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Abstract
Symmetry reduction has significantly contributed
to the success of classical planning as heuristic
search. However, it is an open question if symmetry
reduction techniques can be lifted to fully observ-
able nondeterministic (FOND) planning. We gen-
eralize the concepts of structural symmetries and
symmetry reduction to FOND planning and specif-
ically to the LAO⇤ algorithm. Our base implemen-
tation of LAO⇤ in the Fast Downward planner is
competitive with the LAO⇤-based FOND planner
myND. Our experiments further show that symme-
try reduction can yield strong performance gains
compared to our base implementation of LAO⇤.

1 Introduction
Fully observable nondeterministic (FOND) planning is a
challenging task because the application of actions can have
several possible outcomes, and planning algorithms must
consider all these possibilities. Solutions to FOND plan-
ning tasks are represented as policies, which map states to
actions, and thus determine the next action in the final plan
depending on the actual outcome of the previously applied
action. The current state of the art in FOND planning in-
cludes the Planner for Relevant Policies [Muise et al., 2012;
2014], which performs multiple runs of an underlying classi-
cal planner, and specifically focuses on relevant state parts.
An alternative approach to solve FOND planning tasks is
based on heuristic search with the LAO⇤ algorithm [Hansen
and Zilberstein, 2001; Mattmüller et al., 2010]. Similar to
solving classical planning tasks with A⇤, an efficient FOND
planning algorithm based on LAO⇤ features accurate distance
heuristics to guide the search towards goal states, as well
as (completeness-preserving) pruning methods to reduce the
branching factor of the search space.

Pruning methods have shown their potential for classical
planning and state-space search in recent years, and several
methods have been proposed [Fox and Long, 1999; 2002;
Coles and Coles, 2010; Pochter et al., 2011; Wehrle and
Helmert, 2012; Domshlak et al., 2012; Nissim et al., 2012;
Wehrle et al., 2013; Domshlak et al., 2013; Wehrle and
Helmert, 2014; Holte and Burch, 2014; Holte et al., 2015].
In particular, symmetry reduction in the form of orbit space

search has demonstrated to be effectively applicable in a wide
range of classical planning domains, often reducing the state
space size and increasing planning performance significantly
[Domshlak et al., 2012; 2015]. In a nutshell, for classical
planning, symmetry reduction computes equivalence classes
of “symmetrical” states, with the property that states in equiv-
alence classes need not be distinguished during the search be-
cause they in turn yield equivalent “symmetrical” paths in the
state space. For example, assume that two objects O1 and O2

have to be carried with a vehicle V , where V has a right and
a left place to load these objects. Then the state where O1 is
loaded on the left and O2 on the right, and the state where O1

and O2 are loaded on the opposite positions, are symmetrical.
Informally, the actual object position of O1 and O2 on the ve-
hicle does not matter to carry them to the goal position, and
hence, only one of these states needs to be considered.

While symmetry reduction has shown to be beneficial for
A⇤ in “classical” state spaces, it is an open question whether it
can be effectively generalized to FOND planning with LAO⇤.
We provide the framework for such a generalization, in par-
ticular addressing the questions how the concept of sym-
metries can be generalized to operators with nondeterminis-
tic effects, how the well-established orbit space search algo-
rithm from classical planning can be generalized to AND/OR
graphs, and how concrete policies can be reconstructed from
“symmetrical” policies. We have implemented our frame-
work within the Fast Downward planning system [Helmert,
2006], and evaluated our approach on a variety of FOND
planning benchmarks. Our experiments show the potential of
symmetries for LAO⇤, both compared to the myND planner
[Mattmüller et al., 2010] and compared to vanilla LAO⇤. As
a side result, our implementation offers a competitive LAO⇤-
based FOND planner to the community, making Fast Down-
ward’s features applicable to FOND planning as well.

2 Preliminaries
We use an SAS+ based notation [Bäckström and Nebel,
1995] to model fully observable nondeterministic planning
tasks with a finite set of finite-domain state variables V . Every
variable v in V has a finite domain dom(v). A variable/value
pair hv,di for v 2 V and d 2 dom(v) is called a fact. A
partial state s is a function from variables Vs ✓ V to values
in the domains of Vs, whereas all variables in V \ Vs have an
undefined value ?. We denote the value of v in s with s[v]
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(including s[v] =? if v 2 V \Vs). By vars(s) we denote the
subset of variables for which a value is defined by the partial
state s. A state is a partial state where all values are defined,
i.e., with vars(s) = V . A state s complies with a partial state
t, denoted by s ◆ t, if s[v] = t[v] for all v 2 vars(t).

We consider fully observable nondeterministic (FOND)
planning tasks. In contrast to classical planning, operators in
FOND planning can have several possible effects, where only
one of these effects is applied when the operator is executed.
Formally, FOND planning tasks are defined as follows.
Definition 1 (fully observable nondeterministic planning
task). A fully observable nondeterministic (FOND) planning
task is a tuple ⇧ = hV,O, s0, s?i, where

• V is a finite set of finite-domain state variables,

• O is a finite set of nondeterministic operators,

• s0 is the initial state, and

• s? is a partial state called goal.
A nondeterministic operator o 2 O has the form
hpre(o), e↵s(o)i, where pre(o) is a partial state that denotes
the precondition and e↵s(o) is the set of effects of o, where
each effect in e↵s(o) is a partial state.

In the following, we will denote a nondeterministic op-
erator as an operator unless stated otherwise. An opera-
tor o is applicable in a state s iff s[v] = pre(o)[v] for all
v 2 vars(pre(o)). If operator o is applicable in s, the set of
successor states o(s) := {oe↵ (s) | e↵ 2 e↵s(o)} of s is ob-
tained from s based on the successor states oe↵ (s) for each
e↵ 2 e↵s(o), where oe↵ (s) is obtained from s by setting
the values of variables in vars(e↵ ) to their values in e↵ , and
leaving the remaining variable values unchanged. We denote
the set of applicable operators in s by app(s).

For a FOND planning task ⇧ = hV,O, s0, s?i, we define
the transition system of ⇧ as T ⇧ = hS, T, s0, S?i, where S
is the set of ⇧’s states, and T ✓ S ⇥ O ⇥ S is the set of
transitions, with hs, o, s0i 2 T iff o is applicable in s, and
s0 is a possible outcome of applying o in s, i.e., s0 2 o(s).
Furthermore, s0 is the initial state, and S? is the set of goal
states, i.e., the set of states that comply with s?.

As mentioned, operators generally can have several effects,
and applying an operator in a state yields a successor state
where (nondeterministically) one of these effects has been
applied. Hence, solutions to FOND planning tasks are not
linear operator sequences as in classical planning, but rather
policies which determine the next plan operator depending on
the outcome of the previously applied plan operator.
Definition 2 (policy). Let ⇧ be a FOND planning task with
set of states S. A policy is a mapping ⇡ : S ! O[{?}, which
maps states to operators, or ⇡ is undefined (i.e., ⇡(s) =?).

We shortly denote the sequential application of the oper-
ators determined by ⇡ as following ⇡. A policy ⇡ is called
weak if ⇡ defines at least one path from the initial state to a
goal state when following ⇡. In this case, ⇡ is called a weak
plan for ⇧. A policy ⇡ is closed if following ⇡ either leads
to a goal state, or to a state where the policy is defined. It
is proper if from every state visited following ⇡ there exits a
path to a goal state following ⇡. A policy that is closed and

proper is called a strong cyclic plan for ⇧. Furthermore, ⇡ is
acyclic if it does not revisit already visited states. A closed
and proper acyclic policy is called a strong plan for ⇧.

Informally, a weak plan is a sequence of operators which
leads to a goal state if all nondeterministic operator outcomes
were deterministic, which corresponds to a plan in classi-
cal planning. A strong plan guarantees that a goal state is
reached, where an upper bound on the number of plan steps
exists. In contrast, strong cyclic plans require a finite num-
ber of steps to reach a goal state, but no such upper bound
on the plan steps can be provided a priori. However, strong
cyclic planning is based on the fairness assumption, i.e. there
is a nonzero probabilty that a goal state can be reached when
following a strong cylic plan. We focus on the problem of
finding strong cyclic plans with the LAO⇤ algorithm.

2.1 Symmetry Elimination in Classical Planning
Symmetry elimination has shown its potential for planning in
several contexts [Fox and Long, 1999; 2002; Rintanen, 2003;
Coles and Coles, 2010; Pochter et al., 2011; Domshlak et al.,
2012; 2013; Shleyfman et al., 2015]. Symmetry elimination
considers equivalence classes of symmetrical states, and al-
lows for using representative states of each equivalence class.
Recently, Shleyfman et al. [2015] introduced the notion of
structural symmetries, which captures previously proposed
concepts of symmetries for classical planning. In a nutshell,
structural symmetries directly work on the factored represen-
tation of a classical planning task ⇧. They map operators to
operators, and facts to facts in a way that the induced mapping
on the state space graph T⇧ is an automorphism of T⇧.

Symmetry elimination has been considered in particular for
planning as heuristic search. For a classical planning task ⇧
with state set S, a set of structural symmetries ⌃ induces a
group � and an equivalence relation ⇠� on S, where s ⇠� s0

iff there is � 2 � such that �(s) = s0. For a state s, pruning
algorithms based on symmetry elimination only consider the
equivalence classes of the successor states of s instead of all
successor states, and only keep one representative element of
these classes. In this sense, A⇤ with symmetry elimination
applies all operators in s, but prunes some of the resulting
successor states. The resulting reduced state transition graph
is guaranteed to still contain an optimal plan in s. To achieve
this, an algorithm called orbit space search has been intro-
duced [Domshlak et al., 2015]. Orbit space search works di-
rectly in the orbit space induced by canonical representatives:
Orbit space search searches the state space graph induced by
canonical representatives for each encountered state, where
states are mapped to corresponding representatives. As com-
puting single canonical states for all symmetrical states is not
tractable, a greedy approach is employed to compute sym-
metrical states in a safe way.

3 Structural Symmetries for FOND Planning
Structural symmetries [Shleyfman et al., 2015] are naturally
extended to FOND planning tasks.

Definition 3 (structural symmetry). For a FOND planning
task ⇧ = hV,O, s0, s?i, let F be the set of ⇧’s facts, i.e.,
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pairs hv, di with v 2 V , d 2 dom(v). A structural symmetry
for ⇧ is a permutation � : V [ F [O ! V [ F [O, where

1. �(V) = V and �(F ) = F such that �(hv, di) = hv0, d0i
iff v0 = �(v), d 2 dom(v), and d0 2 dom(v0)

2. �(O) = O such that for o 2 O, �(pre(o)) = pre(�(o)),
�(e↵s(o)) = e↵s(�(o))

3. �(s?) = s?,

where �({x1, . . . , xn}) := {�(x1), . . . ,�(xn)}, and for a
partial state s, s0 := �(s) is the partial state obtained from
s such that for all hv, di with v 2 vars(s) and d 2 dom(v),
�(hv, di) = hv0, d0i and s0[v0] = d0.

The only difference to structural symmetries for classical
planning tasks is bullet point 2., second part, where we re-
quire �(e↵s(o)) = e↵s(�(o)), i.e., several effects of o are
taken into account by �, and the set of o’s effects is mapped
to the corresponding effect set of o’s symmetrical counterpart.

To describe how to handle symmetries, we need the notion
of Canonical mappings.

Definition 4 (canonical mapping). A mapping C : S 7! S is
called a canonical mapping if for each state s 2 S there exists
a structural symmetry �s such that C(s) = �s(s). The state
C(s) is called the canonical state of s. A canonical mapping
C is perfect if for each pair of symmetrical states s and t, we
have C(s) = C(t).

As computing perfect canonical mappings is intractable, in
practice, a greedy approach to compute canonical mappings is
usually employed. Such a greedy approach is safe in the sense
that states might not be recognized as symmetrical although
they are. From now on, we assume a greedy algorithm for
computing canonical mappings C. For a canonical mapping
C, let SC = {C(s) | s 2 S} be the set of canonical states of
⇧. We can now define induced canonical transition systems.

Definition 5 (canonical transition system). Given a transi-
tion system T ⇧ = hS, T, s0, S?i of the planning task ⇧, a
canonical mapping C induces the canonical transition system
T ⇧,C = hSC , TC , sC0 , S

C
? i, where SC is the set of canonical

states of ⇧, and TC = {hC(s), o0, C(t)i | hs, o, ·i 2 T, o0 =
�s(o), t 2 o0(C(s))} be the set of canonical transitions. Fur-
thermore, sC0 = C(s0), and SC

? = {C(s) | s 2 S?}.

For brevity, we will often write T C instead of T ⇧,C if the
context is clear. In T C , each transition hC(s), o0, C(t)i in TC

is a triplet consisting of a canonical state C(s), an operator o0
applicable in C(s), and a canonical state C(t), which is the
canonical state of a state resulting from applying o0 in C(s).
A mapping ⇡c : SC 7! O [ {?} is a canonical policy for ⇧.
A canonical policy is a weak canonical plan if it is a weak
plan for the canonical transition system, it is a strong cyclic
canonical plan if it is a strong cyclic plan for the canonical
transition system, and it is a strong canonical plan if it is a
strong plan for the canonical transition system.

In the following, we provide an extension of the LAO⇤ al-
gorithm with symmetry reduction, which results in an LAO⇤

search in a canonical transition system.

4 LAO⇤ in Canonical Transition Systems
We propose a FOND planning algorithm with symmetry re-
duction, consisting of three steps: Firstly, given the FOND
planning task, compute a set of structural symmetries, which
in turn determines the canonical transition system. Secondly,
we propose a (straight-forward) extension of the LAO⇤ algo-
rithm as previously used for FOND planning by Mattmüller
et al. [2010]. The outcome is a strong cyclic canonical plan.
Thirdly, in a post-processing phase and based on the strong
cyclic canonical plan, a strong cyclic plan can be extracted.

The computation of structural symmetries is performed
analogously as in classical planning. We refer the reader to
the literature for details [Pochter et al., 2011; Domshlak et
al., 2012; Shleyfman et al., 2015]. For the search part, we
propose a variant of LAO⇤ [Mattmüller et al., 2010], which
is extended to perform its search in a canonical transition sys-
tem instead of the original. This is achieved by replacing en-
countered states with canonical representatives. We call the
resulting algorithm canonical LAO⇤ (CLAO⇤ for short). It is
shown in Algorithm 1.

Algorithm 1 The CLAO⇤ algorithm
1: Implicit graph G0 consists of canonical initial state C(s0)
2: while C(s0) unsolved do
3: E  UNEXPANDEDNONGOAL(TRACE(G0))
4: if E = ; then E  UNEXPANDEDNONGOAL(G0)
5: N  EXPANDALL(E )
6: for each new state s 2 N do
7: add canonical state C(s) to implicit graph G0

8: connect C(s) to its ancestor

9: f(C(s)) 
⇢
0 if C(s) ◆ s?
h(C(s)) otherwise

10: Z  BACKWARDREACH(E )
11: VALUEITERATION(Z)
12: SOLVELABELLING(G0)
13: return POLICYEXTRACTION(TRACE(G0))

CLAO⇤ starts off with the canonical representative C(s0)
of the initial state s0 (line 1). As long as the algorithm does
not find a solution for the canonical initial state C(s0), it
performs regular LAO⇤ for FOND planning (using a given
heuristic h), with the exception that the successors resulting
from operator applications are replaced by their respective
canonical representatives.

As a final step, if a solution has been found by CLAO⇤, a
concrete policy is extracted. For this step, we refer back to
the definition of canonical mappings (Def. 4): For a perfect
canonical mapping, it suffices to define the concrete policy as

⇡(s) := ��1
s (⇡c(C(s)))

for all states s and corresponding canonical states C(s). As
mentioned earlier, computing perfect canonical mappings is
not tractable, and hence canonical mappings will rarely be
perfect in a practical setting. Consequently, if the canon-
ical mapping is not perfect, there can be two symmetrical
states, such that the canonical policy is defined for only one of
them, hence the policy extraction algorithm becomes slightly
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Algorithm 2 Solution reconstruction algorithm
1: function POLICYEXTRACTION(⇡c)
2: Input: A canonical policy ⇡c

3: OPEN is a queue initialized with s0
4: CLOSED is a closed list, intially empty
5: ⇢s0  �s0
6: ⇡(s0) ⇢-1

s0(⇡c(C(s0)))
7: while OPEN is not empty do
8: s pop(OPEN )
9: Add s to CLOSED

10: sc  ⇢s(s)
11: if ⇡c(sc) =? then continue
12: o ⇡(s)
13: for each successor state t in o(s) do
14: if t 2 CLOSED then continue
15: t ⇢s(t), tc  C(t)
16: ⇢t  �t � ⇢s
17: ⇡(t) ⇢-1

t (⇡c(tc))
18: Add t to OPEN
19: return policy ⇡

more technical. For clarity of presentation, assuming non-
perfect canonical mapping, through the section we will use
the following notation. For a state s, with the canonical state
C(s), by sc we denote the representative of s in the canoni-
cal policy. As mentioned above, although s, C(s), and sc are
all symmetrical, sc can be different from the canonical state
C(s) of s. The mapping ⇢s then denotes the structural sym-
metry mapping from the state s to the representative state sc,
i.e., ⇢s(s) = sc.

The procedure POLICYEXTRACTION – to extract concrete
policies from canonical mappings that are not perfect – is
shown in Algorithm 2. It follows all possible outcomes from
applying the policy, mapping the current state to a representa-
tive in the canonical policy, not necessarily its canonical state.
The overall algorithm is complete.
Theorem 1. The CLAO⇤ algorithm followed by POLICYEX-
TRACTION preserves the completeness of LAO⇤.

Proof. The algorithm described in Algorithm 1 is an LAO⇤

search in the canonical transition system and thus returns a
strong cyclic canonical plan, if the task is solvable. Other-
wise, it returns a policy ⇡c such that ⇡c(C(s0)) =? and thus
Algorithm 2 will return a policy ⇡ with ⇡(s0) =?.

Assuming that the task is solvable, we need to show that
given the strong cyclic canonical plan ⇡c, the reconstruction
step depicted in Algorithm 2 then returns a strong cyclic plan
⇡. We show that by induction on the distance of a state from
the initial state s0, showing that for each state t with a parent s
and an achieving operator o = ⇡(s), a corresponding state in
the strong cyclic canonical plan with a policy operator defined
can be found via the mapping ⇢. First, for the initial state it-
self, its corresponding state is C(s0), mapped from s0 via the
structural symmetry ⇢s0 := �s0 , with ⇡c(C(s0)) being de-
fined, and the policy ⇡(s0) is then obtained from ⇡c(C(s0)),
as in lines 5–6 of Algorithm 2.

For the induction step, assume that (i) the corresponding
state sc = ⇢s(s) in ⇡c is defined for the parent s via ⇢s,

⇡ ⇡c

s

t t

sc

tc

⇡(s) = o ⇡c(sc)

⇡(t)

⇡c(tc)

�-1
t

⇢s

⇢s

⇢s

⇢t

⇢t

Figure 1: A step of the policy reconstruction algorithm.
Dashed edges correspond to symmetries. ⇢s and ⇡(s) are
known at the start of the step, ⇢t and ⇡(t) are computed.

and (ii) the policy ⇡ is defined for s, with o = ⇡(s) being
the symmetrical operator to the operator ⇡c(sc) via ⇢s, that
is ⇢s(o) = ⇡c(sc). The step is visualized in Figure 1. Let
t be a state resulting from an application of o in s, and let
t = ⇢s(t) be the state resulting from mapping t with its par-
ent symmetry ⇢s (line 15). Then, t is a state resulting from
an application of ⇡c(sc) in sc. Let C(t) be the canonical state
of t. Then, (sc,⇡c(sc), C(t)) is a transition in the canonical
transition system that corresponds to an outcome of applying
⇡c(sc) in sc. Thus, ⇡c is defined on tc := C(t). The sym-
metry ⇢s maps from t to t and �t maps from t to tc. Thus,
⇢t := �t � ⇢s (line 16) maps from t to tc, a state in the strong
cyclic canonical plan with a policy operator defined. We can
now define ⇡(t) by a mapping of the operator ⇡c(tc) with
the inverse symmetry ⇢�1

t (line 17), finishing the induction
step.

We remark that in practice, there is no need for reconstruct-
ing the policy: Executing a policy can be done with the help
of the canonical policy found by the CLAO⇤ algorithm, by
restricting the line 13 in Algorithm 2 to the successor t that is
the actual outcome of applying the operator o in the state s.

5 Experimental Evaluation
We have implemented the variant of LAO⇤ which has been
previously used for FOND planning [Mattmüller et al., 2010]
as well as CLAO⇤ within the Fast Downward planning sys-
tem [Helmert, 2006]. In this section, we empirically inves-
tigate the usefulness of structural symmetries and symmetry
reduction for FOND planning. In particular, we investigate
the following research questions: In how many of the com-
monly available FOND planning domains do symmetries ex-
ist? What is the computational overhead to compute these
symmetries? How much can the state space size be reduced
with CLAO⇤ compared to LAO⇤? And finally, does the re-
duction pay off in overall runtime and in the number of tasks
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that can be solved? As a basis for these investigations, we
compare the performance of our LAO⇤ implementation to the
LAO⇤-based FOND planner myND.

Our experiments have been conducted on a server equipped
with 2.3 GHz Quad-Core AMD Opteron 2356 CPUs. The
time and memory bounds per run are 30 minutes and 2GB, re-
spectively. For the evaluation, we use the FF heuristic [Hoff-
mann and Nebel, 2001], a state-of-the-art heuristic for classi-
cal planning already available in Fast Downward (for FOND
planning tasks, the FF heuristic is computed based of all-
outcomes determinizations). The experiments focus on the
computationally challenging parts, i.e., computing the struc-
tural symmetries, and searching with LAO⇤ and CLAO⇤, ex-
cluding the policy extraction step (the latter could be done in
linear time in the policy size). Our benchmark set consists
of all IPC-08 FOND planning domains, including the larger
tasks generated by Muise et al. [2012].

Fast Downward LAO⇤ compared to myND
We first investigated the performance of our LAO⇤ implemen-
tation in Fast Downward (shortly called FD-LAO⇤ in the fol-
lowing) compared to the FOND planner myND. For both FD-
LAO⇤ and myND, we used the FF heuristic, which is avail-
able in both solvers. In Figure 2, we report the coverage, i.e.,
the number of planning tasks for which a solution has been
found within our resource bounds. The total number of plan-
ning tasks per domain in reported in parenthesis.

Coverage
Domain myND FD-LAO*
BLOCKSWORLD(30) 26 –3
BLOCKSWORLD-2(15) 9 –1
ELEVATORS(15) 11 +3
EX-BLOCKSWORLD(15) 8 ±0
FAULTS-NEW(190) 114 +53
FAULTS(55) 55 –3
FIRST-RESPONDERS(100) 83 +14
FOREST(100) 6 +2
FOREST-NEW(100) 15 –8
TRIANGLE-TIREWORLD(40) 7 ±0
Sum (660) 334 +57

Figure 2: Coverage results of myND vs. FD-LAO⇤.

We observe that FD-LAO⇤ is competitive with myND, and
additionally, FD-LAO⇤ has distinct advantages in the do-
mains FAULTS-NEW and FIRST-RESPONDERS. Overall, FD-
LAO⇤ solves 57 more planning tasks, which is remarkable
due to the usual exponential complexity increase in the task
size. As a main conclusion, we observe that FD-LAO⇤ pro-
vides a competitive basis for the following experiments.

CLAO⇤compared to FD-LAO⇤

In the following, we evaluate the potential of symmetry re-
duction for LAO⇤-based FOND planning. Firstly, we ob-
served that symmetries often occur in the common FOND
planning benchmarks: out of 660 planning tasks that we have
considered in total, symmetries have been found in 535 of
these. The preprocessing time to compute the symmetries is

depicted in Figure 3. The plot shows the number of tasks for
which the symmetry precomputation has finished as a func-
tion over time (i.e., the point (x, y) on the plot means that for
y tasks, the symmetry precomputation time is  x seconds).
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Figure 3: Number of planning tasks for which the symmetry
precomputation finished as a function over time (in seconds)

We observe that the computation of symmetries can mostly
be done rather efficiently: For most tasks, the computation
finished within a couple of seconds (e.g., for � 78% of the
considered tasks, the symmetry computation finished within
one second, for � 90% of the tasks within ten seconds).
As a natural follow-up question, given that symmetries exist
in many FOND planning domains, we investigate to which
extent the size of the search spaces can be reduced when ap-
plying CLAO⇤, and whether the reduction pays off in lower
runtime. To address these questions, we provide scatterplots
for the number of generated nodes and the runtime (including
the time for the symmetry precomputation) in Figure 4 and 5.

Figure 4: Number of node generations with FD-LAO⇤ (x-
axis) vs. CLAO⇤(y-axis).

A dot below the diagonal means that FD-LAO⇤ generates
more nodes (or needs more time, respectively) than CLAO⇤,
and a dot above the diagonal means the opposite.
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Figure 4 shows that the number of generated nodes with
CLAO⇤ is mostly as high as for FD-LAO⇤ for most tasks.
In addition, in several tasks CLAO⇤ generates significantly
fewer nodes, sometimes by several orders of magnitude. The
“straight line” in the plot corresponds to tasks of the FOREST-
NEW domain, where symmetry reduction particularly applies
and reduces the state space.

Figure 5: Runtime for FD-LAO⇤ (x-axis) vs. CLAO⇤(y-axis).

Figure 5 shows that the reduced state space size in turn pays
off in significantly reduced runtimes, again by orders of mag-
nitude in several tasks. The runtimes include a slight over-
head per node in order to compute symmetrical representative
states. The plot shows in particular that this overhead is neg-
ligible compared to the smaller number of generated nodes.
Finally, we compare the coverage of FD-LAO⇤ and CLAO⇤

in Figure 6. The table particularly shows the total number of
tasks per domain (#T ) as well as the number of tasks where
symmetries have been found (#S) in parenthesis (#S/#T ).

Coverage
Domain FD-LAO⇤ CLAO⇤

BLOCKSWORLD(15/30) 23 –2
BLOCKSWORLD-2(5/15) 8 ±0
ELEVATORS(12/15) 14 ±0
EX-BLOCKSWORLD(13/15) 8 +1
FAULTS-NEW(167/190) 167 +21
FAULTS(54/55) 52 +3
FIRST-RESPONDERS(97/100) 97 +2
FOREST(84/100) 8 ±0
FOREST-NEW(88/100) 7 –1
TRIANGLE-TIREWORLD(0/40) 7 ±0
Sum (535/660) 391 +24

Figure 6: Coverage result overview for FD-LAO⇤ compared
to CLAO⇤. In parenthesis: tasks where symmetries have been
found / total number of tasks.

The fewer number of generated nodes of CLAO⇤ also pays
off in a significant coverage increase of 24 additionally solved

tasks. Again, we remark that such a coverage increase is re-
markable because the task’s complexity usually increases ex-
ponentially in its size. In particular, CLAO⇤ achieves a sig-
nificant coverage increase in the FAULTS-NEW domain (21
additionally solved tasks). The domains FOREST-NEW and
BLOCKSWORLD show that the per-node overhead of symme-
try reduction can also lead to a slight coverage decrease.
Finally, we also compared the sizes of the policies i.e., the
number of state-action pairs needed to store the strong cyclic
plan found by FD-LAO⇤ and CLAO⇤. The plot is depicted in
Figure 7. We observe that the sizes are often similar, although
canonical policies are sometimes significantly more compact.

Figure 7: Sizes of policies found by FD-LAO⇤ (x-axis) vs.
CLAO⇤(y-axis).

Overall, our experiments show that symmetry reduction can
be very beneficial for FOND planning: Symmetries do occur
in various domains, they can mostly be computed efficiently,
and the resulting smaller state spaces often allow CLAO⇤ to
solve more tasks than FD-LAO⇤.
As a side effect of our experiments, we have also observed
that the base implementation FD-LAO⇤ of LAO⇤ in the Fast
Downward planning system has already shown promising
performance compared to myND. We have thus also pre-
sented a new and competitive LAO⇤-based FOND planner,
making multiple Fast Downwards features available to the
FOND planning community.

6 Conclusion

We have lifted symmetry reduction from classical planning
with A⇤ to FOND planning with LAO⇤. Our experimental
evaluation has shown that the resulting algorithm CLAO⇤ is
beneficial compared to pure LAO⇤ on a variety of common
FOND planning domains. In the future, motivated by the en-
couraging results, it will be interesting to investigate the fur-
ther potential of pruning methods for FOND planning with
LAO⇤, with a particular focus on the question whether syn-
ergy effects of different pruning methods can be achieved.
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