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Abstract
In recent literature, several approaches have been
developed to solve over-constrained travel planning
problems, which are often framed as conditional
temporal problems with discrete choices. These ap-
proaches are able to explain the causes of failure
and recommend alternative solutions by suspend-
ing or weakening temporal constraints. While help-
ful, they may not be practical in many situations, as
we often cannot compromise on time.
In this paper, we present an approach for solving
such over-constrained problems, by also relaxing
non-temporal variable domains through the consid-
eration of additional options that are semantically
similar. Our solution, called Conflict-Directed Se-
mantic Relaxation (CDSR), integrates a knowledge
base and a semantic similarity calculator, and is
able to simultaneously enumerate both temporal
and domain relaxations in best-first order. When
evaluated empirically on a range of urban trip plan-
ning scenarios, CDSR demonstrates a substantial
improvement in flexibility compared to temporal
relaxation only approaches.

1 Introduction
From an evening outing to a summer vacation, we frequently
plan for travels of different length and complexities. Unfortu-
nately, we are not good at estimating times and compensating
for uncertainty, while often trying to do too much. These sit-
uations can lead to anywhere from being late for a dinner, to
missing a flight. It would be of great help if our intelligent
personal assistants, such as Siri and Google Now, can keep
us informed about such issues, and provide advice on which
activities and requirements should be modified, such that a
robust travel plan can be found.

Such over-subscribed situations have often been modeled
by over-constrained temporal problems. A temporal prob-
lem is over-constrained if no execution strategy [Dechter et
al., 1991; Vidal and Fargier, 1999] can be found that meets
all constraints. To solve an over-constrained temporal prob-
lem, one has to identify its conflicting constraints and weaken
some of them, such that all conflicts are resolved and a fea-

sible execution strategy, either a static schedule or a dy-
namic policy, can be generated. In literature, several meth-
ods have been developed to solve such problems. [Beau-
mont et al., 2001; 2004] took a partial constraint satisfaction
approach to find subsets of satisfiable constraints for over-
constrained Simple Temporal Problems (STPs). [Moffitt and
Pollack, 2005a; 2005b; Peintner et al., 2005] extended the
approach to disjunctive temporal problems and with prefer-
ences (DTPs). In [Yu and Williams, 2013; Yu et al., 2014],
a conflict-directed approach was used to diagnose conflict-
ing constraints in temporal problems with alternatives and
uncertain durations, and compute continuous relaxations in-
stead of suspension for constraints. However, prior works
only resolve the problems through modifying the temporal
constraints. While helpful, these suggestions may not be use-
ful in many scenarios, as we are often not flexible with time.
This motivates us to develop a new system that behave more
like an experienced travel assistant, who can not only sug-
gest relaxing timing requirements, but also recommend good
alternative destinations in over-constrained situations.

In this paper, we present a new approach that enables such
a capability: Semantic Relaxation. It gives the users more op-
tions and flexibility when many of their temporal constraints
cannot be weakened. First, we model the travel planning sce-
nario as Controllable Conditional Temporal Problems (CCTP,
[Yu and Williams, 2013]), and augment the formulation with
semantic constraints for decision variables. These seman-
tic constraints, represented by SparQL queries, a W3C stan-
dard for querying data represented as RDF triples, encode
the semantic meaning of the users’ destinations and the do-
main values of the variables. Second, we developed a new
algorithm, Conflict-Directed Semantic Relaxation (CDSR),
to enumerate temporal and domain relaxations in best-first
order. CDSR generalizes the conflict-resolution techniques
in [Yu and Williams, 2013] and resolves conflicts by relax-
ing temporal constraints, as well as adding additional val-
ues to the variable domains through weakening their seman-
tic constraints. The relaxation of temporal constraints are
guided by a user-defined cost function, while the weakening
of semantic constraints are guided by a semantic similarity
model generated by the Word2Vec package [Mikolov et al.,
2013], which uses high-dimension vector representations of
concepts trained on a large corpus of Natural Language data.
The word vector approach has been shown to carry semantic
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meanings when comparing concepts, and this is the reason
we name our approach Semantic Relaxation.

Motivating Example
Consider a scenario in which a user, Simon, is planning for
an evening outing trip with his intelligent travel assistant. Si-
mon is leaving the office at 6pm, and would like to have din-
ner with a friend at a Chinese restaurant then watch a com-
edy movie. He needs to be home before 9:30pm, the time
when his babysitter leaves. The CCTP for his travel problem
is shown in (Figure 1), which encodes the two activities for
dinner and movie, as well as the temporal constraints over
the trip departure and completion times. The two tasks re-
quested by Simon, watch a comedy movie and dine at a Chi-
nese restaurant, are highlighted in bold. In addition, these
tasks are associated with the following sets of SparQL queries
that encode the genre and cuisine requirements (m.05p553
and m.01xw9 are Freebase Machine IDs for entity Comedy
film and Chinese food).

• Comedy Movie: SELECT ?m WHERE{
?m ns:type.object.type ns:film.film.
?g ns:type.object.type ns:film.film genre.
?m ns:film.film.genre ?g.
FILTER (?g = <http://rdf.freebase.com/ns/m.05p553>).}

• Chinese Restaurant: SELECT ?r WHERE{
?r ns:type.object.type ns:dining.restaurant.
?c ns:type.object.type ns:dining.cuisine.
?r ns:dining.restaurant.cuisine ?c.
FILTER (?c = <http://rdf.freebase.com/ns/m.01xw9>).}

18:00
Leave Office

Arrive Home

< 210 mins

Arrive
Cinema

Leave
Cinema

Comedy Movie

Arrive
Restaurant

Leave
Restaurant

Chinese Restaurant

Figure 1: A CCTP for Simon’s trip

Given the semantic constraints, we pass their SparQL
queries to a knowledge base, which can search through mul-
tiple data sources and retrieve candidate options for the tasks
[Yeh et al., 2015]. These options will then be added as do-
main values for the activities with travel times encoded as
conditional constraints. For example, the expanded problem
for Simon’s outing trip is shown in Figure 2. The comedy
movie task is replaced by two movie showings at different
theaters, while the Chinese restaurant task is replaced by two
restaurant options. Each grounded activity is also associated
with a duration (highlighted in red in the figure). The con-
straints for traversals between locations (Table 1) are omitted
from the graph to save space.

The solution to the CCTP is a set of choices for the dinner
and movie tasks that satisfies all temporal constraints. Unfor-
tunately, due to the long travel times to and from the candidate
Chinese restaurants, no solution can be found that meets all
temporal requirements. The travel assistant (TA) engages Si-
mon (SI) and initiates a discussion about possible resolutions
for his problem.

18:00
Leave Office

Arrive Home

< 210 mins

20:00 Joy
at AMC 16 p124 minsg

19:30 Norm of the North 
at AMC 20 p90 minsg

Panda Express p30 minsg 

Magic Wok p30 minsg  

Figure 2: An expanded CCTP with options for each activity

Traversal Durations Guard Assignments
Office! PE: [40,65] Dinner  PE

Office!MW: [30,35] Dinner  MW

PE! AMC 16: [25,45] Dinner  PE

Movie JY

PE! AMC 20: [35,55] Dinner  PE

Movie NN

MW! AMC 16: [35,45] Dinner  MW

Movie JY

MW! AMC 20: [40,55] Dinner  MW

Movie NN

AMC 16! Home: [25,30] Movie JY

AMC 20! Home: [20,25] Movie NN

PE for Panda Express, MW for Magic Wok, JY for movie
Joy, NN for movie Norm of the North.

Table 1: Travel times between locations (in minutes)

TA: You may have dinner at Magic Wok then watch the 8pm
Joy at AMC 16. However, due to the length of the movie you
won’t be back home until 10:34pm. Is that OK?
SI: No, I cannot ask the babysitter to stay any longer.
TA: OK, then can you leave office 30 minutes earlier? If
so you may watch Norm of the North at 7:30pm, and arrive
home at 9:30pm.
SI: No I cannot leave office before 6pm.
TA: How about eating at Sunny Bowl, a Korean restau-
rant? It is closer and you can make the 7:30pm movie with-
out leaving any earlier.
SI: Sounds good. Thank you.

In this example, Simon cannot change the departure and
arrival times, hence he rejected the first two proposals. Previ-
ous approaches would have failed at the step, since no more
temporal relaxation can be found that resolves the conflicts
between long travel times to the restaurants and movie start
times. However, CDSR is able to explore relaxations along
a different dimension and find Simon a satisfactory solution:
it weakened the semantic constraints for the restaurant task,
such that three new options became available for his trip (Fig-
ure 3). In this case, CDSR discovered a close alternative,
Korean, for the cuisine requirement of restaurant. It then
queried the knowledge base to retrieve additional restaurant
candidates, and found one that is closer to Simon’s route and
satisfies all temporal constraints (Figure 4).

This example demonstrates the desired feature of CDSR:
resolving over-constrained conditional temporal problems
through relaxing the domain requirements, and actively
searching for candidate solutions that are not encoded in the
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CHINESE RESTAURANT
?r ns:type.object.type ns:dining.restaurant.
?c ns:type.object.type ns:dining.cuisine.
?r ns:dining.restaurant.cuisine ?c.
FILTER (?c = <http://rdf.freebase.com/ns/m.01xw9>).

KOREAN RESTAURANT
FILTER (?c = <http://rdf.freebase.com/ns/m.048vr>).

{Panda Express, 
Magic Wok}

{Sunny Bowl, 
Bibimbowl, 

Jang Su Jang}

K
N

O
W

LE
D

G
E

B
A
S
E

Relaxing Cuisine Constraint
+

Figure 3: Domain relaxation for the restaurant cuisine

18:00
Leave Office

Arrive Home< 210 mins

19:30 Norm of the North 
at AMC 20 590 mins,

Sunny Bowl 530 mins, 

Drive to AMC 20
[25,30] 

Drive to 
Sunny Bowl

[15,20] 

Drive Home
[20,25] 

Figure 4: A solution enabled by relaxed cuisine constraint

original problem. It gives the users higher chance of and more
flexibility in resolving conflicts in their problems. CDSR has
been incorporated as part of a planning assistant, and demon-
strated its effectiveness in helping users solve travel planning
problems in urban scenarios. In the rest of the paper, we dis-
cuss the design and implementation of CDSR in detail.

2 Problem Statement
The input to CDSR is a temporal problem encoded using
an augmented Controllable Conditional Temporal Problem
formulation. CCTP was originally presented in [Yu and
Williams, 2013] as an extension to the Simple Temporal
Problem formulation (STP [Dechter et al., 1991]). It adds
discrete choices and conditional constraints labeled with the
outcomes of choices, and supports relaxable temporal con-
straints. CCTP shares most of the notations with other con-
ditional temporal problem formulations, such as Conditional
Temporal Problem [Tsamardinos et al., 2003], Temporal Net-
work with Alternatives [Barták and Cepek, 2007], and Con-
ditional Temporal Problems with Preferences [Falda et al.,
2010], with two distinct features. First, all variables are con-
trollable. To determine the consistency of a CCTP, it is suf-
ficient to find one consistent set of discrete choices. Second,
CCTP extends the domains of discrete variables from binary
to any finite domains, and allows the discrete variables to be
conditioned on assignments to other variables. We first repeat
the definition of CCTP, then present the extension required by
CDSR for encoding semantic constraints.

Definition 1 A CCTP is a 9-tuple hP,Q, V,E,RE,L
e

, L
p

,
f
p

, f
e

i, where:
• P is a set of finite domain variables;
• Q is the collection of domain assignments to P ;
• V is a set of events representing designated time points;
• E is a set of temporal constraints, v

i

� v
j

2 [l, u], defined
over events v

i

, v
j

2 V ;
• RE ✓ E is a set of relaxable constraints whose temporal

bounds can be relaxed;
• L

e

: E ! Q is a function that attaches conjunctions of
assignments q

i

2 Q, to some temporal constraints e
i

2 E;

• L
p

: P ! Q is a function that attaches conjunctions of
assignments q

i

2 Q, to some variables p
i

2 P

• f
p

: Q ! R+ is a function that maps each assignment to
discrete variable, q

i

2 Q, to a positive reward value;
• f

e

: (e
i

, e0
i

) ! r 2 R+ is a function that maps the relax-
ation to constraints e

i

2 RE, from e
i

to e0
i

, to a positive
cost value;

We extended CCTP with semantic constraints S and func-
tion L

s

, such as the example presented in Figure 2, where:

• S is a set of semantic constraints, each s
i

2 S is a SparQL
query;

• L
s

: P ! S is a function that attaches semantic con-
straints, s

i

2 S, to some variables p
i

2 P , which defines
the domain of the variable.

To avoid increasing the length of the acronym, we chose to
continue using the term CCTP for the extended formulation in
this paper. As presented in the previous section, some of the
discrete variables are associated with semantic constraints to
encode the meanings of their domains. These semantic con-
straints, represented by SparQL queries, are used to retrieve
domain values, encoded as object bindings, from knowledge
bases. In the case of over-constrained problems, some of the
triples in the queries can also be relaxed, which effectively
weakens the semantic constraint and provides additional op-
tions to the domain for conflict resolution. Formally, we en-
code the SparQL query as a 4-tuple hN,H,W,RW i, where:

• N is the namespace of the query;
• H is the SELECT clause, which identifies the variables to

appear in the query results;
• W is a collection of SparQL query triples, each contains

a subject, predicate and object field. They are encoded as
part of the WHERE clause;

• RW ✓ W is a set of relaxable triples, whose object field
can be modified to other values.

For example, Figure 3 demonstrates the relaxation to a se-
mantic constraint for the Restaurant variable. The origi-
nal set of triples in the SparQL query retrieves only two Chi-
nese restaurants, and neither of which can meet Simon’s tight
temporal requirements. A domain relaxation for this variable
weakens the FILTER triple, allowing its object to be Korean
cuisine in addition to Chinese cuisine, which adds three more
restaurants to be considered. Internally, all objects are en-
coded using their unique Freebase Machine IDs (MIDs), such
as m.01xw9 for Chinese cuisine and m.048vr for Korean cui-
sine, to avoid ambiguity.

Note that it is also possible to include uncertain temporal
durations in the formulation, as the CCTPU formulation pre-
sented in [Yu et al., 2014]. They are necessary for generating
robust solutions for many real-world problems. For simplic-
ity, we omitted the uncertain durations from our extended for-
mulation. The CDSR algorithm is capable of checking con-
trollability and compute relaxations robust to the uncertain
durations, when configured with the corresponding controlla-
bility checking and conflict extraction functions.
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The output of CDSR is a consistent set of choices, given
the temporal relaxations for some constraints, and domain re-
laxations for some variables. Formally, we define the solution
to a CCTP as the following:

Definition 2 The solution is a 4-tuple hA,R
e

, R
d

, E0i,
where:
• A is a complete set of assignments to variables in P .
• R

e

is a set of temporal relaxations for some constraints in
RE.

• R
d

is a set of domain relaxations for some variables in P .
• E0 is a set of additional constraints that encodes the du-

ration and traversal times associated with the additional
options added by R

d

In addition to new domain values, domain relaxation also
introduces new constraints into the problem, such as the travel
times to and from the new restaurant. In this paper, we discuss
the application of CDSR to travel problems with location-
tagged activities, since the additional temporal constraints in
these scenarios are straightforward to compute. Generating
constraints for domain relaxations in some other domains can
be very difficult, and it is not the focus of this paper.

3 Approach
In this section, we present the design and implementation of
CDSR, which resolves over-constrained CCTPs using both
temporal and domain relaxations. CDSR leverages ideas
from conflict-directed diagnosis and relaxation algorithms
in the literature: it uses the conflict-directed framework
from [Williams and Ragno, 2002] for efficient conflict detec-
tion and resolution, and generalizes methods from the Best-
first Conflict-Directed Relaxation algorithm (BCDR, [Yu and
Williams, 2013]) for enumerating discrete and continuous re-
laxations. Algorithm 1 presents the pseudo code of CDSR.

Compared to the BCDR algorithm, CDSR introduces two
key modifications to support the enumeration of domain re-
laxations (highlighted in bold):

• First, in addition to temporal constraint relaxations, the
conflict resolution step (Line 24) was extended to also
compute domain relaxations.

• Second, an additional step of relaxation expansion is added
for candidates with partially initiated domain relaxations
(Line 7). During conflict resolution, CDSR only computes
partial domain relaxation candidates, which are not initi-
ated until being dequeued. It allows CDSR to delay the
knowledge base queries and semantic similarity compari-
son, which are computationally expensive operations.

In addition, the CDSR algorithm integrates with a large-
scale knowledge base to access the world knowledge, such
as restaurants, movies and showtimes, for computing domain
relaxations. This knowledge base is constructed from a com-
bination of open and proprietary sources of content using
an ingestion pipeline [Noessner et al., 2015]. It transforms
the raw content into RDF triples and performs entity resolu-
tion, that is, merging duplicate entities across different con-
tent sources. The resulting knowledge base can be viewed

Input: An extended CCTP with semantic constraints.
Output: A consistent solution that maximizes f

p

� f
e

.
Initialization:

1 Cand hA,R
e

, R
d

, E0, C
r

, C
cont

i; the first candidate;
2 Q {Cand}; a priority queue of candidates;
3 C  {}; the set of all known conflicts;
4 U  P ; the list of unassigned variables;

Algorithm:
5 while Q 6= ; do
6 Cand DEQUEUE(Q);
7 if EXPANDDOMAINRELAXATION(Cand,Q) then
8 CONTINUE;
9 endif

10 currCFT  UNRESOLVEDCONFLICTS(Cand,C);
11 if currCFT == null then
12 if isComplete?(Cand, U) then
13 newCFT  FEASIBILITYCHECK(Cand);
14 if newCFT == null then
15 return Cand;
16 else
17 C  C [ {newCFT};
18 Q Q [ {Cand};
19 endif
20 else
21 Q 

Q[EXPANDONVARIABLE{Cand, U};
22 endif
23 else
24 Q 
25 Q[EXPANDONCONFLICT{Cand, currCFT};
26 endif
27 end
28 return null;

Algorithm 1: An overview of the CDSR algorithm

as a very large knowledge graph where the nodes represent
entities and the edges represent semantic relations between
these entities. The entities are typed, and a proprietary sub-
sumption hierarchy is used to organize these types. The se-
mantic relations have domain and range constraints, and also
capture inverse relationships. This knowledge graph can be
efficiently accessed and queried via SparQL.

Note that CDSR does not expand the new candidate with
semantic relaxation during conflict resolution. Due to the size
of the knowledge base, it is deployed on a dedicated server
and CDSR communicates with it through network connec-
tions. On average, one query takes 500 ms to complete, which
is very significant compared to temporal relaxations. While
implementing CDSR, it is important to delay the expansion of
semantic relaxation candidate as late as possible. Therefore,
we only do the expansion (Function EXPANDDOMAINRE-
LAXATION) after a candidate is dequeued.

Resolving Conflicts using Domain Relaxations
Function EXPANDONCONFLICT (Algorithm 2) expands the
search tree using new candidates computed from the reso-
lutions to known conflicts. Two options have been used by
prior approaches in this procedure: (1) changing the assign-
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Input: A candidate cand: hA,R
e

, R
d

, E0, C
r

, C
cont

i and an
unresolved conflict currCFT .

Output: A set of candidates Cands that resolves currCFT .
Initialization:

1 Cands {};
Algorithm:

2 for a 2 A do
3 A

alter

= A
alter

[GETALTERNATIVES(a);
4 A

alter

= A
alter

[GETALTERNATIVES(guard(a));
5 if ISRELAXABLE(variable(a)) then
6 A

alter

= A
alter

[{variable(a) = SthElse};
7 end
8 end
9 for a

alt

2 A
alter

do
10 if NOTCOMPETING(A, a

alt

) then
11 cand

new

 hA[ {a
alt

}, R
e

, R
d

, E0, C
r

, C
cont

i;
12 Cands Cands[{cand

new

};
13 end
14 end
15 Cands Cands[

{CONTINUOUSLYRELAX(cand, C
cont

[{currCFT})};
16 return Cands;

Algorithm 2: Function EXPANDONCONFLICT

Input: A candidate cand: hA,R
e

, R
d

, E0, C
r

, C
cont

i. And
the search queue Q.

Output: A boolean value indicating if special assignment
SthElse was detected.

Algorithm:
1 for a 2 A do
2 if ISSTHELSE(a) then
3 for q 2RELAXABLETRIPLES(var(a)) do
4 Q

alt

 GETOPTIONS(q, var(a));
5 q

sim

 GETSIMILAR(Q
alt

, var(a), R
d

);
6 for ha

r

, E
r

i 2QUERYKB(var(a), q
sim

) do
7 cand

new

 hA \ {a} [ {a
r

}, R
e

, R
d

[
{q

sim

}, E0 [ E
r

, C
r

, C
cont

i;
8 Q Q[{cand

new

};
9 end

10 end
11 return True;
12 end
13 end
14 return False;

Algorithm 3: Function EXPANDDOMAINRELAXATION

ments to discrete variables, and (2) relaxing temporal bounds
of constraints. For (1), Function GETALTERNATIVES col-
lects all alternative domain values for assignments in the con-
flict, and uses the ones that are not competing with any ex-
isting assignments (Function NOTCOMPETING) to generate
new candidates. For (2), Function CONTINUOUSLYRELAX
evaluates the temporal constraints in the conflict, and weak-
ens the bounds of some relaxable ones to resolve it. CDSR
introduces a third option: domain relaxation using semanti-
cally similar options. This requires an additional step in the
function (Line 5-7): if the discrete variable involved in the

conflict has a relaxable domain, a special assignment for the
variable, called SthElse (something else), will be added in
addition to alternatives already encoded in its domain. This
assignment will be used to generate a new candidate that re-
solves the conflicts.

When CDSR dequeues a candidate, Function EXPAND-
DOMAINRELAXATION (Algorithm 3) will first check if it
has any such special assignment (Line 2). If so, it will it-
erate through all relaxable triples in the variable’s semantic
constraint (Line 3), and extract alternative objects from the
knowledge base for them (Line 4). Next, given all alternative
options (Q

alt

) for a triple, Function GETSIMILAR selects the
one that has the highest semantic similarity score to the orig-
inal one, but have not been used before (not in R

d

). CDSR
then queries the knowledge base with the new triple q

sim

, and
generates new domain assignment a

r

and constraints E
r

for
each of the result. Finally, a new candidate is created from
each of them and added to the queue (Line 8).

We demonstrate this procedure using the travel example
from Section 1. One conflict in Simon’s plan is that he can-
not go to restaurant Magic Wok and watch Joy at AMC 16
while arriving home before 9:30pm (Figure 5). Function
EXPANDONCONFLICT generated four new candidates from
resolutions to this conflict: two from alternative domain as-
signments in variable Dinner and Movie, one from contin-
uous relaxation for the trip duration constraint, and one from
semantic relaxation for variable Dinner. After CDSR has
evaluated all other candidates and found them to be infeasi-
ble or rejected by the users, it dequeues the domain relax-
ation candidate Dinner  SomethingElse and compute
grounded options for it. Function EXPANDDOMAINRELAX-
ATION takes in this special assignment and extracts the re-
laxable triple of cuisine in the variable’s semantic constraint.
It then identifies the most similar alternative object, Korean,
for the original triple with Chinese. Finally, using the new
cuisine triple, three new options for Dinner, Sunny Bowl
(SB), Bimbibowl (Bb) and Jang Su Jang (JSJ) were found
by querying the knowledge base, and used to resolve the con-
flict and expand the search tree.

Dinner←MW; Movie←JY;
UBDuration-UBAMC16→Home-UBJoy-UBMW→AMC16-UBMW-UBOffice→MW<b

Dinner←PE
Movie←NN

UBDuration=274

Dinner←SomethingElse

Cuisine CHINESE → KOREAN RESTAURANT

FILTER )?c = <http://rdf.freebase.com/ns/[m.01xw9

Figure 5: Expansion with temporal and domain relaxations

Computing Good Domain Relaxations
Given a set of alternative triples, Function GETSIMILAR cal-
culates the similarity scores between the object in the original
triple to them, and returns the most similar one. For exam-
ple, given that no Chinese restaurant fulfills Simon’s require-
ment, we would like to try Korean first instead of Mexican or
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American, since they are less likely to be preferred by him.
CDSR measures the similarity using a vector representation
of words, first proposed in [Mikolov et al., 2013]: each object
(represented by its Freebase MID) is associated with a 1000-
dimension vector of numbers. The vector representations are
learned by neural network model based on a huge corpus of
natural language data, which has been shown to capture se-
mantic properties very well. The similarity score between
two objects is computed using the cosine distance between
their vectors: higher scores mean more similar. The vector
model of CDSR is trained by the continuous skip-gram algo-
rithm in the Word2Vec package with a Google News dataset
[Word2Vec, 2013]. For example, Figure 6 presents the se-
mantic similarity scores between a few alternative cuisines
and movie genres in Simon’s problem. Out of four alterna-
tive cuisines to Chinese, Korean and Thai are very close, with
similarity scores of 0.7140 and 0.6945, while Mexican and
American cuisine only have scores of 0.5169 and 0.3183, re-
spectively. With the semantic similarity measurement, CDSR
is able to explore the domain relaxations in best-first order,
like prior approaches did for temporal relaxations.

!"#$#%&'!()*+,+
!"#$%&'

-./+0*
!"#$%&'
#"($)#

1(0)
!"#(*%+
#",')-

2+3)!0*
!"#-$./
#"-$,'

02+/)!0*
!"#$.$.01

#"2$32

4&%5&'!.2+67
!"#-4--2

6/020
!"#1311
#"-')#

/.20*!+
!"#15(63

#"2,-1

80/
!"#3178
#"2#,'

6.!92+*10/7
!"#9:;4
#"213(

Figure 6: Semantic distances between cuisines and genres

Note that the model CDSR is using only covers about 1.4
million out of 50 million topics in Freebase due to the corpus
used in training. When asked to compare with an object with
an undefined vector, the similarity measurement will return
zero, which greatly reduces the chance that this object will be
considered in relaxation. This limitation was observed during
our experiments, and we are working on a backup measure-
ment with better coverage to address this issue.

4 Empirical Evaluation
The objective of CDSR is to provide more options for users
while resolving over-constrained travel planning problems.
To evaluate the usefulness of CDSR in such scenarios, we
conducted a user study using the personal assistant built with
the algorithm. It is designed for users to manage their day-to-
day tasks, and the study examines CDSR in two aspects: (1)
can it help users find solutions in scenarios that would be im-
possible to solve by only temporal relaxations, and (2) is the
quality of CDSR’s domain relaxations acceptable in different
scenarios. In this section, we present the design of the user
study, and discuss the results and lessons learned.

4.1 Setup
The travel assistant behaves much like the example presented
in the introduction section. In the user study we use a web-
based GUI to interact with the participants, which provides
step-by-step guidance for them to interact with the assistant.
It operates on a set of template scenarios, and promotes the

users to input their requirements and tasks for their trips,
such as origin, destination, time of departure, and desired trip
length. Once a solution is found by CDSR, it will be pre-
sented to the users both verbally using a story line, and visu-
ally using a polyline overlay on Google Map. For example,
Figure 7 shows an example trip plan with a dinner and movie,
with relaxations to the departure time and dinner duration.

Figure 7: A trip plan presented in the web interface

There are six scenarios in this study, which are constructed
based on commonly encountered travel planning problems,
such as an evening outing, a date or a weekend get together
for kids. The users were asked to plan for two to four tasks
in a session, which can be either lunch, dinner or movie, sub-
ject to different departure and arrival time constraints. For
example, one scenario is defined as the following:

You are planning for a monthly weekend get together with
a small group of close friends. This trip includes a 2-hour
lunch, a movie and possibly dinner. It starts from a meeting
point you selected, and ends at your home.

Several of the scenarios are designed to be over-subscribed:
the trip duration constraints are too tight for completing all
tasks. Some trade-offs must be made to resolve the competing
requirements in these scenarios. Finally, at the end of each
session, we asked the participants to evaluate the last solution
proposed by CDSR, and submit a quality score in the scale
of 1 to 5. The score indicates if the user is satisfied with the
solution, with 5 being very satisfied and 1 being not satisfied.

4.2 Results and Discussion
We received study results from nine different participants, for
a total of 54 sessions. During the study, we recorded the prob-
lems specified by the participants, the number of NextSolution
requests, the solutions generated by CDSR, and the quality
scores. Using the problems recorded, we also evaluated how
many of them can be solved with a temporal-only configura-
tion after the study. CDSR found solutions and reached an
agreement with the participants in 52 out of 54 sessions. In
the solutions for five out of six scenarios, domain relaxation
was used for resolving conflicts in the problems specified by
the participants (Table 2). Compared to temporal-relaxation
only approaches, which gave up on 11 sessions, the introduc-
tion of domain relaxation indeed provides the users more flex-
ibility and higher chance of finding solutions for their over-
constrained trips.

In addition to finding feasible resolutions to the conflicts,
we are also interested in the quality of CDSR’s solutions. The
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# Quality Reject&
NextSol

Temporal
Relaxation

Domain
Relaxation

1 3.3 (1.4) 2.9 (2.3) 2.0 (2.6) 2.1 (2.7)
2 2.4 (1.5) 3.5 (2.8) 1.3 (2.9) 3.0 (3.3)
3 2.7 (1.5) 4.7 (5.5) 2.9 (3.0) 3.1 (2.8)
4 3.7 (1.6) 3.1 (3.0) 0.3 (0.7) 1.7 (3.4)
5 3.2 (1.4) 2.9 (2.1) 1.9 (2.6) 1.7 (3.0)
6 3.3 (1.5) 1.2 (0.6) 0.6 (1.1) 0.0 (0.0)

Table 2: Average quality scores, NextSolution requests, tem-
poral and domain relaxations (with standard deviation)

quality scores indicate that CDSR’s solutions are acceptable,
but not much preferred, as the average ratings are in the range
of 2s and 3s. The scores are lower in scenario 2 and 3, for
which more domain relaxations were used in the solutions
(average 3.0 and 3.1 per session). This is likely caused by
the issues in CDSR’s preference model. First, as the cost
functions defined over temporal relaxations and domain re-
laxations are not compatible (weighted linear cost vs. cosine
distance), we normalized the distance by computing its in-
verse (1/distance) and used it as the cost for semantic relax-
ations. The results showed that this procedure does not pe-
nalize domain relaxations enough sometimes, which makes
CDSR too aggressive in relaxing domains, even in some sce-
narios where slightly weakening temporal constraints is suf-
ficient. In addition, some participants reported that CDSR
lacks of a personalized preference model: it uses the same
static cost functions over temporal relaxations, and vector dis-
tance models over domain relaxations for all users. While
some users find it good in capturing their preferences, others
may think CDSR’s trade-offs do not make sense at all. This
is the cause of the large variance in the quality scores, and
is an important problem for future research. One alternative
approach is to use a multi-objective preference model, which
is likely to perform better in the integration of these differ-
ent objective functions. Note that it will require a different
configuration of CDSR’s search queue for enumerating can-
didates along the pareto-front.

Finally, as presented in previous sections, the cost of com-
puting domain relaxations is significantly higher than that of
temporal relaxation. On average, each knowledge base query
takes around 500 ms, and each semantic similarity calculation
takes about 200 ms. Due to the size of the knowledge base
and Word2Vec model for Freebase entities, they were de-
ployed on separate servers from the one for CDSR. The delay
in network connection is a big factor that affects CDSR’s per-
formance. Therefore, when using CDSR for domain specific
applications, one may reduce the coverage of the knowledge
base and similarity model for better run-time performance.

5 Contributions
In this paper, we present a new approach, Conflict-Directed
Semantic Relaxation, for solving over-constrained condi-
tional temporal problems. In addition to continuously re-
laxing temporal constraints, it also computes relaxations for
variable domains. These domain relaxations allow more op-
tions to be added for resolving conflicts, and the additional

options are semantically similar to existing ones. CDSR is
able to simultaneously enumerate both temporal and domain
relaxations in best-first order, and has been integrated with a
knowledge base and a semantic distance calculator for finding
good relaxation candidates. When evaluated empirically on a
range of urban trip planning scenarios, CDSR demonstrates a
substantial improvement in flexibility compared to temporal
relaxation only approaches. As part of future work, we are
actively working on improving the user preference function
and a more robust semantic similarity model, which should
provide solutions of higher quality for different users.
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