
Discriminative Log-Euclidean Feature Learning for Sparse
Representation-Based Recognition of Faces from Videos

Mohammed E. Fathy Azadeh Alavi Rama Chellappa
Center for Automation Research, University of Maryland

College Park, MD 20742
{mefathy, azadeh, rama} (at) umiacs.umd.edu

Abstract
With the abundance of video data, the interest in
more effective methods for recognizing faces from
unconstrained videos has grown. State-of-the-art
algorithms for describing an image set use descrip-
tors that are either very high-dimensional and/or
sensitive to outliers and image misalignment.
In this paper, we represent image sets as dictio-
naries of Symmetric Positive Definite (SPD) ma-
trices that are more robust to local deformations
and outliers. We then learn a tangent map for
transforming the SPD matrix logarithms into a
lower-dimensional Log-Euclidean space such that
the transformed gallery atoms adhere to a more
discriminative subspace structure. A query image
set is then classified by first mapping its SPD de-
scriptors into the computed Log-Euclidean tangent
space and using the sparse representation over the
tangent space to decide a label for the image set.
Experiments on three public video datasets show
that the proposed method outperforms many state-
of-the-art methods.

1 Introduction
In many practical applications such as surveillance-based
face recognition and smartphone video-based face authentica-
tion, the test example contains a set of face images that share
the same, yet to be determined label. As video-capable con-
sumer devices and surveillance cameras are becoming more
abundant, the interest in using image sets for face recogni-
tion has grown. While the multiplicity could mean improved
recognition, low-resolution and variations in pose, illumina-
tion and occlusion limit significant improvements in perfor-
mance.

Over the years, many methods have been proposed for us-
ing image sets for object classification in general and face
recognition in particular. In order to capture the variations
within an image set and/or model the properties inherent in
face images, many methods employ descriptors that live on
some non-Euclidean spaces such as the Symmetric Positive-
Definite (SPD) manifold or the Grassmann manifold. In such
cases, the machine learning algorithms originally designed to

Figure 1: An illustration of the discriminative subspace struc-
ture that is naturally exhibited by the controlled images of a
visual object (e.g. a person’s face) [Basri and Jacobs, 2003;
Wright et al., 2009]. The example illustrates the property for
the face images of two different subjects, taken under two dif-
ferent poses and varying illumination. The images in which
the visual object (i.e. face) has the same pose and identity lie
close to a low-dimensional subspace regardless of the varia-
tions in Lambertian illumination.

work on Euclidean spaces have to be carefully modified to
properly and meaningfully work on non-Euclidean ones.

Among the many machine learning algorithms that have
been successfully used for image set classification, Sparse
Representation-based Classification (SRC) over dictionaries
has been shown to be very effective [Chen et al., 2012;
Ortiz et al., 2013]. The standard SRC algorithm has become
popular in visual identification tasks since the seminal work
of Wright et al.

[2009]. The success of this method is jus-
tified by the discriminative low-dimensional subspace struc-
ture that is naturally exposed in the space of the visual im-
ages of an object. More specifically, it has been mathemat-
ically proved that the images of a fixed object taken under
varying Lambertian illumination from a fixed viewpoint lie
on a low-dimensional subspace [Basri and Jacobs, 2003]. As
illustrated in Fig. 1, this suggests that the instances from a
particular class lie on (or close to) a low-dimensional linear
subspace (assuming same-pose viewing of a static object) or
a small number of such subspaces (to account for variations
in pose and deformations).
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Although originally designed for vector spaces, algorithms
for sparse coding have also been extended to work on non-
Euclidean spaces such as the SPD manifold [Yuan et al.,
2010; Guo et al., 2010]. However, the subspace property was
mathematically proved when images are represented using in-
tensities [Basri and Jacobs, 2003]. In other words, the prop-
erty (mathematically) applies only when pixel raw intensity
features or other features derived linearly from the intensities
are used. If intensities are nonlinearly transformed (e.g. to
extract nonlinear features prior to sparse coding), algorithms
based on sparse coding may lose the discriminative advantage
offered by the subspace property. Since the SPD descriptors
used for image sets are obtained nonlinearly from the input
image features, one way to enhance the performance of SRC
under that setting is to further embed the nonlinear features in
a manner that improves the discriminative subspace structure
of the data.

In this paper, we propose an approach for “face identi-
fication from image sets” using sparse coding on the Log-
Euclidean (LE) tangent space TISQ

+

of the SPD manifold SQ
+

.
In this approach, we first describe each image by generat-
ing a number of local covariance descriptors; then we use
a dictionary of atoms from the LE tangent space TISQ

+

to
represent each gallery image set. While previous LE ap-
proaches for image set classification extract from each image
set, a single or very few LE samples that have very high di-
mensionality, our approach extracts from each set many LE
samples of a much lower dimensionality, reducing the pos-
sibility of over-fitting. Given the LE features, we then for-
mulate an optimization problem for learning an embedding
into a lower-dimensional LE tangent space TISq

+

in which
the data has a more discriminative subspace structure. To
classify a probe image set, we use the LE feature trans-
form computed during training to embed the dictionary of
LE atoms extracted from the probe image set. Next, we
apply the LE sparse coding approach [Yuan et al., 2010;
Guo et al., 2010] to classify the embedded probe atoms with
respect to the augmented gallery dictionary. Extensive ex-
periments on three public datasets show that our method out-
performs many state-of-the-art methods. In addition, we run
an empirical ablation analysis to understand how the differ-
ent components of our approach contribute to its final perfor-
mance. In order of importance, the contributions of the paper
can be summarized as follows:

• An LE dimensionality reduction algorithm that leads to
a more discriminative subspace structure, subsequently
enhancing the performance of SRC with nonlinear fea-
tures. Since it reduces the learning problem into that of
solving a single generalized eigenvalue in a non-iterative
fashion, the algorithm is also efficient.

• An image set feature extractor which models each image
set as a dictionary of LE atoms that is more robust to lo-
cal deformations and has significantly fewer dimensions
than other LE image set descriptors [Wang et al., 2012;
2015; Huang et al., 2015b], making our LE features
more robust to over-fitting. In our experiments, we
show that the proposed features also improve the perfor-
mance of another recent LE image set method proposed

in [Huang et al., 2015b].
• To the best of our knowledge, this paper is the first to

apply SRC for image set classification on non-Euclidean
spaces. Note that SRC has been extended to image set
classification on Euclidean space by Ortiz et al.

[2013]
and to other classification problems on LE tangent
spaces [Guo et al., 2010; Yuan et al., 2010]. Our ex-
periments show that the proposed approach outperforms
existing methods on three public video face datasets.

The rest of this paper is organized as follows. Section 2
reviews the relevant literature. The proposed approach is
presented in Section 3 and the results of the extensive em-
pirical evaluation are presented in Section 4. The paper is
concluded in Section 5.

2 Related Work
The image set classification problem has been formulated in
various ways. One popular formulation is to compute the dis-
tance, either over a vector space or a manifold, between the
probe set and each gallery set and then associate the probe
with the class of its nearest gallery set. These include dis-
criminative [Hamm and Lee, 2008; Wang and Chen, 2009;
Harandi et al., 2011; Wang et al., 2012; Huang et al., 2015b;
2015a; Wang et al., 2015] and non-discriminative meth-
ods [Wang et al., 2008; Cevikalp and Triggs, 2010; Hu et

al., 2011; Chen et al., 2012; 2013]. Other formulations
that do not rely on nearest neighbor-based classification in-
clude the binary SVM reverse-training approach [Hayat et al.,
2014b], neural network-based methods [Hayat et al., 2014a;
Lu et al., 2015], linear representation/coding methods [Ortiz
et al., 2013; Zhu et al., 2013] and clustering methods [Mah-
mood et al., 2014].

Linear Representation (Coding) Methods: The SRC al-
gorithm, originally designed for classification of a single im-
age [Wright et al., 2009], was extended to image sets by Or-
tiz et al.

[2013] who proposed the Mean-Sequence SRC
(MS-SRC) algorithm. While MS-SRC assumes Euclidean
space, Harandi et al. extended the sparse coding approach
to Grassmann manifold [2013] where it has been applied to
face recognition from image sets. Sparse coding over SPD
manifolds was also considered but for non-image set clas-
sification tasks as in [Yuan et al., 2010; Guo et al., 2010;
Harandi et al., 2012]. Since video-based face recognition
typically involves large number of gallery samples, we in-
tentionally avoid the scalability issues associated with kernel
methods by developing the proposed embedding algorithm
and performing sparse coding on the LE tangent space.

Log-Euclidean Feature Learning: Various approaches
for learning features, metrics, and/or dimensionality reduc-
tion embeddings have been proposed within the LE frame-
work [Wang et al., 2012; Li et al., 2013; Vemulapalli and Ja-
cobs, 2015; Yger and Sugiyama, 2015; Wang et al., 2015;
Xu et al., 2015; Huang et al., 2015b]. The goal of these
approaches is to boost the performance of nearest neigh-
bor classification whereas the goal of our work is to boost
the performance of subspace-based classification. Qiu and
Sapiro [2015] proposed an approach for learning linear trans-
formations that improve the performance of subspace-based
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Figure 2: The steps for extracting the LE features from each image.

classification in Euclidean space. The approach uses sub-
gradient descent to minimize a non-convex cost function and
so it requires too many iterations to converge and is subject
to local minima. In addition, the approach requires perform-
ing Singular Value Decomposition (SVD) in each iteration,
which makes it even more expensive. The proposed LE fea-
ture learning approach is significantly more robust as it is not
subject to local minima. In addition, our approach is faster
and more scalable as the optimal solution is obtained by solv-
ing a single generalized eigenvalue problem.

3 Our Approach
We describe the three components of our approach (descrip-
tion, embedding, and coding) in the following subsections.

3.1 Image Set Descriptor: Dictionary of LE Atoms
Existing SPD image set descriptors, like those used in [Wang
et al., 2012; Huang et al., 2015b; Wang et al., 2015] com-
pute a single or a small number of SPD matrices per image
set. These descriptors suffer from some drawbacks. One such
drawback is the curse of dimensionality as each SPD matrix
descriptor has the dimensions W H ⇥ W H (or more) assum-
ing the images have size W ⇥ H (the descriptor is 160,000-
D for images as small as 20 ⇥ 20). The image set may
also contain too few images to reliably compute such high-
dimensional descriptors, leading to undersampling at the level
of each descriptor. Undersampling at the gallery level (and
subsequent overfitting) may also be a problem as the typical
gallery contains few image sets per class. This results in a
correspondingly few number of high-dimensional descriptors
that may not be enough to reliably train a machine learning
model.

To avoid these problems, we extract a symmetric matrix
feature L 2 TISQ

+

from each image I , and we use a com-
pressed version of its vectorization a = comp (vec (L)) 2

RD as an atom in a dictionary corresponding to the image set.
The steps for computing the image-level features are summa-
rized in Fig. 2 and described below.

At the heart of our image-level descriptor is the use of Re-
gion Covariance Matrices (RCMs) [Pang et al., 2008]. This
is justified by the ability of covariances to fuse various types
of features and keep track of their statistics. In addition, the
covariance of a set of samples is invariant to rearrangement of
these samples, giving the covariance more robustness to mis-
alignment, a problem that face identification systems have to
deal with even when automatic face alignment is applied, as
the detection and alignment algorithms are still not perfect.

To compute the covariance matrices, we first compute a
feature image �(I) similar to [Pang et al., 2008; Harandi et

al., 2012] which produces at each pixel the following M =
43 responses:
�

T

x,y

= [ x, y, I(x, y), |G
0,0

(x, y)| , . . . , |G
4,7

(x, y)| ]
where G

u,v

(x, y) = g
u,v

(x, y) ⇤ I(x, y) is the response of
the image to the 2D Gabor wavelet g

u,v

(x, y) [Harandi et al.,
2012]:

k2

v

4π2

e� k2
v

8⇡2 (x2
+y

2)
⇣

eikv(x cos ✓u+y sin ✓u) � e�2⇡

2
⌘

where u is the orientation index, v is the scale index, k
v

=
1/

p
2v�1, and θ

u

= πu/8. To balance the trade-off between
robustness to misalignment and spatial encoding, we follow
the tradition of breaking the image into n

r

⇥ n
c

cells and
compute a covariance matrix for each cell based on the pixel
responses in that cell.

To avoid the curse of dimensionality in the extracted de-
scriptor, we compress the M responses at each pixel in cell
(r, c), prior to computing the cell-specific covariance matrix,
by projecting the M -D response vector into a subspace of a
lower dimensionality m using a cell-specific, M⇥m column-
orthogonal projection matrix U

r,c

. Each matrix U
r,c

is com-
puted by performing PCA on the M -D response vectors at all
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pixels within the cell (r, c) from all the images in all gallery
image sets. In our experiments, we set m = 10.

After compressing the responses, we calculate the m ⇥ m
covariance matrix ⌃

r,c

from the m-D responses in cell (r, c).
Next, we arrange the n

r

⇥ n
c

covariances into the diagonal
blocks of a Q ⇥ Q matrix ⌃, where Q = n

r

n
c

m. The ma-
trix ⌃ can be easily shown to be SPD and so it lives in the
non-Euclidean SPD manifold SQ

+

. To measure the similar-
ity in this non-Euclidean space, we endow SQ

+

with the LE
Metric [Arsigny et al., 2007] which measures the distance
between any pair of SPD matrices X

1

and X
2

by first using
the Log map: Log : SQ

+

! TISQ
+

to map them to the LE
tangent space TISQ

+

and then computing the Frobenius dis-
tance kLogX

2

� LogX
1

k
F

. If the Singular Value Decom-
position (SVD) of an SPD matrix of dimensions m ⇥ m is
X = U diag(s

1

, ..., s
m

)VT , the Log map is defined as:

LogX = U diag(log s
1

, ..., log s
m

)VT (1)

The LE tangent space TISQ
+

is equivalent to the space of sym-
metric matrices SQ, which is a vector space. This allows us to
apply the familiar Euclidean machine learning algorithms to
SPD matrices once they are mapped to the LE tangent space.
Accordingly, the final steps are (a) mapping the SPD matrix
⌃ to the LE tangent space by computing L = Log⌃, (b)
computing the uncompressed atom ã = vec (L) 2 RQ

2
, and

then obtaining the compressed atom a = comp (ã) 2 RD

where the operator comp() retains only the D = n
r

n
c

m2

entries of ã corresponding to the n
r

n
c

diagonal blocks of L
while discarding the rest (see the structure of a in Fig. 2).

Arranging the cell covariances into the diagonal blocks of
⌃ and mapping ⌃ to the LE tangent space unnecessarily re-
quires more memory and processing time. Instead, we apply
the equivalent but more efficient process of separately map-
ping each cell covariance matrix ⌃

r,c

to the LE tangent space,
which gives L

r,c

= Log⌃
r,c

. In addition, we store only the
D = n

r

n
c

m2 nonzero entries of L, which correspond to its
diagonal blocks L

r,c

, into the compressed atom a 2 RD. All
the remaining steps use the compressed atom a instead of the
uncompressed, higher dimensional atom ã 2 RQ

2
.

The feature extraction step can be very efficiently imple-
mented by making use of GPUs for performing convolutions
and matrix multiplication. For each image, n

r

⇥ n
c

small
eigenvalue problems need to be computed for SPD matrices
of size m ⇥ m in order to compute their matrix logarithms.
Additional n

r

⇥ n
c

eigenvalue problems of M ⇥ M matri-
ces need to be solved for performing PCA during training but
these are done only once for the complete gallery set rather
than for each image.

3.2 Log-Euclidean Feature Learning
The goal of this step is to map the image descriptors from the
LE tangent space TISQ

+

into a lower-dimensional LE tangent
space TISq

+

in which they have a more discriminative sub-
space structure. In other words, we want the samples from
one class to stay, in the new space, as far as possible from
other-class subspaces while staying close to the same-class
subspaces. In this new space, the sparse coding of a query

sample y from class c over the dictionary A will more likely
find that the subdictionary A

c

provides better reconstruction
of y compared to other subdictionaries. Consequently, the
sparse coding will more likely associate y with its true class
c.

Tangent Map Formulation: There are different ways to
formulate the tangent map W : TISQ

+

! TISq
+

. One way is
by the linear formulation given by:

vec (L0) = W
1

(L) = WT vec (L) (2)

where W 2 RQ

2⇥q

2
. To guarantee that L0 2 Sq for any

L 2 SQ, the matrix W has to be constrained, such that it
has q(q + 1)/2 unique columns while the other q(q � 1)/2
columns are permutations of other columns1.

The second formulation W
2

is a variation of W
1

that avoids
placing constraints on W by keeping only the unique q(q +
1)/2 columns in W so that we just compute the (vectorized)
lower triangular submatrix tril(L0) 2 Rq(q+1)/2 instead of
the complete matrix L0 2 Rq⇥q:

tril(L0) = W
2

(L) = WT vec (L) (3)

where W 2 RQ

2⇥q(q+1)/2. Since ã = vec (L) has only D
nonzero entries at known locations, the projection matrix W
in both W

1

and W
2

needs only to contain the D rows cor-
responding to these nonzero entries. In this case, the dimen-
sions of W in W

1

can be reduced to D ⇥ q2 while in W
2

it
will be D⇥q(q+1)/2. For simplicity, we use the second for-
mulation, in which W is unconstrained and has dimensions
D ⇥ q(q + 1)/2.

It is worth noting that a third formulation was used in [Xu
et al., 2015; Huang et al., 2015b] which has the advantage
of using much fewer parameters in the projection W. How-
ever, the formulation is quadratic in the projection parameters
compared to linear formulations W

1

and W
2

. The quadratic
formulation is useful for applications in which the SPD de-
scriptors are very high-dimensional such as the 400 ⇥ 400
image set covariance used by Wang et al.

[2012]. The SPD
descriptors in this paper have considerably fewer dimensions,
and so we opt to use the simpler linear form W

2

. As we
see later, our choice of a formulation that is linear in the pa-
rameters leads to an easier-to-solve optimization problem in
which finding the globally optimal solution is straightforward
and efficient.

Optimization Problem: Let A
c

2 RD⇥Nc be the dictio-
nary containing all the N

c

compressed atoms from all image
sets associated with class c (after removing all identical atoms
due to identical images):

A
c

= [ a

1

a

2

. . . a

Nc ]

Furthermore, let N be the total number of atoms in the
gallery, C be the number of classes, c(i) be the class asso-
ciated with atom a

i

, and let z
i,c

be the dense representation

1There are other algebraically equivalent ways to express the
constraint on the columns of W, all of them leading to the same
measure of distance between symmetric matrices. Since we do not
use the formulation W1 in this paper, further elaboration on these
ways is beyond the scope of this paper.
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Figure 3: To improve the discriminative subspace arrange-
ment of the data, the LE feature map W

2

is learned such that it
maximizes the distance between each atom a

i

and its projec-
tion A

c

0
z

i,c

on every other-class dictionary A
c

0 while min-
imizing the distance between the sample and its projection
A

c

z

i,c

on the dictionary A
c

of its own class c.

of an atom a

i

with respect to the dictionary A
c

of a different
class c:

z

i,c

= argmin
z

ka
i

�A
c

zk2
2

+ λ
1

kzk2
2

(4)

where we use λ
1

= 0.001. If we let J
c

= AT

c

A
c

+ λ
1

I, we
obtain z

i,c

= J�1

c

AT

c

a

i

. The first goal we need the tangent
map W

2

to achieve is to maximize the distance between every
atom a

i

, from a certain class c(i), and its dense projection
A

c

z

i,c

on the dictionary of each other class c 6= c(i) (see
Fig. 3):

1
C

CX

c=1

X

i,c(i) 6=c

1
N

c(i)

(C � 1)
��WT (a

i

�A
c

z

i,c

)
��2
2

(5)

= trWTS
1

W (6)

where S
1

= 1

C

P
C

c=1

P
i,c(i) 6=c

1

Nc(i)(C�1)

(a
i

�
A

c

z

i,c

)(a
i

�A
c

z

i,c

)T .
The reason we use dense, l

2

-regularized representations is
that it has a closed form solution that is more efficient to eval-
uate. Moreover (and more importantly), we want to maximize
the distance between each atom a

i

and the span of as many
as possible of those different-class atoms that may contribute
to reconstructing a

i

. This makes the dense representation a
more appropriate choice.

Before describing the other goal, we redefine the dense rep-
resentation z

i,c

for the case in which we project a
i

on the
dictionary of its own class (i.e. c = c(i)):

z

i,c

= argmin
z

ka
i

�A
c

zk2
2

+ λ
1

kzk2
2

, s.t. z(i) = 0. (7)

The only difference between (4) and (7) is the constraint
z(i) = 0 which excludes any solution in which a

i

contributes
to its own representation. If we let u

i,c

= J�1

c

AT

c

a

i

, and
w

i

= u

(i)

i,c

/J�1(i,i)

c

, we obtain z

i,c

= u

i,c

� w
i

col
i

(J�1

c

).
The other goal the tangent map has to meet is minimizing

the distance between every atom a

i

from a certain class c to
its dense projection A

c

z

i,c

on the dictionary of its own class:

1
C

CX

c=1

1
N

c

X

i,c(i)=c

��WT (a
i

�A
c

z

i,c

)
��2
2

(8)

= trWTS
2

W (9)

where S
2

=
P

C

c=1

1

Nc

P
i,c(i)=c

(a
i

� A
c

z

i,c

)(a
i

�
A

c

z

i,c

)T . In addition, we add a regularization term kWk2
F

=
trWTW to the quantity to be minimized. We then combine
all goals in one criterion by maximizing the following ratio
of quadratic forms:

max
W

trWTS
1

W

trWT (S
2

+ I)W
(10)

The optimal solution to this problem is obtained by finding
the q(q+1)/2 generalized eigenvectors with the largest eigen-
values of the following generalized eigenvalue problem:

S
1

w

k

= λ
k

(S
2

+ I)w
k

After finding W, we use it to embed the dictionaries of all
classes. If we assume all the C classes have the same number
of images N

c

= N/C, the computational complexity of fea-
ture learning is O

�
D3 + C ⇥

�
CN3

c

+ DN2

c

+ CD2N
c

��
,

where it takes O(D3) for the solution of the D ⇥ D gen-
eralized eigenvalue problem in (10), O(DN2

c

+N3

c

) for com-
puting J

c

and inverting it for one class, O(CN3

c

) for comput-
ing the representations of same-class samples and other-class
samples with respect to the dictionary A

c

of one class, and
O(CD2N

c

) for computing the contribution of one class to
the two scatter matrices S

1

and S
2

.

3.3 Coding and Classification
Given a probe image set Y = [y

1

, . . . ,y
Ny ], the method ex-

tracts the LE dictionary from the set Y as described in Sec-
tion 3.1; then uses the tangent map W to project each atom
in Y’s dictionary to the LE feature space. Subsequently, we
apply SRC to compute the label for Y. More specifically,
we solve for the sparse representation vector x 2 RN corre-
sponding to the mean ȳ of the embedded feature vectors (i.e.
LE Frechet mean [Arsigny et al., 2007]):

x = argmin
x2RN

1
2
kȳ �Axk2 + λ kxk

1

where A is the dictionary containing all the embedded LE
atoms from all classes. Given the sparse representation x̄,
we can find the class contributing the most to the representa-
tion, and with which ȳ should be associated, using the mini-
mum residual rule of [Wright et al., 2009]. If we let δ

c

be the
N ⇥N diagonal matrix with all zeros except at the N

c

diago-
nal entries corresponding to the atoms of class c, the residual
r
c

(y; x̄) corresponding to class c is given by:

r
c

(y; x̄) = ky �Aδ
c

x̄k2 (11)

The class for which r
c

is minimum is chosen as the label for
the probe set.

4 Experimental Evaluation
We have conducted extensive experiments to compare the
performance of the proposed algorithm, i.e. Log-Euclidean
Feature Learning with SRC (LEFL-SRC), against several
existing algorithms for image-set classification. The com-
pared methods include Affine Hull-based Image Set Distance
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Figure 4: Sample frames from YTC, YTF and MobFaces.
Each column shows two photos of the same person from
the same dataset. The photos in the first, second and third
columns are from YTC, YTF, and MobFaces, respectively.
YTC and YTF photos reveal the large intra-class appearance
variations present in both datasets. MobFaces photos are rela-
tively frontal but they reveal various challenges such as occlu-
sion and blur in addition to other significant intra-class vari-
ations in illumination and context due to the change in ses-
sions. The bottom-right MobFaces photo is best viewed on
screen.

(AHISD) [Cevikalp and Triggs, 2010], its convex variant
(CHISD) [Cevikalp and Triggs, 2010], Sparse-Approximated
Nearest Points (SANP) [Hu et al., 2011], Dictionary-based
Face Recognition from Videos (DFRV) [Chen et al., 2012],
Mean Sequence Sparse Representation-based Classification
(MS-SRC) [Ortiz et al., 2013], a variation of MS-SRC
that uses Collaborative Representation-based Classification
(CRC) [Zhang et al., 2011] for classifying the mean of the
sequence (MS-CRC), Set to Set Distance Metric Learning
(SSDML) [Zhu et al., 2013], Deep Reconstruction Mod-
els (DRM) [Hayat et al., 2014a], Projection Metric Learn-
ing (PML) [Huang et al., 2015a], and Log-Euclidean Met-
ric Learning (LEML) [Huang et al., 2015b]. To understand
the contribution to performance made by the different com-
ponents of our classifier, we are also comparing with two
variants of our classifier: one without LE features but with
feature learning applied to intensity features (FL-SRC), and
another with the LE features but without the feature learning
(LE-SRC).

For existing methods, we have used the source code pro-
vided by the original authors and set the parameters according
to the recommendations made in their respective papers. The
only exception to this are MS-CRC and MS-SRC which we
have implemented ourselves. To guarantee a fair comparison,
the same features and dataset splits were used to compare all
the methods. We made an exception for the DRM approach
where we report the performance using the 1475-D LBP fea-
tures extracted from the intensity features used with the rest of
the methods. The reason for this exception is that the original
paper of DRM [Hayat et al., 2014a] and its publicly available
source-code included the extraction of LBP features as one of
the preprocessing steps of DRM. For PML, we have modified

the method to deal with the situation in which the number of
images n

s

in a given image set s is lower than the dimension-
ality d of the subspace PML computes from each image set.
In that case, we synthesize additional images by small ran-
dom translations and rotations of the original n

s

images so
that s has 2d images. Since PML requires the gallery to have
at least two image sets for each class whereas MobFaces-I
provides a single gallery image set per class, we randomly
split each gallery set in MobFaces-I into two subsets of nearly
equal sizes (the difference in size is at most one).

Parameter Settings: We use the following parameters in
our proposed method. We resize each input image to w =
120 and h = 144. We then divide each image into a n

r

=
6 ⇥ n

c

= 6 grid of non-overlapping cells for calculating the
RCMs. As stated earlier, we use m = 10. Finally, we set the
dimension of the lower-dimensional LE tangent space to q =
28 which corresponds to an LE tangent map W with q(q +
1)/2 = 406 columns. It is worth noting that smaller grids (i.e.
smaller n

r

and n
c

) lead to inferior recognition performance.
Grids larger than n

r

= 6 ⇥ n
c

= 6 could possibly lead to
better performance at the expense of increasing the memory
footprint of the algorithm. However, we have not tried such
larger grids.

4.1 YouTube Celebrities (YTC)
The YTC dataset contains 1,910 YouTube-downloaded
videos of 47 subjects [Kim et al., 2008]. For a given subject,
the videos are short segments clipped from three longer, par-
ent videos downloaded from YouTube. YTC has been built
to be very challenging for face tracking and recognition by
choosing low resolution videos with wild variations in pose,
scale, hair style, make-up, illumination, motion and number
of people per frame.

Experimental Protocol: We run ten-fold cross-validation
experiment. The 9 ⇥ 47 = 423 videos in each fold are ran-
domly selected from the complete dataset while minimizing
the overlap between different folds as much as possible.

Feature Extraction: We use the Viola-Jones (VJ) detec-
tor [Viola and Jones, 2004] to locate the faces in each video.
Then we use the eye locations detected using the method
of Asthana et al.

[2013] to align the subject’s face to a stan-
dard, 30⇥36 pixel frame. The intensities are histogram equal-
ized and arranged in a 1080-D feature vector. We use the
feature vectors from a given video define the corresponding
image set.2

4.2 YouTube Faces (YTF)
The YTF dataset contains 3,425 videos of 1,595 subjects with
diverse ethnicities [Wolf et al., 2011]. Similar to YTC, YTF
videos are downloaded from YouTube and are very challeng-
ing for face recognition. We conduct our experiments on
those subjects with four or more videos available. This re-
sults in 226 subjects. After randomly dropping one subject,
we randomly split the remaining 225 subjects into five mutu-
ally exclusive groups, with 45 subjects each. We repeat the

2We have not cleaned any of the bad detections or misaligned
faces in an effort to test the robustness of the compared methods to
such outliers.
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Table 1: The multi-fold sample mean and standard deviation
of the recognition rates obtained with the compared methods
on YTC and YTF. We have highlighted in bold the rates of
the top two performing methods for each dataset. Although
YTC and YTF have similar challenges, the rates obtained for
YTC are higher because the test protocol for YTC guarantees
that for each test video clip there is a corresponding gallery
video clip such that both are segments from the same parent
YouTube video.

Methods YTC YTF

AHISD 57.27 ± 3.44 17.18 ± 8.93
CHISD 64.79 ± 1.72 32.99 ± 7.97
SANP 66.99 ± 0.69 31.62 ± 8.56
DFRV 66.70 ± 1.52 36.77 ± 10.19
MS-CRC 66.88 ± 2.21 43.64 ± 8.27
MS-SRC 74.68 ± 1.96 45.02 ± 5.82
SSDML 69.22 ± 1.64 34.02 ± 10.03
DRM 70.35 ± 2.52 43.99 ± 5.23
PML 68.55 ± 1.76 40.21 ± 11.98
LEML 60.32 ± 1.80 30.93 ± 2.55
LE-LEML 73.26 ± 1.50 48.45 ± 5.66

FL-SRC (ours) 75.71 ± 1.57 45.36 ± 3.45
LE-SRC (ours) 75.11 ± 1.49 49.83 ± 7.51
LEFL-SRC (ours) 76.28 ± 2.22 53.26 ± 8.10

experiment for each group where we use the first three videos
of each subject as gallery sets and the remaining videos for
testing. We stress that we run face identification (multi-
classification) experiments rather than binary verification as
is usually done on YTF in the literature. Since the dataset
provides aligned face images, we extract intensity features
from each image by cropping the central 100⇥ 100 box from
each image, resizing it to 30 ⇥ 36, and histogram-equalizing
it.

4.3 Mobile Faces (MobFaces)
The MobFaces dataset contains 750 videos of 50 subjects
taken by a smartphone’s front camera during various user in-
teractions with the phone [Fathy et al., 2015]. There are three
sessions of five videos each (one enrollment + four tasks)
per subject where each session is taken under a different il-
lumination and/or in a different place. The dataset includes
some of the unique challenges of mobile-based continuous
facial authentication such as wild variations in illumination
and context due to the mobility of the device. We compute
the features using the same pipeline we developed for the
YTC dataset. Although the features used in this paper are
different from [Fathy et al., 2015], we adopt the two evalu-
ation protocols suggested in [Fathy et al., 2015] by dividing
the task videos into ten-second long clips and treating each
clip as a separate query. In the first protocol (MobFaces-I),
training is done using only the 50 enrollment videos of one
session and testing is performed on the ten-second long task
video clips from the two other sessions. In the second pro-
tocol (MobFaces-II), training is done on the 100 enrollment
videos of two sessions and testing is done on the task video
clips of the remaining session. Results are reported for each
of the six scenarios possible with these protocols. The clip-

ping of the 600 task videos results in 1065 ten-second clips
for the first session, 587 the second, and 666 for the third.

4.4 Results
Table 1 shows the mean and standard-deviation of the recog-
nition rates of the compared methods for the YTC and YTF
datasets while Table 2 shows the recognition rates for the six
different evaluation scenarios for the MobFaces dataset. Both
tables clearly show the superiority of the proposed method
(LEFL-SRC) in comparison with other methods.

The improvement in performance on MS-SRC by FL-SRC
is not significant except on YTC. This is because feature
learning does not help much with intensity features, which in-
herently have a good discriminative subspace structure. Ac-
cordingly, the only significant advantage FL-SRC provides
over MS-SRC is the reduction of dimensionality without loss
in identification accuracy. On the other hand, the results
show that the improvement due to feature learning is sig-
nificant when we compare LE-SRC with LEFL-SRC. Since
LE features are nonlinear in intensities, they do not preserve
the sparse linear dependencies between samples though these
nonlinear features are more robust. In addition to reducing
the dimensionality of the LE features, the feature learning
algorithm improves their discriminative subspace structure
which in turn boosts the performance of SRC. It is worth
noting that although LEFL-SRC outperforms MS-SRC and
LE-SRC, LEFL-SRC uses only 406 features per atom which
is fewer than the 30 ⇥ 36 = 1080 features used by MS-SRC
and the D = 3600 features used by LE-SRC.

We emphasize that we are using a slightly different exper-
imental pipeline. In particular, we detect face landmarks and
use them to align the detected faces. While this should gen-
erally improve the performance of all methods, this is not the
case for LEML [Huang et al., 2015b] as alignment makes
many of the face images in each set near identical, result-
ing in a near-zero image set covariance, which is the major
component of LEML’s Gaussian descriptor. Such degeneracy
explains the relatively low accuracy obtained for LEML. We
have also derived a modified version of LEML that we refer
to as LE-LEML. It uses the image-level SPD descriptors pro-
posed in this paper instead of the set-level Gaussian descrip-
tors. Tables 1 and 2 clearly show the use of the image-level
descriptors significantly boosts the performance of LEML.

5 Conclusion
We proposed LEFL-SRC, an approach for face identification
from image sets using sparse coding on the Log-Euclidean
(LE) tangent space of the SPD manifold SQ

+

. In this approach,
we first describe each image by generating a number of local
covariance descriptors arranged in a grid; then we use a dic-
tionary of atoms from the LE tangent space TISQ

+

to represent
each gallery image set. While previous LE-based approaches
for image set classification extract a single or very few LE
samples with very high dimensionality, our approach extracts
from each set many LE samples of much lower dimensional-
ity. We formulated an optimization problem for learning an
embedding into a lower-dimensional LE tangent space TISq

+
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Table 2: The recognition rates obtained on the MobFaces dataset under the different protocols. The setting (1 ! {2, 3})
involves training on session 1 (i.e. the lit session) and testing on sessions 2 and 3 (i.e. the unlit and day-lit sessions). The
other five settings are defined in a similar manner. Each ’avg’ column contains the average of the rates obtained under the three
settings to its left. Since each session has a different number of test video clips, the average column weighs the rate of each
setting by its number of test sets. We have highlighted in bold the rates of the top two performing methods for each setting.
Note that the row for DRM-GRAY corresponds to the performance of the DRM method obtained when we use intensity features
instead of the LBP features DRM calculates by default during feature preprocessing. While intensity features lead to noticeable
performance improvement for DRM on MobFaces, they decrease the performance of DRM on the YTC dataset compared to
LBP features and so we report only for YTC the performance of DRM on the LBP features.

MobFaces-I MobFaces-II

Methods 1 → {2, 3} 2 → {1, 3} 3 → {1, 2} avg {2, 3} → 1 {1, 3} → 2 {1, 2} → 3 avg

AHISD 15.00 31.14 29.30 26.12 24.41 51.28 52.85 39.39
CHISD 10.61 26.57 25.73 21.96 23.29 44.97 47.60 35.76
SANP 9.34 27.09 26.15 21.96 20.38 48.89 45.95 34.94
DFRV 19.39 32.29 30.87 28.30 32.11 50.60 52.40 42.62
MS-CRC 48.20 51.30 50.24 50.09 69.01 73.59 77.18 72.52
MS-SRC 32.40 46.56 42.49 41.29 43.29 71.89 75.53 59.79
SSDML 10.53 28.89 26.15 22.95 21.31 50.09 54.95 38.27
DRM-LBP 23.46 32.41 36.38 31.41 38.97 62.86 65.77 52.72
DRM-GRAY 33.28 38.94 37.95 37.06 53.62 70.53 69.37 62.42
PML 51.16 45.98 41.77 45.88 45.92 56.56 61.41 53.06
LEML 13.17 20.80 21.19 18.87 17.37 29.47 33.03 24.94
LE-LEML 42.70 45.93 44.07 44.39 49.39 66.95 74.62 61.09
FL-SRC (ours) 32.88 46.97 42.25 41.48 44.98 72.40 76.58 61.00
LE-SRC (ours) 47.01 52.63 54.00 51.60 59.25 73.59 84.98 70.28
LEFL-SRC (ours) 48.20 56.21 54.90 53.58 62.72 75.64 86.19 72.74

in which the data has a more discriminative subspace struc-
ture allowing accurate subsequent application of SRC. Ex-
tensive experiments on three public datasets (YTC, YTF, and
MobFaces) show that our method outperforms many state-of-
the-art methods. In addition, we made an empirical ablation
analysis where we have shown how the different components
of our approach contribute to the final perofrmance.
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