
Blind Search for Atari-Like Online Planning Revisited

Alexander Shleyfman and Alexander Tuisov and Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion, Israel

Abstract

Similarly to the classical AI planning, the Atari
2600 games supported in the Arcade Learning En-
vironment all feature a fully observable (RAM)
state and actions that have deterministic effect. At
the same time, the problems in ALE are given only
implicitly, via a simulator, a priori precluding ex-
ploiting most of the modern classical planning tech-
niques. Despite that, Lipovetzky et al. [2015] re-
cently showed how online planning for Atari-like
problems can be effectively addressed using IW(i),
a blind state-space search algorithm that employs a
certain form of structural similarity-based pruning.
We show that the effectiveness of the blind state-
space search for Atari-like online planning can be
pushed even further by focusing the search using
both structural state similarity and the relative my-
opic value of the states. We also show that the plan-
ning effectiveness can be further improved by con-
sidering online planning for the Atari games as a
multiarmed bandit style competition between the
various actions available at the state planned for,
and not purely as a classical planning style action
sequence optimization problem.

1 Introduction
Since its introduction in 2013, the Arcade Learning Environ-
ment (ALE) draws a growing interest as a testbed for general,
domain-independent planners and learners through a conve-
nient interface to numerous Atari 2600 games [Bellemare et

al., 2013]. These games all feature a fully observable state
and actions that have deterministic effect. At the same time,
both the action dynamics and the reward structure of the
games are given only implicitly, via a simulator, bringing the
ALE setup closer to the challenges of real-world applications.

ALE supports two settings of action selection problem: an
online planning setting where each action selection is based
on a relatively short, simulated lookahead, and a learning set-
ting that must produce reactive controllers for mapping states
into actions after a single long session of interactions with
the simulator. In this work we consider the online planning
setting.

The implicit, simulator-based problem representation in
ALE precludes automatic derivation of heuristic functions
and other inferences developed in the scope of classical plan-
ning [Ghallab et al., 2004; Geffner and Bonet, 2013]. This
state of affairs restricts the algorithmic choices to blind (aka
not future estimating) search algorithms, such as blind best-
first search and Monte-Carlo tree search algorithms. The first
results on domain-independent online planning in ALE have
been reported by Bellemare et al. [2013], where the search
algorithm of choice was the popular Monte-Carlo tree search
algorithm UCT [Kocsis and Szepesvári, 2006]. In particular,
UCT was shown there to substantially outperform breadth-
first search (BrFS). The latter result probably came at no sur-
prise since blind best-first search methods such as BrFS are
inherently ineffective over large state spaces. Recently, how-
ever, Lipovetzky et al. [2015] showed that this is not the end
of the story for breadth-first search. In particular, they showed
that IW(i), a pruning-enhanced successor of BrFS originated
in work in classical planning [Lipovetzky and Geffner, 2012],
favorably competes with UCT on the Atari games.

In this work we show that the effectiveness of blind state-
space search for deterministic online planning in Atari-like
problems can be pushed even further by focusing the search
using both structural state similarity and the relative my-
opic value of the states. We introduce and evaluate priori-

tized IW(i), a simple extension of IW(i) that approximates
breadth-first search with duplicate detection and state reopen-
ing, and show that it very favorably competes with IW(i) on
the Atari games. We then revisit the basic objective under-
lying deterministic online planning. We argue that the effec-
tiveness of online planning for the Atari games and related
problems can be further improved by considering this prob-
lem as a multiarmed bandit style competition between the ac-
tions available at the state planned for (and not purely as a
classical planning style action sequence optimization prob-
lem). Following this lead, we introduce a simple modifica-
tion of prioritized IW(i) that fits the modified objective, and
empirically demonstrate the prospects of this direction.

2 Background
The Atari 2600 games exposed by ALE represent a broad
range of problems that are characterized by means of a finite
set of states, with each state being represented by a complete
assignment to some n finite domain variables X1, . . . , Xn,

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3251

an initial state s0, a finite set of actions, a transition func-
tion s

0
= f(a, s) where s

0 is the state resulting from ap-
plying action a in state s, and real-valued rewards r(a, s)

that result from applying a in s. The transition function and
rewards in ALE are implemented by a game simulator and
thus are not known to the planner a priori. At the same
time, the environment is fully observable: when applying ac-
tion a is simulated in state s, the resulting new state f(a, s)

and the collected reward r(a, s) are revealed to the planner.
The state of the game is simply captured by the content of
Atari’s RAM of 128 bytes. Different choices of factoring
this RAM into a set of state variables are possible, and, as
it is typically the case with feature generation in learning,
this choice of factoring may have a substantial impact on the
planner’s performance. This aspect of the problem is tangen-
tial to our focus here; for ease of comparability, we adopt
the previous work’s factoring along 128 variables, each rep-
resenting the value of the respective memory byte, and thus
having the domain of 256 values [Bellemare et al., 2013;
Lipovetzky et al., 2015].

IW(i), an algorithm that has recently been shown by
Lipovetzky et al. [2015] to exhibit state-of-the-art perfor-
mance on the Atari games, is a regular breadth-first search
with the following modification: When a state s is generated,
it is assigned a novelty penalty, and is pruned if the penalty is
higher than i. The novelty penalty of a newly generated state
s is 1 if s is the first state generated in the search that makes
true some atom X = x, else it is 2 if s is the first state that
makes a pair of atoms X = x ^ Y = y true, and so on. If the
problem state is represented by n atoms, then IW(n) simply
corresponds to breadth-first search with duplicate detection,
while values of i lower than n induce breadth-first searches
with respectively more aggressive state pruning.

In classical planning, the primary termination condition for
the search process is the achievement of the goal. In problems
with a more general and/or unknown reward structure, such
as the Atari games, the termination is determined by a search
resource budget, such as a time window or a limit on the num-
ber of generated nodes. The accumulated reward R(s) of a
generated state s is R(s) = R(s

0
) + r(a, s) where s

0 is the
unique parent state of s. The best path is then a state-space
path from the initial state to a state that maximizes the accu-
mulated reward. In online planning, the first action along this
path is then executed, the system transitions to a new state,
and the search process starts over from that new initial state.
In what follows, the state that is planned for at the current
iteration is denoted by s0.

3 Prioritized Pruning
While the experiments of Lipovetzky et al. [2015] showed
that IW(1) performs on the Atari games at the level of UCT,
a closer look at the results suggests that the strength of these
two algorithms is somewhat complementary: Out of the 54
games used in the experiments, IW(1) scored more than
150% of the UCT’s score in 17 games, while UCT scored
more than 150% of the IW(1)’s score in 13 games. The two
algorithms are too different to easily characterize the prob-
lems on which each has an a priori advantage, and yet one

key difference between them immediately suggests itself as a
natural explanation of the complementarity of the two: While
the exploration of UCT is biased towards the regions of the
state-space that already appear rewarding, the exploration of
IW(1) has no such a bias whatsoever.

As a variant of blind search that aims at combining both
strengths, Lipovetzky et al. [2015] evaluated 2BFS, a best-
first search algorithm with two queues: one queue ordered in
increasing order of the novelty penalty, and a second queue
ordered in a decreasing order of the accumulated reward. In
one iteration, the best first search picks up the best node from
one queue, and in the second iteration it picks up the best
node from the other queue, with all the generated nodes be-
ing added to both queues. This way, while IW(i) progresses
in a breadth-first manner while pruning states based on their
novelty, 2BFS progresses (in its first queue) in the best-first
manner while only prioritizing the states based on their nov-
elty.

In that respect, an important property of most of the Atari
games is that the state of the game changes not only due to
the actions of the player but also due to the change of the
environment—the cars keep moving, the rocks keep falling,
etc.—while the changes that the player can make to the state
are rather limited.1 As a result, a state reachable in k steps
from the initial state is likely to be novel with respect to the
states reachable in less than k states. Thus, if the best-first
search selects the state to expand based on its relative novelty,
then at least some of its children are also likely to exhibit rela-
tively high novelty, ending up high in the queue. Such a chain
effect makes the search much more depth-first, and, since
the state-space is typically much larger than what the search
can explore within a reasonable search budget, the explored
region of the state-space is likely to have a narrow focus.
In turn, this biases action selection at s0 towards action se-
quences that collect rewards far from s0 while possibly miss-
ing alternatives that bring the rewards earlier as well. Inter-
estingly, the second queue of 2BFS, prioritized by the states’
reward-so-far, does not necessarily balance this phenomenon:
Since the first rewarding state is more likely to be found
within the tunnel created by the depth-first-like progress of
the first queue, the second queue is likely to join expanding
that tunnel, possibly making it wider, but still, abandoning
the exploration of the state-space under the myopically less
appealing alternatives.

At first view, the breadth-first searching IW(1) is expected
to behave differently. However, in our experiments we consis-
tently observed IW(1) exhibiting a very similar “single tun-
nel” phenomenon. This seems to happen precisely because of
the aforementioned structure of the Atari games due to which
the likelihood of the states of the same shallowness to survive

the novelty pruning decays very rapidly with the position of

the states in the queue. Indeed, in the experiments of Lipovet-
1This is very different from the typical structure of the bench-

marks used in the classical planning research where the set of ac-
tions controlled by the planner is rather rich, but at the same time,
these actions are responsible for most, if not all, the changes made
to the state. At least in part, the latter can be attributed to the fact
that encoding environment changes in the PDDL language is not an
easy task.

3252

zky et al. [2015], neither 2BFS exhibited a substantial advan-
tage over IW(1) nor the other way around, leaving open the
quest for an effective interplay between the novelty and the
reward-so-far promise.

We now show that plugging a bias towards the reward-so-
far into the actual state pruning mechanism offers a promising
direction for addressing this quest: Even if done in a rather
simple manner as in the prioritized IW(i) procedure described
below, this approach results in an algorithm that strongly out-
performs IW(1) and UCT. Prioritized IW(i), or p-IW(i), for
short, deviates from IW(i) twofold:

1. While preserving the breadth-first dynamics of IW(i),
the ties in the queue are broken to favor states with
higher accumulated reward.

2. Every i-set of atoms x is schematically pre-assigned a
“reward” of br(x) = �1. Given that, a generated state s
is considered novel if, for some i-set of atoms x in s, we
have R(s) > br(x). If that holds, then (and only then)
s is not pruned, and, for each i-set of atoms x in s, we
update its reward to br(x) := max {R(s), br(x)}.

The two modifications of p-IW(i) with respect to IW(i)

bring the reasoning about the reward accumulated by the
states directly into the mechanism of state pruning, address-
ing two complementary questions—what states should lead
the pruning, and what states should be pruned—as follows.

First, the regular breadth-first search is driven by two prin-
ciples: always expand one of the shallowest states in the
queue and never put a state into the queue twice. The later
duplicate pruning makes BrFS a graph search rather than a
tree search, leading to up to exponential savings in the search
effort while preserving completeness. In that respect, IW(i) is
BrFS in which state duplication is over-approximated by state
(non-)novelty: If a search node generated by BrFS is pruned
due to its duplication, then, for any i, that search node would
be pruned by IW(i), but not necessarily vice versa (unless
i = n). In classical planning, this “non-novel as duplicate”
over-approximation has a strong semantics via a notion of
“problem width” [Lipovetzky and Geffner, 2012]. In the set-
tings of ALE, however, this over-approximation is motivated
only informally, by a similarity to the novelty-based search
methods developed independently in the context of genetic
algorithms [Lehman and Stanley, 2011]. In the latter meth-
ods, individuals in the population are not ranked according
to the optimization function but in terms of how much they
are different from the rest of the population, thus encourag-
ing global exploration rather than (greedy) search for local
improvements.

Though better exploration is indeed what online planning
effectiveness boils down to [Bubeck et al., 2011], the direct
linkage to the diversity-driven genetic algorithms has an im-
portant weakness. Suppose that the two shallowest states in
the search queue of IW(i) are s1 and s2, and suppose further
that the children of s1 make the children of s2 non-novel and
vice versa. In other words, expanding any of these two states
blocks the search under the other state. In IW(i), the choice
between s1 and s2 remains arbitrary. However, if the accu-
mulated reward of s1 is higher than s2, then, ceteris paribus,
it is only reasonable to assume that the best extension of s1

is more rewarding than the best extension of s2, and thus s1
should better be expanded before s2. This example empha-
sizes the difference between the evolutionary search in ge-
netic algorithms and state-space forward search: While the
former typically examines fully specified candidates to the
problem solution, the latter gradually expands partial solu-

tions in the form of path prefixes. Under the additive struc-
ture of the accumulated reward, the quality of partial solutions
lower bounds the quality of their extensions, making total ig-
norance of the accumulated reward of the states in the queue
rather questionable. The first modification of p-IW(i) with re-
spect to IW(i) approaches precisely this issue under the con-
servative, ceteris paribus semantics, preserving the breadth-
first search dynamics of the search.

Suppose now that IW(i) generates a state s such that
R(s) > R(s

0
) for all the previously generated states s0. De-

spite the fact that the extensions of the respective path to s

are now the most promising candidates for the best solution
that IW(i) can possibly compute from now on, if s is evalu-
ated as non-novel, then it is pruned, independently of its ac-
cumulated reward. The second deviation of prioritized IW(i)

from IW(i) takes the accumulated reward of the generated
state s into account in the actual decision whether s should
be pruned or not. Specifically, a newly generated state s in
prioritized IW(i) is pruned if, for every i-set of atoms x in s,
there was a previously generated state s

0 that contains x and
has R(s

0
) � R(s).

Similarly to the way the state pruning in IW(i) can be un-
derstood as an over-approximation of the standard duplicate
pruning, the state pruning in p-IW(i) can be understood as an
over-approximation of duplicate pruning with state reopen-

ing. In BrFS, if the solution optimality is of interest, then, if
a previously generated state s is rediscovered through a dif-
ferent path with a higher accumulated reward, then s is “re-
opened”, either by re-starting the search from s onwards, or
by propagating the new accumulated reward of s to its de-
scendants in the queue. In that respect, if a state generated
by BrFS with node reopening is pruned, then, for any i, that
search node would be pruned by p-IW(i), but not necessar-
ily vice versa. In particular, this modification allows for a
substantial alleviation of the “single tunnel” phenomenon ex-
hibited by IW(i), keeping the search wider but only when
the extended search breadth is justified by the accumulated
reward of the respective states.

We tested p-IW(1) and IW(1) on 53 of the 55 different
games considered by Bellemare et al. [2013]: The SKIING
game was already left out in the experiments of Lipovetzky
et al. [2015] due to certain issues with the reward structure of
this game. We decided to also leave out BOXING because,
in the single player setting of ALE, scoring in this game
boils down to striking in arbitrary directions since the sec-
ond player is doing nothing, and therefore every algorithm
will trivially score the possible maximum.

We used the implementation of IW(1) by Lipovetzky et
al. [2015], and have implemented p-IW(1) on top of it. To fo-
cus the comparison on the effectiveness of individual online
decisions, both algorithms have been evaluated in a memory-
less setting. This is in contrast to the experiments of Lipovet-
zky et al. [2015] in which IW(1) reused the frames in the

3253

sub-tree of the previous lookahead that is rooted in the se-
lected child, to allow for a direct comparison with the results
reported for UCT by Bellemare et al. [2013] under a simi-
lar setting. Following Lipovetzky et al. [2015], each action
selection decision was given a lookahead budget of 150000
simulated frames (or, equivalently, 30000 search nodes), the
lookahead depth was limited to 1500 frames, and the ac-
cumulated rewards were discounted as R(s

0
) = R(s) +

�

d(s)+1
r(s, a) where s is the unique parent of s0, a is the re-

spective action, and the discount factor2 was set to � = 0.995.
To reduce the variance, each game was played 30 times, with
the reported results being averaged across these runs.

Columns 2-3 in Table 1 shows that p-IW(1) rather con-
sistently outperforms IW(1). Out of the 53 games, p-IW(1)

achieved higher average scores in 42 games, 5 games ended
up with a draw, and IW(1) achieved higher average scores
in 6 games. Of the latter, the highest achievement of IW(1)

was the 22% score difference in GOPHER, while p-IW(1)

outscored IW(1) by more than 50% on 25 games. In fact,
comparing our results with the results reported by Lipovetzky
et al. [2015] for IW(1) with memory, p-IW(1) without mem-
ory scored higher than IW(1) with memory on 14 games.

In general, we have noticed that both p-IW(1) and IW(1)

typically did not use the entire budget of 150000 simulated
frames per decision. To examine the score improvement as a
function of budget, we have also tested them under a budget
of only 10000 simulated frames per decision, all else being
equal. The results are shown in columns 4-5 of Table 1. As
one would expect, the scores here are typically lower than
these achieved under the 150000 frames budget, and, since
p-IW(1) brings an approximation of state reopening, typi-
cally it benefits of the budget increase much more than IW(1).
More interestingly, while the higher budget “misled” p-IW(1)

on 6 games, in none of these cases the score loss was substan-
tial. In contrast, IW(1) did worse with 150000 frames budget
than with 10000 frames budget on 13 games, with the loss be-
ing substantial on 6 games, namely ATLANTIS, CENTIPEDE,
GOPHER, NAME THIS GAME, POOYAN, and TIME PILOT.

To allow a direct comparison with the results reported
by Lipovetzky et al. [2015] and Bellemare et al. [2013] we
have also implemented a “memorizing” version of p-IW(1) in
which the frames in the lookahead sub-tree rooted in the se-
lected child are reused and no calls to the emulator are made
for the transitions that are cached in that sub-tree. In addi-
tion, in IW(1) and p-IW(1), the reused states have been ig-
nored in the computation of novelty of the new states so that
more states could escape the pruning. The results of the com-
parison of p-IW(1) with IW(1), 2BFS, UCT, and BrFS are
depicted in Table 4. Similarly to the setup behind Table 1, the
maximum episode duration was set to 18000 frames and ev-
ery algorithm was limited to a lookahead budget of 150,000
simulated frames. The results for UCT and BrFS in Table 4
are from Bellemare et al. [2013] and the results for 2BFS are
from Lipovetzky et al.

[2015].

2The discount factor results in a preference for rewards that can
be reached earlier, which is a reasonable heuristic given the budget
limits of the lookahead search. At the same time, choosing the right
discount factor is a matter of tuning.

150K 10K
Game p-IW(1) IW(1) R. p-IW(1) p-IW(1) IW(1)
ALIEN 4939 4705 4995 1638 1473
AMIDAR 1186 938 911 67 78
ASSAULT 1700 591 572 423 373
ASTERIX 172413 30780 83983 5985 6683
ASTEROIDS 63520 29884 7780 2192 2224
ATLANTIS 151720 52453 133943 144850 126703
BANK HEIST 296 296 303 67 63
BATTLE ZONE 7767 5000 11600 2900 2133
BEAM RIDER 4487 3398 4127 2445 2730
BERZERK 854 639 496 208 200
BOWLING 27 27 36 28 27
BREAKOUT 291 224 455 400 344
CARNIVAL 2773 2509 4270 2141 1832
CENTIPEDE 163917 59913 72441 140171 134542
CHOPPER COMMAND 5653 2040 3433 2230 2157
CRAZY CLIMBER 107673 37350 57693 114157 37013
DEMON ATTACK 24153 12448 13927 4845 6098
DOUBLE DUNK -6 -6 -5 -14 -18
ELEVATOR ACTION 8910 4217 7010 2597 2057
ENDURO 420 432 218 0 0
FISHING DERBY -8 -9 0 -82 -83
FREEWAY 30 30 32 23 23
FROSTBITE 353 199 238 257 259
GOPHER 9756 11852 16707 9546 15019
GRAVITAR 2943 2270 1423 343 315
HERO 4969 5483 2922 2159 2170
ICE HOCKEY 43 41 17 -7 -7
JAMESBOND 173 152 183 32 32
JOURNEY ESCAPE 7973 8560 3303 440 1293
KANGAROO 1057 1130 3323 587 753
KRULL 10293 4332 5692 4464 3475
KUNG FU MASTER 67163 33903 31050 26610 26250
MONTEZUMA REVENGE 0 0 17 0 0
MS PACMAN 11451 8219 8861 3511 3835
NAME THIS GAME 11302 6087 7957 12445 11004
PONG 14 13 12 -20 -20
POOYAN 2252 1312 11116 1945 2271
PRIVATE EYE 72 0 -1 93 20
QBERT 1640 1249 8838 1441 1527
RIVERRAID 8707 4055 3880 3303 3095
ROAD RUNNER 80900 39133 40547 0 0
ROBOTANK 59 57 26 3 2
SEAQUEST 19007 2747 1112 245 260
SPACE INVADERS 2037 1151 1365 227 211
STAR GUNNER 14193 2783 1293 1097 1190
TENNIS 10 9 10 -24 -24
TIME PILOT 31767 5903 6643 18797 15140
TUTANKHAM 136 140 144 182 147
UP N DOWN 93305 75088 34605 2717 2576
VENTURE 240 150 53 0 0
VIDEO PINBALL 413976 223772 202279 286921 237078
WIZARD OF WOR 111487 88953 70257 6373 4270
ZAXXON 15247 9200 2607 0 0

times best (53 games) 34 3 16 38 24

Table 1: Performance of different algorithms in 53 Atari 2600
games. Columns 2-3 and 5-6 compare between the perfor-
mance of p-IW(1) and IW(1) with the lookahead per decision
being limited to 150000 simulated frames in columns 2-4 and
to 10000 simulated frames in columns 5-6. The algorithms
are evaluated over 30 runs for each game. The maximum
episode duration is 18000 frames. Column 4 adds the racing

p-IW(1) described in Section 4. Per lookahead budget, the
average scores in bold show best performer and the summary
of the performance is given at the bottom of the table.

Table 2 shows that p-IW(1) rather consistently outperforms
all the other evaluated algorithms. Out of the 53 games,
p-IW(1) achieved higher average scores in 34 games, tying up
on BOWLING with IW(1), on TENNIS with IW(1) and 2BFS,
and on PONG with all the algorithms except for BrFS. On
the other hand, IW(1) was best in only 4 games, and 2BFS
and UCT in 6. In general, IW(1) and p-IW(1) with mem-
ory mostly outperform IW(1) and p-IW(1) without mem-
orization, with the exceptions being the PRIVATE EYE and
STAR GUNNER games. This may happen due to the inheri-

3254

Game IW(1) p-IW(1) 2BFS UCT BrFS

ALIEN 28238 38951 12252 7785 784
AMIDAR 1775 3122 1090 180 5
ASSAULT 896 1970 827 1512 414
ASTERIX 145067 319667 77200 290700 2136
ASTEROIDS 52170 68345 22168 4661 3127
ATLANTIS 150327 198510 154180 193858 30460
BANK HEIST 601 1171 362 498 22
BATTLE ZONE 7667 9433 330880 70333 6313
BEAM RIDER 9851 12243 9298 6625 694
BERZERK 1915 1212 802 554 195
BOWLING 69 69 50 25 26
BREAKOUT 401 477 772 364 1
CARNIVAL 5898 6251 5516 5132 950
CENTIPEDE 98922 193799 94236 110422 125123
CHOPPER COMMAND 12310 34097 27220 34019 1827
CRAZY CLIMBER 36010 141840 36940 98172 37110
DEMON ATTACK 20177 34405 16025 28159 443
DOUBLE DUNK 0 8 21 24 -19
ELEVATOR ACTION 13097 16687 10820 18100 730
ENDURO 499 497 359 286 1
FISHING DERBY 22 42 6 38 -92
FREEWAY 31 32 23 0 0
FROSTBITE 2040 6427 2672 271 137
GOPHER 18175 26297 15808 20560 1019
GRAVITAR 4517 6520 5980 2850 395
HERO 12769 15280 11524 1860 1324
ICE HOCKEY 55 62 49 39 -9
JAMESBOND 20668 15822 10080 330 25
JOURNEY ESCAPE 42263 65100 40600 12860 1327
KANGAROO 8243 5507 5320 1990 90
KRULL 6357 15788 4884 5037 3089
KUNG FU MASTER 63570 86290 42180 48855 12127
MONTEZUMA REVENGE 13 27 500 0 0
MS PACMAN 22869 30785 18927 22336 1709
NAME THIS GAME 9244 14118 8304 15410 5699
PONG 21 21 21 21 -21
POOYAN 10460 15832 10760 17763 910
PRIVATE EYE -60 21 2544 100 58
QBERT 5139 44876 11680 17343 133
RIVERRAID 6865 14437 8304 15410 2179
ROAD RUNNER 85677 120923 68500 3875 245
ROBOTANK 67 75 52 50 2
SEAQUEST 13972 35009 6138 5132 288
SPACE INVADERS 2812 3076 3974 2718 112
STAR GUNNER 1603 1753 4660 1207 1345
TENNIS 24 24 24 3 -24
TIME PILOT 35810 65213 36180 63855 4064
TUTANKHAM 167 158 204 226 64
UP N DOWN 104847 120200 54820 74474 746
VENTURE 1107 1167 980 0 0
VIDEO PINBALL 288394 471859 62075 254748 55567
WIZARD OF WOR 122020 161640 81500 105500 3309
ZAXXON 33840 39687 15680 22610 0

times best (53 games) 7 37 8 7 0

Table 2: Performance of p-IW(1) vs. IW(1), 2BFS, UCT, and
BrFS. The experimental setup is similar to this of Lipovetzky
et al., with the lookahead budget of 150000 frames.

tance of the search tree without updating the novelty table:
Both IW(1) and p-IW(1) with memory start with a “broad”
tree from the previous step, and the expansion of all leaves in
these trees limits the in-depth exploration of the search. An-
other exception is the CRAZY CLIMBER game, where IW(1)

with memory mostly outperform IW(1) without it. Here the
case is slightly different because IW(1) without memory and
a budget of 10000 frames outperforms the same algorithm
with a budget of 150000 frames. We believe that this phe-
nomenon in CRAZY CLIMBER is due to the density of the re-
wards in this game. Since IW(1) is guided only by the novelty
measure, and not by the reward collected so far, its action rec-
ommendation often results in a choice not of a “better” action
but of the action behind the longest rollout.

4 Racing Blind Search
Approximating state duplication by state non-novelty allows
IW(i) to search deeper in the state-space, possibly reaching

rewarding states that lie far from the initial state. At the same
time, this specific approximation often results in a highly un-
balanced exploration of the state space. p-IW(i) partly al-
leviates the latter phenomenon, but the extent to which this
is achieved depends on the reward structure of the specific
game. Recall that the original objective pursued by the, both
heuristically guided and blind, best-first forward search pro-
cedures is to compute a sequence of actions from the initial
state to a state that maximizes the accumulated reward, even
if not in absolute terms but only best effort. In the context
of this objective, it is actually hard to argue whether a more
balanced exploration of the state space is more rational than
a less balanced exploration, and if so, what kind of balance
we should strive for here. In fact, in the absence of any ex-
tra knowledge about the problem, expanding an already re-
warding sequence of actions is arguably more rational than
searching elsewhere.

In the context of online planning, however, computing an
as rewarding as possible sequence of actions is not the actual
objective of the planner. Let A(s0) = {a1, . . . , ak} be the
actions applicable at the current state s0 and, for 1 l k,
let ⇡l be the most rewarding action sequence applicable in
s0 that starts with al. The actual objective in online plan-
ning is not to find the most rewarding action sequence ⇡l⇤

among ⇡1, . . . ,⇡k but only to find the index l

⇤ of that se-
quence, that is, to find the identity of the first action along
⇡l⇤ . At least in theory, the latter objective is less ambitious
than the former since computing ⇡l⇤ implies finding l

⇤ but ob-
viously not the other way around. In practice, this difference
in objectives suggests that various adaptations can be found
beneficial when transferring the techniques from the classical,
open-loop AI planning to the closed-loop online planning.

To exemplify the prospects of such adaptation, consider the
following example. Whether we apply prioritized or regu-
lar IW(i) (or, for that matter, any other blind forward search
procedure), suppose that, at a certain stage of the search pro-
cess, the states in the queue all happen to be descendants of
the same action al applicable at the planned state s0. If one
of these states has the maximum accumulated reward among
all the states generated so far, then the search can be termi-
nated right away: No matter how much further we will con-
tinue searching, al will remain the action of our choice at s0,
that is, l will remain our estimate for the desired action in-
dex l

⇤. Furthermore, let Q1, . . . , Qk be a cover of the search
queue Q of either prioritized or regular IW(i), such that, for
1 l k, s 2 Ql if one of the most rewarding action se-
quences generated so far from s0 to s starts with al. Given
that, the candidates for al⇤ can be restricted to a subset A of
A(s0) if {Ql | al 2 A} induces a set cover of Q.

In sum, the search procedures in the context of online plan-
ning should aim at the competition between the actions in
A(s0). UCT and BrFS actually appear to be more faith-
ful with this objective than both IW(i) and p-IW(i) yet
not without caveats. The UCT algorithm is grounded in
the UCB (upper-confidence bound) Monte-Carlo procedure
for optimizing online action selection in multiarmed bandits
(MABs) [Auer et al., 2002]. However, UCT has at least two
substantial shortcomings in the settings of online planning
for the Atari games: First, while the UCB procedure is opti-

3255

mized for the learning-while-acting settings of MAB, the sim-
ple uniform and round-robin sampling of the actions provide
much better formal and empirical guarantees when it comes
to online action selection with MAB simulators [Bubeck et

al., 2011]. Thus, within the scope of the Monte-Carlo tree
search algorithms, the more balanced sampling algorithms
such as BRUE [Feldman and Domshlak, 2014] are a priori

more appropriate. Second, the usage of the upper-confidence
bounds and of the very averaging Monte-Carlo updates in
UCT aims at estimating the mean value of the policies un-
der stochasticity of the action outcomes. Since all the actions
in the Atari games are deterministic, neither of these tools is
semantically meaningful here and actually harm the conver-
gence of the decision process. In contrast, BrFS is built for
deterministic actions and by definition runs a fair competition
between the actions in A(s0) in terms of the search horizon.
The absence of selectiveness, however, makes BrFS uncom-
petitive in problems with large search width such as the Atari
games where all the actions are applicable in every state.

Combining the selectiveness of p-IW(i) with a uniformly
balanced exploration of the actions, we have evaluated the
following simple modification of p-IW(1), referred to in what
follows as racing p-IW(1):

1. Expand the initial state s0. For every subset of actions
A ✓ A(s0) that result in the same successor of s0, elimi-
nate from A(s0) all but one action a 2 A that maximizes
r(s0, a).

2. Let the (pre-pruned as above) action set A(s0) be
{a1, . . . , ak}. At iteration m, restrict the selection from
the search queue only to successors of f(s0, am%k).

3. At every stage of the search, if the search queue contains
only successors of f(s0, a) for some action a 2 A(s0)

and a state in the queue corresponds to the most reward-
ing path generated so far, terminate the search and rec-
ommend (aka execute) a.

Note that nothing in the above modification is specific to
p-IW(1), and thus one can adapt any forward state-space
search algorithm to the action selection objective of online
planning in exactly the same manner.

Column 4 in Table 1 compares the performance of rac-
ing p-IW(1) with that of p-IW(1) and IW(1). The experi-
mental setup remains as before, with the lookahead budget
of 150000 frames. While p-IW(1) was still the leader with
best performance in 34 games, racing p-IW(1) achieved the
best average scores in 16 games, including some very sub-
stantial leads such as in BATTLE ZONE, GOPHER, POOYAN,
and QBERT. A closer look suggests a relative advantage of
racing p-IW(1) in games like POOYAN, QBERT, KANGAROO,
CARNIVAL and BREAKOUT. In these games, the prospec-
tive rewards for many states are quite distant, and thus the
dynamics of p-IW(1) on them is no different from this of
IW(1), with too many states being pruned due to the absence
of novelty. In contrast, the more balanced exploration of rac-
ing p-IW(1) alleviates such an over-pruning in these games,
keeping more leads open until the distant rewards are being
revealed. On the other hand, this balanced exploration leads
to a “waste” of too many simulations in games with more
densely distributed rewards. Hence, if one can estimate well

the density of the rewards earlier in the planning, then it will
be possible to select the right degree of exploration balance
online, leading to the best of both worlds.

We also note that while racing p-IW(1) was the
only algorithm to score in the very challenging game
MONTEZUMA REVENGE, at the moment we have no evidence
that this should be attributed to anything but pure chance.
At the same time, the seemingly small advantage of racing
p-IW(1) over p-IW(1) and IW(1) in FREEWAY is actually
substantial since the maximum score in this game is 38, and
this canonical Atari game posed a challenge to both BrFS and
UCT, with IW(1) being the first algorithm to score in this
game at all [Lipovetzky et al., 2015].

5 Summary and Future Work
Online planning with simulators provide a challenging
testbed for action planning since most of the sophisticated
techniques for scaling up planning systems rely upon in-
ference over propositional encodings of actions and goals
that are “hidden” by the simulator. Previous work showed
that a blind forward search algorithm IW(1) achieves state-
of-the-art performance in such planning problems around
the Atari video games, with the key to success being
structural, similarity-based approximation of duplicate prun-
ing [Lipovetzky et al., 2015].

We have shown that the effectiveness of blind state-space
search on deterministic online planning like in the Atari
games can be further improved by (a) combining approxi-
mated duplicate pruning with an approximate state reopen-
ing, and (b) reshaping the dynamics of the forward search
algorithms to better fit the objective of selecting and execut-
ing only a single action at a time. Our experiments show that
modifying IW(i) along these two lines results in algorithms,
p-IW(1) and racing p-IW(1), that both substantially outper-
form IW(1) on the Atari games.

The simple concept of the racing search algorithms for de-
terministic online planning suggests numerous directions for
future investigation. First, while the state pruning in our rac-
ing p-IW(i) was done based on a global view on state nov-
elty, whether/when this globality is friend or foe is yet to be
investigated: On the one hand, it is not hard to verify that
the globally reasoned duplicate pruning will always improve
the efficiency of the racing search at least as much as any lo-
cally reasoned duplicate pruning. On the other hand, pruning
a state in one branch based on its similarity (but not equiva-
lence!) to a state in another branch is not necessarily the best
thing to do. As another issue, if the number of actions exam-
ined for the current state does not decrease for a substantial
chunk of the lookahead budget, then it seems natural to con-
sider a mechanism for gradual “candidate rejection”, possibly
in the spirit of algorithms for budgeted pure exploration in
stochastic multiarmed bandit problems like Sequential Halv-
ing [Karnin et al., 2013].

Acknowledgments
This work was supported by the Israel Science Founda-
tion (ISF) grant 1045/12 and by the Technion-Microsoft
Electronic-Commerce Research Center.

3256

References
[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, and P. Fischer.

Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, 2002.

[Bellemare et al., 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The Arcade Learning Environment:
An evaluation platform for general agents. JAIR, 47:253–
279, 2013.

[Bubeck et al., 2011] S. Bubeck, R. Munos, and G. Stoltz.
Pure exploration in finitely-armed and continuous-armed
bandits. Theor. Comp. Sci., 412(19):1832–1852, 2011.

[Feldman and Domshlak, 2014] Z. Feldman and C. Domsh-
lak. Simple regret optimization in online planning for
Markov decision processes. JAIR, 51:165–205, 2014.

[Geffner and Bonet, 2013] H. Geffner and B. Bonet. A Con-

cise Introduction to Models and Methods for Automated

Planning. Morgan & Claypool, 2013.
[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso.

Automated Planning. Morgan Kaufmann, 2004.
[Karnin et al., 2013] Z. S. Karnin, T. Koren, and O. Somekh.

Almost optimal exploration in multi-armed bandits. In
ICML, pages 1238–1246, 2013.

[Kocsis and Szepesvári, 2006] L. Kocsis and C. Szepesvári.
Bandit based Monte-Carlo planning. In ECML, pages
282–293, 2006.

[Lehman and Stanley, 2011] J. Lehman and K. O. Stanley.
Abandoning objectives: Evolution through the search for
novelty alone. Evol. Comp., 19(2):189–223, 2011.

[Lipovetzky and Geffner, 2012] N. Lipovetzky and
H. Geffner. Width and serialization of classical planning
problems. pages 540–545, 2012.

[Lipovetzky et al., 2015] N. Lipovetzky, M. Ramı́rez, and
H. Geffner. Classical planning with simulators: Results
on the Atari video games. In IJCAI, pages 1610–1616,
2015.

3257

