successors on these
plans as training examples. However, we found that the in-
clusion of these states slightly worsened the resulting perfor-
mance of the learners. Our hypothesis is that the inclusion
of successor states improves local accuracy at the expense of
global accuracy. Because the runtime of greedy search meth-
ods is often dominated by the time to escape the largest lo-
cal minima [Hoffmann, 2005; 2011; Wilt and Ruml, 2012;
2015], it is a worthwhile tradeoff to reduce the size of large
local minima at the cost of increasing the size of small local
minima.

4 Feature Representation
The majority of machine learning methods assume that the
inputs are represented as points in a vector space. In our case,
the inputs xi

j are a pair of a state and a planning problem, each
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of which is a complex structured symbolic object. So, we
need to define a feature-mapping function � that maps an x
value into a vector of numeric feature values. This can also be
done implicitly by defining a kernel, we restrict our attention
to finite-dimensional � that are straightforwardly computable.

The objective in designing a feature mapping is to arrange
for examples that are close in feature space to have similar
output values. Thus, we want to reveal the structural aspects
of an input value that encode important similarities to other
input values. This can be particularly challenging in learning
for planning: while problems within the same domain share
the same schemas for predicates and actions, the set of objects
can be arbitrarily different. For example, a feature represen-
tation with a feature for each predicate instance present in sij
or gi will perform poorly on new problems, which may not
share any predicate instances with the problems used to create
the feature representation.

Yoon et al. used information from the FF heuristic
to construct additional features from the resulting relaxed
plan [Yoon et al., 2006; 2008]. The relaxed plan compresses
the large set of possible actions into a small plan of actions
that are likely to be relevant to achieving the goal. Many
modern heuristics either explicitly or implicitly generate ap-
proximate plans, similar to FF’s relaxed plan, that can be
represented as directed acyclic graphs (DAG) where each ac-
tion is a vertex, and directed edges indicate that the outgo-
ing action is supported by the incoming action. We pro-
vide feature mappings that are applicable to any heuristic
that gives rise to such a DAG, but in this paper, we focus
on the FF [Hoffmann and Nebel, 2001] and CEA [Helmert
and Geffner, 2008] heuristics. Our method can be extended
to include additional features for example derived from land-
mark heuristics or domain-dependent heuristics, although we
do not consider these extensions here.

We can now view our training inputs as xi
j = hsij , gi,⇡

ij
h i

where ⇡ij
h is the DAG generated by heuristic h for state sij

and goal gi. The computation time of each feature affects
the performance of the resulting planner in a complex way:
the feature representation is computed for every state encoun-
tered in the search, but good features will make the heuristic
more effective, causing fewer states to be encountered.

4.1 Single Actions
The first feature representation serves primarily as a baseline.
Each feature is the number of instances of a particular ac-
tion schema in the DAG ⇡ij

h . The number of features is the
number of action schemas |A| in the domain and thus around
five for many domains. This feature representation is simple
and therefore limited in its expressiveness, but it can be eas-
ily computed in time O(|⇡ij

h |) and is unlikely to overfit. If we
are learning a linear function of �(x), then the weights can
be seen as adjustments to the predictions made by the DAG
of how many instances of each action are required. So, for
instance, in a domain that requires a robot to do a ”move”
action every time it ”picks” an object, but where the delete
relaxation only includes one ”move” action, this representa-
tion would allow learning a weight of two on pick actions,
effectively predicting the necessity of extra action instances.

4.2 Pairwise Actions
The second feature representation creates features for pairs
of actions, encoding both their intersecting preconditions and
effects as well as their temporal ordering in the approximate
plan. First, we solve the all-pairs shortest paths problem on
⇡ij
h by running a BFS from each action vertex. Then, consider

each pair of actions a1 ! a2 where a2 descends from a1, as
indicated by having a finite, positive distance from a1 to a2
in the all-pairs shortest paths solution. This indicates a2 must
come after a1 on all topological sorts of the DAG; i.e., ⇡ij

h
contains the implicit partial ordering a1 � a2. Moreover, if
there is an edge (a1, a2) in ⇡ij

h , then a1 � a2 is an explicit
partial ordering because a1 directly supports a2.

For every pair of action schemas (A1, A2), we include two
features, counting the number of times it happens that, for an
instance a1 of A1 and instance a2 of A2,

1. a1 � a2, EFF(a1) \ PRE(a2) 6= ;
2. a2 � a1, EFF(a2) \ PRE(a1) 6= ;

The current state and goal partial-state are included as dummy
actions with only effects or preconditions respectively.

This feature representation is able to capture information
about the temporal spread of actions in the DAG: for exam-
ple, whether the DAG is composed of many short parallel
sequences of actions or a single long sequence. Additionally,
the inclusion of the preconditions and effects that overlap en-
codes interactions that are not often directly captured in the
base heuristic. For example, FF and CEA make predicate in-
dependence approximations, which can result in overestimat-
ing the distance-to-go. The learner can automatically correct
for these estimations if it learns that a single sequence can be
used to achieve multiple predicates simultaneously.

In contrast to the single-action feature representation, the
computation of the pairwise representation takes O(|⇡ij

h |2) in
the worst case. However, the DAG frequently is composed of
almost disjoint subplans, so in practice, the number of pairs
considered is fewer than

�|⇡ij
h |
2

�
. Additionally, this tradeoff

is still advantageous if the learner is able to produce a much
better heuristic. Finally, for both the single and pairwise fea-
ture representations, we add three additional features corre-
sponding to the original heuristic value, the number of layers
present in the DAG, and the number of unsatisfied goals.

5 Models for heuristic learning
We consider two different framings of the problem of learning
a heuristic function f . In the first, the goal is to ensure that the
f(x) values are an accurate estimate of the distance-to-go in
the planning state and problem encoded by x = (s,⇧). In the
second, the goal is to ensure that the f(x) values accurately
rank the distance-to-go for different states s within the same
planning problem ⇧, but do not necessarily reflect that actual
distance-to-go values.

These different framings of the problem lead to different
loss functions to be optimized by the learner and to dif-
ferent optimization algorithms. Because our learning algo-
rithms cannot optimize for search performance directly, the
loss function serves as a proxy for the search performance.
A good loss function will be highly correlated with perfor-
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mance of learned heuristics. We restrict ourselves to linear
models that learn a weight vector w, and make a prediction
f(x) = �(x)Tw.

5.1 Heuristic value regression
Because learning a heuristic is, at face value, a regression
problem, a natural loss function is the root mean squared er-
ror (RMSE). A model with a low RMSE produces predic-
tions close to the actual distance-to-go. Because each training
problem ⇧i may produce a different number of examples mi,
we use the average RMSE over all problems. This ensures
that we do not assign more weight to problems with more ex-
amples. If f is a prediction function mapping a vector to the
reals, then:

RMSE =
1

n

nX

i=1

vuut 1

mi

miX

j=1

(f(xi
j)� yij)

2.

The first learning technique we applied is ridge regression
(RR) [Hoerl and Kennard, 1970]. This serves as a baseline
to compare to the results of Yoon et al. [Yoon et al., 2008].
Ridge regression is a regularized version of Ordinary Least
Squares Regression (OLS). The regularization trades off op-
timizing the squared error against preferring low magnitude
w using a parameter �. This results in the following optimiza-
tion problem. Leting �(X) be the design matrix of concate-
nated features �(xi

j) and Y be the vector concatenation of yij
for all i, j, we wish to find

min
w

||�(X)w � Y ||2 + �||w||2 .

This technique is advantageous because it can be quickly
solved in closed form for reasonably sized �(X), yielding
the weight vector

w = (�(X)T�(X) + �I)�1Y .

Optimizing RMSE directly, with no penalty �, will yield a
weight vector that performs well on the training data but
might not generalize well to previously unseen problems. In-
creasing � forces the magnitude of w to be smaller, which
prevents the resulting f from ”overfitting” the training data
and therefore not generalizing well to new examples. This is
especially important in our application as we are trying learn
a heuristic that generalizes across the full state-space from
only a few representative plans.

We select an appropriate value of � by performing domain-
wise leave-one-out cross validation (LOOCV): For different
possible values of �, and in a domain with n training problem,
we train on data from n � 1 training problems and evaluate
the resulting heuristic on the remaining problem according to
the RMSE loss function, and average the scores from holding
out each problem instance. We select the � value for which
the LOOCV RMSE is minimized over a logarithmic scale.

5.2 Learning to Rank
The RMSE, however, is not the most appropriate metric for
our learning application. We are learning a heuristic for
greedy search, which uses the heuristic solely to determine
open list priority. The value of the heuristic per se does not

govern the search performance which depends most directly
on the ordering on states induced by the heuristic. In this
context, any monotonically increasing function of a heuristic
results in the same ranking and performance. A heuristic may
have arbitrarily bad RMSE despite performing well.

For these reasons, we consider the Kendall rank correla-
tion coefficient (⌧ ), a nonparametric ranking statistic, as a loss
function. It represents the normalized difference between the
number of correct rankings and incorrect rankings for each of
the ranking pairs. As with the RMSE, we compute the av-
erage ⌧ across each problem. The separation of problems is
even more important here. Our ⌧ only scores rankings be-
tween examples from the same problem as examples from
separate problems are never encountered together in the same
search. This provides a major source of leverage over an or-
dinary regression framework. Heuristics are not penalized for
producing inconsistent distances-to-go values across multiple
problems, allowing them to provide more effort to improve
the per-problem rankings.

Let s(i; j, k) score the concordance or discordance of the
ranking function f for examples hxi

j , y
i
ji and hxi

k, y
i
ki from

the same problem ⇧i:

s(i; j, k) =

8
><

>:

+1 if sgn(f(xi
k)� f(xi

j)) = sgn(yi
k � y

i
j)

�1 if sgn(f(xi
k)� f(xi

j)) = �sgn(yi
k � y

i
j)

0 if f(xi
k)� f(xi

j) = 0

.

Then the Kendall rank correlation coefficient is specified by

⌧ =
1

n

nX

i=1

2

mi(mi � 1)

miX

j=1

miX

k=j+1

s(i; j, k) .

Note that each yij is unique per problem ⇧i because our exam-
ples come from a single trajectory. Observe that ⌧ 2 [�1, 1];
values close to one indicate the ranking induced by the heuris-
tic f has strong positive correlation to the true ranking of
states as given by the actual labels. Conversely, values close
to negative one indicate strong negative correlation.

If our loss function is ⌧ , it is more effective to opti-
mize ⌧ directly in the learning process. To this end, we
use Rank Support Vector Machines (RankSVM) [Joachims,
2002]. RankSVMs are variants of SVMs which penalize the
number of incorrectly ranked training examples. Like SVMs,
RankSVMs also have a parameter C used to provide reg-
ularization. Additionally, their formulation uses the hinge
loss function to make the learning problem convex. Thus,
a RankSVM finds the w vector that optimizes a convex re-
laxation of ⌧ . Our formulation of the RankSVM additionally
takes into account the fact that we only wish to rank train-
ing examples from the same problem. Our formulation is the
following:

min
w

||w||2 + C
nX

i=1

miX

j=1

miX

k=j+1

⇠ijk

s.t. �(xi
j)

Tw � �(xi
k)

Tw + 1� ⇠ijk, 8yij � yik, 8i
⇠ijk � 0, 8i, j, k .

The first constraint can also be rewritten to look similar to the
original SVM formulation. In this form, the RankSVM can
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be viewed as classifying if xi
j , x

i
k are properly ranked.

(�(xi
j)� �(xi

k))
Tw � 1� ⇠ijk, 8yij � yik, 8i

Notice that number of constraints and slack variables, corre-
sponding to the number of rankings, grows quadratically in
the size of each problem. This makes training the RankSVM
more computationally expensive than RRs or SVMs. How-
ever, there are efficient methods for training these, and other
SVMs, when considering just the linear, primal form of the
problem [Joachims, 2006; Franc and Sonnenburg, 2009]. It
is important to note that we generate a number of constraints
that is quadratic only in the length of any given training plan,
and do not attempt to rank all the actions of all the training
plans jointly; this allows us to increase the number of training
example plans without dramatically increasing the size of the
optimization problem.

An additional advantage of RankSVM is that it supports
the inclusion of the non-negativity constraint w � 0 which
provide additional regularization. Because each feature rep-
resent a count of actions or action pairs, the values are al-
ways non-negative, as are the target values. We generally
expect that DAGs with a large number of actions indicate
that the state is far from the goal. The non-negativity con-
straint allows us to incorporate this prior knowledge in the
model, which can sometimes improve the generalization of
the learned heuristic. As in RR, we select C using a line
search over a logarithmic scale, to maximize a cross-validated
estimate of ⌧ . As a practical note, we start with an over-
regularized model where C ⇡ 0 and increase C until reach-
ing a local minimum because SVMs are trained much more
efficiently for small C.

6 Results
We implemented our planners using the FastDownward
framework [Helmert, 2006]. 1 Each planning problem is
compiled to a representation similar to SAS+ [Bäckström and
Nebel, 1995] using the FastDownward preprocessor. How-
ever, the predicates that represent each SAS+ (variable, value)
pair are still stored so, actions and states can be mapped back
to their prior form. We used the dlib C++ machine learning
library to implement the learning algorithms [King, 2009].

We experimented on four domains from the 2014 IPC
learning track [Vallati et al., 2015]: elevators, transport,
parking, and no-mystery. For each domain, we constructed
a set of unique examples with the competition problem gen-
erators by sampling parameters that cover competition pa-
rameter space. We use a variant of the 2014 FastDownward
Stone Soup portfolio [Helmert et al., 2011] planner, with a
large timeout and memory limit, to generate training example
plans. We trained on at most 10 examples randomly selected
from the set of problems our training portfolio planner was
able to solve, and then tested on the remaining problems.

1Because heuristic values are required to be integers in this
framework, we scale up and then round predicted heuristic values, in
order to capture more of the precision in the values. Recall that scal-
ing will not alter the planner’s performance because arbitrary non-
negative, affine transformations to f(x) will not affect the resulting
ranking in greedy search.

For each experiment, we report the following values:2
Cov: coverage, or total number of problems solved; Len:
mean plan length; Run T: mean planning time in seconds;
Exp: mean number of expansions; RMSE: RMSE of learned
heuristic, ⌧ : Kendall rank correlation coefficient of learned
heuristic; �/C: regularization parameter value (� for RR and
C for RankSVM); Feat: number of nonzero weights learned
relative to the total number of features; and Train T: runtime
to train the heuristic learner in seconds.

Each planner was run on a single 2.5 GHz processor for 30
minutes with 5 GB of memory. We only include the results of
the original CEA heuristic on elevators, as the default heuris-
tic was able to solve each problem and the heuristics learned
using CEA all performed similarly.

The heuristics learned by RankSVM are able to solve more
problems than those learned using ridge regression. Within a
domain, ⌧ seems to be positively correlated with the num-
ber of problems solved while the RMSE does not. The
pairwise-action features outperform the single-action features
in RankSVM, making it worthwhile to incur a larger heuris-
tic evaluation time for improved heuristic strength. The
CEA learned heuristics performed slightly better than the FF
learned heuristics.

On transport and parking, the training portfolio planner
was only able to solve the smallest problems within the pa-
rameter space. Thus, our RankSVM learners demonstrate the
ability to learn from smaller problems and perform well on
larger problems. In separate experiments, we observed that
both artificially over-regularized and under-regularized learn-
ers performed poorly indicating that selection of the regular-
ization parameter is important to the learning process.

The learned heuristics perform slightly worse than the stan-
dard heuristics on no-mystery despite having almost perfect ⌧
values. In separate experiments using eager best-first search,
the learned heuristics perform slightly better on no-mystery,
but the improvement is not significant. This domain is known
to be challenging for heuristics because it contains a large
number of dead-ends. We observed that ⌧ does not seem suf-
ficient for understanding heuristic performance on domains
with harmful dead-ends. Our hypothesis is that failing to
recognize a dead-end is often more harmful than incorrectly
ranking nearby states and should be handled separately from
learning a heuristic. A topic for future work is to combine our
learned heuristics with learned dead-end detectors.

Inclusion of the non-negativity constraint (NN) on trans-
port significantly improved the coverage of the FF learned
heuristic over the normal RankSVM formulation. We believe
that this constraint can sometimes improve generalization in
domains with a large variance in size or specification. For
example, the transport generator samples problems involving
either two or three cities leading to a bimodal distribution of
problems.

Finally, we tested two learned heuristics on the five evalu-
ation problems per domain chosen in the IPC 2014 learning

2We use arithmetic mean for plan length and geometric means
for planning time and number of expansions, and report these
statistics only for solved instances; RMSE and ⌧ values are cross-
validation estimates.
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elevators (35)
Method Cov. Len. Run T. Exp. RMSE ⌧ �/C Feat. Train T.
FF Original 14 318 196 17833 34.370 0.9912 N/A N/A N/A
FF RR Single 22 546 504 34970 4.091 0.9948 100 9/9 3.133
FF RR Pair 15 561 308 20985 3.789 0.9971 1000 53/53 11.686
FF RSVM Single 34 375 403 23765 79.867 0.9967 0.1 9/9 55.681
FF RSVM Pair 34 631 123 7083 418.828 0.9996 1 53/53 140.786
FF NN RSVM Pair 35 655 61 10709 46.296 0.9992 1 51/53 125.702
CEA Original 35 397 163 4504 21.494 0.9973 N/A N/A N/A

transport (35)
FF Original 5 588 470 18103 126.193 0.8460 N/A N/A N/A
FF RR Single 0 None None None 31.518 0.9303 100 6/6 3.569
FF RR Pair 4 529 560 27866 27.570 0.9392 10000 32/32 11.028
FF RSVM Single 21 1154 650 29452 149.003 0.9720 0.1 6/6 106.901
FF RSVM Pair 20 587 178 8896 162.141 0.9797 0.001 32/32 117.808
FF NN RSVM Pair 31 663 206 7803 141.273 0.9798 0.01 17/32 287.586
CEA Original 9 448 542 9064 57.819 0.9314 N/A N/A N/A
CEA RR Single 11 493 436 6921 33.032 0.9420 10000 6/6 4.536
CEA RR Pair 2 609 1602 40327 30.731 0.9318 100 45/45 15.716
CEA RSVM Single 18 722 588 11334 130.653 0.9748 0.1 6/6 158.523
CEA RSVM Pair 31 650 225 3526 159.139 0.9804 0.0001 45/45 244.164
CEA NN RSVM Pair 29 696 277 9006 191.064 0.9795 0.0001 29/45 528.665

parking (10)
FF Original 0 None None None 6.101 0.9525 N/A N/A N/A
FF RR Single 0 None None None 4.571 0.9648 100 7/7 0.201
FF RR Pair 2 156 1419 33896 4.285 0.9757 100 40/40 0.570
FF RSVM Single 0 None None None 10.468 0.9745 0.01 7/7 8.423
FF RSVM Pair 8 185 208 2852 18.262 0.9918 0.1 40/40 7.030
FF NN RSVM Pair 6 183 358 5891 143.063 0.9941 10 26/40 7.119
CEA Original 0 None None None 15.885 0.9628 N/A N/A N/A
CEA RR Single 0 None None None 4.667 0.9669 0.01 7/7 0.277
CEA RR Pair 1 280 1230 48180 4.448 0.9660 10 47/47 0.738
CEA RSVM Single 0 None None None 7.950 0.9757 0.1 7/7 10.830
CEA RSVM Pair 10 272 81 2147 45.823 0.9918 1 47/47 10.237
CEA NN RSVM Pair 10 260 70 1690 140.297 0.9938 10 27/47 9.179

no-mystery (10)
FF Original 4 31 583 5658745 3.462 0.9841 N/A N/A N/A
FF RR Single 4 30 1004 8385159 1.662 0.9861 100 6/6 0.085
FF RR Pair 2 31 700 3898861 1.622 0.9902 1000 21/21 0.193
FF RSVM Single 1 26 1411 16201215 21.069 0.9871 100 6/6 0.712
FF RSVM Pair 2 28 892 6894959 39.350 0.9968 1 21/21 0.914
FF NN RSVM Pair 1 29 1049 7973003 80.588 0.9972 10 17/21 1.024
CEA Original 3 30 73 107773 16.851 0.9579 N/A N/A N/A
CEA RR Single 2 28 9 26319 1.824 0.9890 100 6/6 0.069
CEA RR Pair 3 32 104 169434 1.717 0.9892 1000 32/32 0.342
CEA RSVM Single 2 28 12 33559 36.457 0.9916 1 6/6 1.283
CEA RSVM Pair 3 32 34 46501 6.358 0.9964 0.01 32/32 4.023
CEA NN RSVM Pair 3 31 190 264225 55.141 0.9970 1 16/32 62.608

Table 1: Results from the elevators, transport, parking, and no-mystery IPC Learning Track 2014 problems.

track. Both the FF RSVM Pair heuristic and the CEA RSVM
Pair heuristic solved all 5/5 problems in elevators, transport,
and parking but only 1/5 problems in no-mystery.

7 Conclusion
Our results indicate that, for greedy search, learning a heuris-
tic is best viewed as a ranking problem. The Kendall rank
correlation coefficient ⌧ is a better indicator of a heuristic’s
quality than the RMSE, and it is effectively optimized using
the RankSVM learning algorithm. Pairwise-action features
outperformed simpler features. Further work involves com-

bining features from several heuristics, learning complemen-
tary search control using our features, and incorporating the
learned heuristics in planning portfolios.
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