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Abstract
Cooperating agents can make commitments to help
each other, but commitments might have to be
probabilistic when actions have stochastic out-
comes. We consider the additional complication in
cases where an agent might prefer to change its pol-
icy as it learns more about its reward function from
experience. How should such an agent be allowed
to change its policy while still faithfully pursuing
its commitment in a principled decision-theoretic
manner? We address this question by defining a
class of Dec-POMDPs with Bayesian reward un-
certainty, and by developing a novel Commitment
Constrained Iterative Mean Reward algorithm that
implements the semantics of faithful commitment
pursuit while still permitting the agent’s response
to the evolving understanding of its rewards. We
bound the performance of our algorithm theoret-
ically, and evaluate empirically how it effectively
balances solution quality and computation cost.

1 Introduction
Our focus in this paper is on what it means for an agent to
pursue a commitment it has made to another agent when:
the agents operate in a sequential decision setting; the agent
pursuing the commitment has uncertainty about the environ-
ment; and the agent, while sequentially executing decisions,
can make observations that can change its beliefs about the
correct model of the environment. In particular, we focus on
reward uncertainty, where as the agent interacts with the en-
vironment it learns what rewards to associate with reaching
different states of the world.

Computational models of commitments formulate them in
logical and decision-theoretic terms to ground protocols for
establishing and maintaining mutual awareness about what is
being committed to, under what conditions, and with what re-
course if commitments are not fulfilled [Agotnes et al., 2007;
Al-Saqqar et al., 2014; Castelfranchi, 1995; Chesani et al.,
2013; Cohen and Levesque, 1990; Jennings, 1993; Mallya
and Huhns, 2003; Raffia, 1982; Sandholm and Lesser, 2001;
Singh, 1999; 2012; Winikoff, 2006; Vokrı́nek et al., 2009;
Xing and Singh, 2001]. Xuan and Lesser [2000] enumerate
three main sources of uncertainty over whether a commitment

will be fulfilled: (1) a committed agent’s actions might not
always lead to the desired outcome; (2) a committed agent’s
desires might change such that continuing to pursue fulfilling
the commitment for others is irrational; and (3) a committed
agent’s beliefs about the commitment context might change,
including about whether an agent to whom the commitment
was made is still relying on its fulfillment.

The first and third of these sources of uncertainty cor-
respond to non-volitional reasons for abandoning commit-
ments, where despite its best efforts, an agent discovers that
its actions have not had their intended outcomes and so it can-
not achieve the commitment, or that the commitment cannot
be fulfilled because others have abandoned it for similar rea-
sons. Thus, commitments can in general only be probabilis-
tic. The work in this paper also embraces the second source
of uncertainty, where during execution an agent could realize
that it prefers not to pursue its intended plan for fulfilling its
commitment, even though it still potentially could.

Our contributions in this paper are as follows. We derive
a concrete, decision-theoretic semantics for what it means to
faithfully pursue commitments despite non-deterministic ac-
tion outcomes and changing awareness of rewards. We ap-
ply this semantics to cases where reward uncertainty causes
agents to want to alter their intended outcomes, presenting
algorithms with strikingly different tradeoffs between solu-
tion quality and computational cost in making and following
commitments under such circumstances. This culminates in
our novel Commitment Constrained Iterative Mean Reward
(CCIMR) algorithm for an agent to faithfully pursue the com-
mitment without overly tying its own hands.

2 Problem Formulation
We restrict our attention in this paper to the two-agent case
to concentrate our exposition on the question of commitment
semantics under reward uncertainty. Without loss of general-
ity we refer to the agent to whom a commitment is made as
the user and the agent making the commitment to the user as
the robot. The robot’s actions influence what is possible for
the user to achieve, and therefore it should commit to bring
about certain states of the world desired by the user.

There are several decision-theoretic formulations for robot-
user interaction like this, where agents act largely inde-
pendently but can sometimes achieve conditions that affect
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others’ subsequent actions, such as Event-Driven Interac-
tions [Becker et al., 2004] and Distributed POMDPs with Co-
ordination Locales [Varakantham et al., 2009]. Each of these
decomposes the conventional joint decision model into a set
of local models, one per agent. Below we briefly introduce
Transition-Decoupled POMDPs (TD-POMDPs) [Witwicki
and Durfee, 2010], a subclass of Dec-POMDPs that we use to
formulate the user-robot interaction. While our commitment
semantics is not confined to TD-POMDPs, TD-POMDPs
are a principled decision-theoretic formulation for modeling
commitments between cooperating agents.

2.1 Dec-POMDPs and TD-POMDPs
Formally, an n-agent Dec-POMDP is described by a tuple
hS,A, P,R,⌦, O, T i, where S is a finite set of world states
that model all features relevant to the decisions of all agents.
A = ⇥

i

A
i

is the finite set of joint actions, where A
i

denotes
the set of actions that agent i can take. The transition function
P (s0|s, a) gives the probability of the outcome state s0 given
that the joint action a = ha1, . . . , ani is taken in state s. The
reward function R(s, a) gives the immediate expected reward
of taking joint action a in state s. ⌦ = ⇥

i

⌦

i

is a finite set of
joint observations, where ⌦

i

denotes the set of observations
of agent i. The observation function O(o|s, a, s0) is the prob-
ability of agents seeing observation o = ho1, . . . , oni after the
state transition from s to s0 by taking action a. Agents make
sequential decisions up to time horizon T .

Dec-POMDPs can be further categorized as TD-POMDPs
if the following properties hold [Witwicki and Durfee, 2010].

• The world state can be further factored into agents’ local
states, S = ⇥

i

S
i

.
• The joint reward function R can be decomposed into lo-

cal rewards, R(s, a) =
P

i

R(s
i

, a
i

).
• Agents can fully observe local state and cannot at all

observe non-local states, i.e. o
i

= s
i

.
• A local state s

i

2 S
i

can be factored into two dis-
joint parts, s

i

= hl
i

, u
i

i, where l
i

is the set of all
locally-controlled state variables (those affected by any
of the actions of agent i) and u

i

is the set of nonlocally-
controlled state variables (those only directly affected by
a�i

, the set of local actions of agents excluding agent i).
Dynamics of the local state of agent i from time step t to
t+ 1 can be factored as:

Pr(st+1
i

|st, a) = Pr(lt+1
i

|st
i

, a
i

) Pr(ut+1
i

|st�i

, a�i

)

Crucially, the evolution of locally-controlled state variables
depends only on local states and actions, while nonlocally-
controlled state variables depends on other agents’ actions.

The agents aim to achieve maximum expected total re-
wards up to time horizon T . In such a finite horizon problem,
states that are otherwise identical but at different time steps
are different. A local policy for agent i is an ordered sequence
of local decision rules up to horizon T , ⇡

i

⌘ ⇡0
i

⇡1
i

· · ·⇡T�1
i

.
A local decision rule ⇡t

i

is a mapping from local histories at
time step t to local actions. The joint policy is a tuple of n
local policies, one per agent, ⇡ = h⇡1,⇡2, · · · ,⇡n

i. The opti-
mal joint policy achieves maximum expected joint rewards up

to the time horizon. A policy can be non-stationary if the de-
cision rules depend on the time step. A policy can be history-
dependent or Markovian, deterministic or stochastic accord-
ing to the type of decision rules. All history-dependent,
stochastic policies are available to our agents.
The TD-POMDP studied in this paper. We assume that in-
teractions between the robot and the user (indexed by 1 and 2
respectively) are modeled as a two-agent TD-POMDP. More-
over, we assume that the robot can fully control its local state,
l1 = s1, while the user’s nonlocally-controlled state variables
are part of the robot’s local state, u2 = s1 \ s2.

2.2 Probabilistic Commitment Semantics
Intuitively, the robot acts in part to try to enable the user to
satisfy her objectives by influencing the user’s nonlocally-
controlled state variables. Therefore the robot can make a
commitment to the user on the dynamics of u2, but the com-
mitment can only be probabilistic due to the stochastic out-
comes of the robot’s actions.
Definition 1. A probabilistic commitment ⇠ from the robot to
the user is defined by a tuple h�, ⌧, ⇢, s01i, which are commit-
ted state variables, time, probability, and initial state, respec-
tively. The robot is constrained by the commitment to follow
a local policy ⇡1 with the constraint:

Pr(u⌧

2 = �|⇡1, s
0
1) � ⇢ (1)

By this definition, the semantics of what it means for the
robot to faithfully pursue a probabilistic commitment is clear:
it should adhere to executing a policy from the initial state that
properly affects the committed state variables in expectation.
For each commitment ⇠ there is a set of policies ⇧

⇠

that satis-
fies the constraint (1). We say that commitment ⇠ is feasible
if its set of commitment-constrained policies ⇧

⇠

is nonempty.
Given a feasible commitment ⇠, let V ⇤

1 (⇠) = max

⇡2⇧
⇠

V ⇡

1 be
the robot’s value of an optimal constrained policy, where V ⇡

1
is the robot’s expected total reward under policy ⇡. With the
commitment made by the robot, the user can (approximately)
model the dynamics of her nonlocally-controlled state vari-
ables, and find the value of her local MDP without know-
ing anything more about the robot’s policy. Given a fea-
sible commitment ⇠, we denote the value of the user with
respect to the commitment as V ⇤

2 (⇠). The optimal commit-
ment maximizes the joint value of the robot and the user:
⇠⇤ = argmax

⇠2⌅ V ⇤
1 (⇠) + V ⇤

2 (⇠) where ⌅ is the set of feasi-
ble commitments.

2.3 Bayesian Reward Uncertainty
Now we throw in the wrinkle that is the focus of this paper: A
committed agent might be uncertain about the rewards avail-
able in the environment, and might learn more about poten-
tial rewards/penalties during execution, after its commitment
has been made. How should it react? For example, a seller
might believe there is a chance that other more lucrative or-
ders might arrive after it must make a commitment to a buyer.
Intuitively, we would think that the seller should be able to
change its policy so long as it faithfully keeps the commit-
ment it has already made. Moreover, it might have chosen
to make a less stringent commitment to begin with, to leave
itself latitude to respond to such opportunities.
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To formally capture reward uncertainty, we allow the robot
K possible true local reward functions {Rk}K

k=1. The true re-
ward function can be viewed as a random variable that is real-
ized according to a known prior distribution µ0, and remains
unchanged once realized. The robot’s optimal value under the
probabilistic commitment ⇠ is a solution to the problem:

max

⇡1

E
R⇠µ

0

"
T�1X

t=0

R(st1, a
t

1)|⇡1, s
0
1

#

subject to (1).

(2)

This problem is a constrained POMDP, with constraints from
the commitment and partial observability from the distri-
bution over rewards. Any method for solving constrained
POMDPS can thus be extended to our problem; we present
such an extension (our EBS algorithm below) before giving
computationally more efficient methods specific to our prob-
lem setting.

3 Methods

We now develop three different algorithms to compute the
robot’s local commitment-satisfying policy ⇡1 in the face of
evolving reward uncertainty, contrasting the computational
requirements and theoretical performance of each. Reward
uncertainty evolves as the robot executes its policy and makes
reward-informative observations (such as receiving actual re-
wards as it moves among states). We assume the set of pos-
sible reward-informative observations is finite, and the robot
uses them to update the posterior distribution over possible
reward functions. To make the notations more concise, we
drop the subscript for the robot in the descriptions of our al-
gorithms.

3.1 Extended Belief State Algorithm

We can treat the robot’s local MDP with Bayesian reward
uncertainty as a belief state MDP, where the belief state
b = hs, µi is defined by augmenting the robot’s local phys-
ical state s with its posterior distribution over possible re-
ward functions after receiving reward informative observa-
tions. The agent’s belief state MDP can be formally defined
as a tuple hB,A, ˜P , ˜R, b0i, where B is the belief state space,
A is the set of the robot’s local actions, and b0 = hs0, µ0i
is the initial belief state. Upon taking an action, the agent
observes both the immediate local reward as well as the
next local physical state. Let bao denote the belief state af-
ter taking action a in belief state b and receiving observa-
tion o. Then the transition function can be expressed as:
˜P (b0|b, a) = Pr(b0|b, a) =

P
{o:bao=b

0} Pr(o|b, a). Simi-
larly the reward function can be defined in terms of beliefs
as: ˜R(b, a) = ˜R(hs, µi, a) =

P
K

k=1 µ(k)R
k

(s, a).
The number of reachable belief states from an initial belief

state is finite because the number of reward-observations and
the decision horizon are both finite. The exact solution to
problem (2) can be found by generating beforehand the entire
set of reachable belief states and solving the following linear

program:

max

{x(b,a)}

X

b,a

x(b, a) ˜R(b, a) (3)

s.t. x(b, a) � 0, 8b, a
X

a

0

x(b0, a0) =
X

b,a

x(b, a) Pr(b0|b, a) + �(b0, b0), 8b0

X

{b:u⌧

2=�}

X

a

x(b, a) � ⇢.

Note that the commitment constraint is expressed in the last
constraint of the linear program above. Here, �(b1, b2) is the
Kronecker delta that returns 1 when b1 = b2 and 0 other-
wise. The decision variables x(b, a), referred to as occupancy
measures, can be interpreted as the joint probability of the
robot’s being in belief state b and executing action a. The
corresponding stochastic policy extracted from the occupancy
measures can be computed by normalizing them:

⇡(a|b) =

x(b, a)P
a

0 x(b, a0)
. (4)

We shall refer to this method of planning in the belief-state
MDP as the Extended Belief State (EBS) algorithm, which
yields the optimal commitment-constrained policy.

Theorem 1. For a feasible commitment, let {x⇤
(b, a)} be a

solution to linear program (3). Then the corresponding policy
over belief states in equation (4) is a solution to problem (2)
with the optimal value of

P
b,a

x⇤
(b, a) ˜R(b, a).

We omit a proof because our linear program is a standard
approach to solving a finite state (here, belief-state) MDP.

3.2 Mean Reward Algorithm
The EBS algorithm is generally intractable. It’s equivalent to
solving exactly a constrained POMDP where partial observ-
ability is only with respect to rewards. Planning in the mean
reward MDP with respect to the current belief is a simple,
myopic approximation of exact Bayesian planning [Poupart
et al., 2006]. Formally, the robot’s mean reward function with
respect to µ is defined as R

µ

(s, a) =
P

K

k=1 µ(k)R
k

(s, a).
Our Mean Reward (MR) algorithm implements this ap-

proximation by the following linear program:

max

{x(s,a)}

X

s,a

x(s, a)R
µ

0
(s, a) (5)

s.t. x(s, a) � 0, 8s, a
X

a

0

x(s0, a0) =
X

s,a

x(s, a) Pr(s0|s, a) + �(s0, s0), 8s0

X

{s:u⌧

2=�}

X

a

x(s, a) � ⇢

By permanently locking the robot’s belief about possible re-
ward functions to the prior belief µ0, the Mean Reward al-
gorithm completely removes the explosion of the belief state
space while preserving physical state dynamics.
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3.3 CCIMR Algorithm
The EBS algorithm pre-plans for every possible revision to
the robot’s belief about its rewards, which is costly but en-
sures that the robot never has incentive to change its policy.
The MR algorithm instead formulates a policy that is optimal
with respect to the initial belief, which is cheaper but locks the
robot into following this policy, despite changing beliefs over
rewards, to ensure faithful commitment pursuit. Our CCIMR
algorithm is a compromise between these extremes where we
use the MR ideas but don’t lock the robot into the initial pol-
icy. To meet our commitment semantics, however, the robot’s
alternative policy choices must be carefully circumscribed.

We begin by considering how the MR algorithm could be
used to respond to changing beliefs about rewards in the ab-
sence of commitment. At each time step, the robot solves the
mean reward linear program with respect to the updated pos-
terior distribution. Since the belief about the true reward func-
tion can change, so can the mean reward, and hence adopting
the policy optimal for the updated mean reward may outper-
form the policy adopted at the previous time step.

However, the robot cannot iteratively shift from one pol-
icy to another without taking its commitment into account. A
stringent constraint would be that the new policy must also
probabilistically bring about the states with the committed
state variables, conditioned on the current state. Unfortu-
nately, this is untenable, since the stochastic state transitions
could have put the robot into a state where no policy from this
state forward can bring about states with the committed state
variables with the requisite probability. Instead, our seman-
tics requires that the robot bring about those states, in expec-
tation, from its initial state. Recall that a particular commit-
ment ⇠ induces a set of policies (over physical states) ⇧

⇠

that
respect the commitment semantics. The robot must always
follow one of these policies, though it may shift from one to
another over time. To ensure that the overall policy it follows
remains an element of ⇧

⇠

, the robot can only select from ele-
ments of ⇧

⇠

whose stochastic action choices at all prior time
steps correspond to the robot’s past stochastic action choices.
We denote this set of alternative policies at time t as ⇧

⇠

|⇡t�1.
CCIMR Algorithm Description. Our Commitment-

Constrained Iterative Mean Reward (CCIMR) algorithm, de-
scribed below, updates the robot’s policy according to its re-
ward observations while still achieving the commitment.

1. Initialize/update reward belief. Use prior knowl-
edge/standard POMDP Bayes’ rule to establish/update
the probability distribution over reward functions as µt.

2. Update mean reward. If the belief changed, compute
the mean reward as:

R
µ

t

(s, a) =
X

k

µt

(k)Rk

(s, a) (6)

3. Update optimal constrained policy. If the mean re-
ward changed, update current policy to ⇡t, ensuring
⇡t 2 ⇧

⇠

|⇡t�1:

⇡t

= arg max

⇡2⇧
⇠

|⇡t�1
V ⇡

R

µ

t

(st) (7)

4. Take stochastic action prescribed by the current pol-
icy, and loop until the time horizon is reached.

Let St be the set of the robot’s physical states at time step t

and S =

S
T

t=0 S
t. We can partition S into St

+ =

S
T

h=t

Sh

and St

� = S\St

+. Further, let {xt

(s, a)} be the corresponding
occupancy measures of ⇡t, the policy at time step t. Then
equation (7) can be solved by the linear program:

max

{xt(s,a)}

X

s2S

t

+

X

a

xt

(s, a)R
µ

t

(s, a) (8)

s.t. xt

(s, a) � 0, 8s, a
X

a

0

xt

(s0, a0) =
X

s,a

xt

(s, a) Pr(s0|s, a) + �(s0, s0), 8s0

X

{s:u⌧

2=�}

X

a

xt

(s, a) � ⇢

xt

(s, a) = xt�1
(s, a), 8s 2 St

�, a

At each iteration, the robot plans with the mean reward with
respect to the updated posterior distribution as if it were at the
initial time step, but constrains the previous occupancy mea-
sures to ensure ⇡t 2 ⇧

⇠

|⇡t�1 (enforced by last constraint).
It is obvious that EBS and MR respect the commitment

semantics. Intuitively, CCIMR also respects the semantics
since every iteration yields a commitment-constrained policy
that is consistent with the policy of the previous iteration.
Theorem 2. CCIMR respects our commitment semantics.

Proof. (Sketch) Let ⇡ = ⇡0⇡1 . . .⇡T�1 be a policy for the
robot constructed by CCIMR. Because ⇡t�1 and ⇡t are con-
sistent up to the first t � 1 time steps, i.e. xt

(s, a) =

xt�1
(s, a), 8s 2 St

�, a , we have

xt

(s, a) = xT�1
(s, a), 8t < T, s 2 St

�, a.

Hence, the occupancy measure of ⇡ is equal to that of ⇡T�1,
which leads to

Pr(u⌧

2 = �|⇡, s01) = Pr(u⌧

2 = �|⇡T�1, s01) � ⇢

The overall probability of CCIMR satisfying the commitment
is obtained by summing over all possible ⇡ it may construct:

Pr(u⌧

2 = �|s01; CCIMR)

=

X

⇡

Pr(⇡; CCIMR)Pr(u⌧

2 = �|⇡, s01)

�⇢
X

⇡

Pr(⇡;CCIMR) = ⇢.

Every CCIMR iteration, performed by linear program (8),
yields a greedy update on the commitment-constrained policy
with respect to the current reward belief, which makes the
expected total reward at least as high as that of MR.
Theorem 3. The expected value achieved by CCIMR is upper
bounded by that of EBS and lower bounded by that of MR.

Proof. (Sketch) Since CCIMR can be viewed as a history-
dependent policy, it is upper bounded by the optimal policy
that is achieved by EBS according to Theorem 1.
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We now show that the expected value of CCIMR is lower
bounded by MR. Formally we want to show:

E
R⇠µ

0

h
V CCIMR
R

(s0)
i
� E

R⇠µ

0

h
V MR
R

(s0)
i

(9)

We say that the robot follows k-MR if it only iteratively
updates decision rules at time steps less than or equal to k.
Then it follows the decision rule computed at time step k up
to the time horizon, even if its reward belief changes after
time step k, i.e. ⇡t

= ⇡k, 8t � k. The expected total reward
of k-MR can be divided into two parts with respect to the time
threshold k:

E
R⇠µ

0

h
V k-MR
R

(s0)
i

=E
R⇠µ

0

h kX

t=0

rt|k-MR
i
+ E

✓

k

h
E
R⇠µ

k

⇥ T�1X

t=k+1

rt|⇡k

⇤i

where rt is the step reward received at time t and ✓t is the
t-length history that determines sk, µk, and ⇡k. The expecta-
tion of the second part of the total reward of k-MR should be
taken over all possible k-length histories. Similarly, we can
write the expected total reward of (k + 1)-MR as:

E
R⇠µ

0

h
V

(k+1)-MR
R

(s0)
i

=E
µ

0

h kX

t=0

rt|(k + 1)-MR
i
+ E

✓

k

h
E
µ

k+1

⇥ T�1X

t=k+1

rt|⇡k+1
⇤i

=E
µ

0

h kX

t=0

rt|k-MR
i
+ E

✓

k

h
E
µ

k+1

⇥ T�1X

t=k+1

rt|⇡k+1
⇤i

�E
µ

0

h kX

t=0

rt|k-MR
i
+ E

✓

k

h
E
µ

k+1

⇥ T�1X

t=k+1

rt|⇡k

⇤i

=E
µ

0

h
V k-MR
R

(s0)
i

The second equality holds because the expected sum of the
rewards for time  k of (k + 1)-MR is equal to that of k-
MR, and the inequality relation holds because (k + 1)-MR
performs one more greedy update to get decision rule ⇡k+1

(and could choose ⇡k if it were better). By definition, MR is
0-MR and CCIMR is (T �1)-MR, yielding equation (9).

For an unconstrained MDP, it is well known that there al-
ways exists a deterministic policy that is uniformly optimal
for all probability distributions over the initial state [Puter-
man, 1994]. Due to the commitment constraint in our setting,
however, the optimal policies may depend on the initial state
distribution and may be stochastic in order to trade off be-
tween rewards and the commitment constraint. Specifically,
the above linear programs for all three algorithms yield op-
timal policies that may be stochastic. One can introduce ad-
ditional variables and constraints into the linear programs to
compute optimal deterministic policies. In EBS, for example,
we can introduce a set of binary variables for each reachable
belief state-action pair �(b, a) 2 {0, 1}, 8b, a, and add the
following constraints [Dolgov and Durfee, 2005]:X

a

�(b, a)  1, 8b

x(b, a)  �(b, a), 8b, a
(10)

1
-1        0.01           0.1       -1        -3.8

x 0      1      2 x     0       1 
y y
0 0

1

2 2

-1  -1             0       -1            -1

0              1            -1                1         -3.8

-1        0.01  01  

y yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy y
0 00 00 00 00 00 00 00 0

-1  -1  -1  -1  -1  y yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy yy y

2 2
   1    

2 2
    

2 2

Figure 1: Illustration of the Gate Control problem.

We can prove the suboptimality of deterministic policies in
EBS, and similar results hold for MR and CCIMR.
Theorem 4. For a feasible commitment, let {x⇤

(b, a)} be a
solution to linear program (3) and {x̂⇤

(b, a)} be a solution
to the linear program with additional constraints (10). ThenP

b,a

x⇤
(b, a) ˜R(b, a) �

P
b,a

x̂⇤
(b, a) ˜R(b, a), and in some

cases strict inequality holds.

Proof. Since any deterministic policy is a special case of
stochastic policies, the value of the optimal deterministic pol-
icy is less than or equal to that of the optimal stochastic policy.
We now construct an example where strict inequality holds.

Consider a robot’s local MDP with three states S =

{s
a

, s
b

, s
c

}. The robot is initially in state s
a

and has two de-
terministic actions that lead it to s

b

and s
c

respectively. The
robot can receive a higher reward by moving to s

c

than to s
b

.
If the robot has committed to going to s

b

with at least proba-
bility 0.5, the optimal stochastic policy will choose to go to s

b

and s
c

with probability 0.5 and 0.5, respectively. But, given
the commitment the optimal deterministic policy has to go to
s
b

(with probability 1.0), yielding a lower value.

4 Experiments
We now present a preliminary empirical evaluation compar-
ing the runtime and solution quality of CCIMR to the MR and
EBS algorithms on the following two sample problems. All
algorithms were implemented and run on a 64-bit Windows
machine with 1.8 GHz CPU and 4 GB RAM.

Gate Control. A robot and a user occupy two different
regions as shown in Figure 1. The robot’s occupying either of
the two cells marked with switch icons remotely opens a gate
in the user’s region, thus enabling the user’s direct path from
cell (0,1) to (0,2). The switch in cell (1,2) opens the gate with
0.7 probability each time step, while the success probability
of switch (2,1) is 0.5. The default rewards are shown in the
bottom right of each cell. Reward uncertainty comes from the
potential threat from an enemy in the robot’s region. After
each time step, as the enemy forces approach, the rewards in
the shaded cells will all decrease with probability 0.2, by 3 in
switch cell (1,2) and 0.01 in the other shaded cells.

To avoid detection, the robot and the user should not at-
tempt to communicate with each other during execution.
However, before the mission, the user can require a single
commitment from the robot to open the gate at time ⌧ with
probability at least ⇢. The robot faces the decision of whether
to head to the initially safe switch cell (1,2) and risk that the
enemy discovers the switch, or go to switch cell (2,1) that is
always safe but less likely to open the gate. Moreover, the
robot must decide how long to linger in cell (1,2), retrying
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Figure 2: Results on the Gate Control problem. Leftmost: The expected value of the robot under various commitment proba-
bilities with ⌧ = 4 and T = 5. Middle Left: Where ⌧ = 5 and T = 5. Middle Right: The expected joint value of the robot and
the user under various commitment probabilities. Rightmost: Computation time as the time horizon scales up.

the switch if the gate hasn’t opened. Analogously, depending
on the commitment, the user must decide whether to wait for
the gate to open or to take a longer detour to reach cell (0,2).

Figure 2 summarizes solution quality and runtime results
for the Gate Control problem. The left two plots compare the
robot’s expected value of CCIMR to MR and EBS under dif-
ferent commitment probabilities when the time horizon T is
5 and the commitment time ⌧ is 4 and 5, respectively. Given
any arbitrary commitment, the expected value computed by
CCIMR is indeed between those of EBS and MR, with sub-
stantial improvement over MR. Under a deterministic policy,
even though the commitment probabilities of opening the gate
are continuous, the achievable probabilities can only be dis-
crete. Hence, the expected value of different commitment
probabilities under a deterministic policy is always stepwise.
Stochastic policies can do strictly better because they can
achieve finer tradeoffs between the commitment constraints
and rewards, as shown in the middle left plot of Figure 2.

To find the best commitment that optimizes the expected
joint value of the robot and the user, the set of feasible com-
mitment probabilities is discretized with granularity �⇢ =

0.02. We find that the best commitment time ⌧ is 4 for all
algorithms. As shown in the middle right plot, EBS chooses
the best commitment probability of 0.62, and CCIMR and
MR both choose the best commitment probability of 0.5.
When the time horizon is increased, the runtime of EBS dra-
matically grows and quickly becomes unmanageable because
the linear program considers every reachable belief state. In
contrast, since CCIMR’s linear program considers the much
smaller number of physical states only when the belief over
rewards changes, it’s scalable to longer time horizons.

Committed RockSample. We also implemented the algo-
rithms on a variant of the RockSample problem [Smith and
Simmons, 2004], a scalable problem that simulates a Mars
rover in an n⇥n grid region containing k rocks. We adapt the
problem in the sense that, before execution, the rover com-
mits to exiting the collection region by a time horizon. Ta-
ble 1 shows the total rewards achieved by stochastic MR and
CCIMR on problems with different n, k and time horizon
T . We constrained the rover with T � n commitments such
that the probability of leaving the region grows linearly as the
time approaches the horizon: ⇢

⌧

= max(0, ⌧�n+1
T�n+1 ), 8⌧  T

(⇢
⌧

= 0 when ⌧ < n because it takes the rover at least n time
steps to leave the region). So far we have described our algo-

(n, k, T ) (5, 7, 14) (5, 7, 25) (7, 8, 14) (7, 8, 49)
MR 7.50 15.00 10.50 28.00
CCIMR 15.41 44.83 20.74 53.58

Table 1: Results on Committed RockSample.

rithms with one commitment constraint, and it is straightfor-
ward to incorporate multiple commitments by adding corre-
sponding constraints to the linear programming formulation.
To make the solution of MR nontrivial, the rover receives a
living reward of 1.0 if it has not left the region. EBS be-
comes almost unusable because the branching factor of the
reachable beliefs tree is O(2

k

), which generates roughly 10

8

beliefs even when n = 3, k = 3, T = 6. Meanwhile, even for
the largest case (7,8,49), CCIMR and MR require reasonable
time (55 and 8 seconds, respectively).

5 Conclusion
We have developed a semantics for computational commit-
ments based on constraining a committed agent to executing
a policy that, with a sufficiently high probability, will result in
a desirable state. Prior approaches to interagent commitment
semantics have largely focused on promises to achieve desir-
able states, where an agent fails to meet a commitment even
if does precisely what it should have but, due to bad luck, the
outcome was not what was desired. In contrast, our seman-
tics emphasizes commitments to what an agent can control—
its actions—so that satisfying the commitment is always en-
tirely within the agent’s control. In this regard, our semantics
for interagent commitments has similarities to past work on
intra-agent commitments [Kinny and Georgeff, 1991].

We developed a novel formal characterization of how com-
mitments and actions taken so far together limit the policy
revisions an agent is permitted to make. Our new CCIMR al-
gorithm uses this result to iteratively improve an agents’ pol-
icy given its changing beliefs about the true reward function,
while still meeting commitments. We have analytically com-
pared CCIMR to the optimal but slow EBS algorithm and the
fast but suboptimal MR, and proven that CCIMR must fall be-
tween these algorithms in solution quality. We then provided
empirical evidence of the promise of CCIMR in two domains
with different flavors of reward uncertainty. Our results indi-
cate that CCIMR can achieve solutions with quality closer to
EBS and runtime closer to MR even as problems scale up.
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