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Abstract
In social network sites (SNS), propagation histories
which record the information diffusion process can
be used to explain to users what happened in their
networks. However, these histories easily grow in
size and complexity, limiting their intuitive under-
standing by users. To reduce this information over-
load, in this paper, we present the problem of prop-
agation history ranking. The goal is to rank partic-
ipant edges/nodes by their contribution to the dif-
fusion. Firstly, we discuss and adapt Difference
of Causal Effects (DCE) as the ranking criterion.
Then, to avoid the complex calculation of DCE,
we propose a “resp-cap” ranking strategy by adopt-
ing two indicators. The first is responsibility which
captures the necessary face of causal effects. We
further give an approximate algorithm for this in-
dicator. The second is capability which is defined
to capture the sufficient face of causal effects. Fi-
nally, promising experimental results are presented
to verify the feasibility of our method.

1 Introduction
Online social networks have been requisite for modern life.
Every day, massive amounts of posts (tweets, messages) are
emerging and disseminating in social network sites (SNS).
Usually, a user may receive the same news from several dif-
ferent followees or friends. At this time, the user might want
to know why (s)he could receive this post, or what is each in-
volved user’s role in the propagation. Luckily, propagation
histories, which record the diffusion process, are partially
provided to users in some online SNS, such as Sina Weibo
(the Chinese counterpart of Twitter).
Example 1 (Propagation history of a diffusion on Weibo).
Bill Gates posts a message about his speech on Weibo, and
Tom receives this news via Delx (one of his followees). This
repost trace is recorded and illustrated on Tom’s homepage.
In addition, the other two propagation traces are included,
i.e., via Alice/Cain and Alice/Bob respectively. This propa-
gation history (top in Fig. 1) could explain why Tom could
receive this news or who plays the key role in this diffusion.

⇤Corresponding author: Chaokun Wang.
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Figure 1: An illustration of the propagation history in Exam-
ple 1. The propagation graph (top) is constructed based on the
propagation history, where every edge stands for a user’s re-
post behavior. In the underlying network structure (bottom),
each node stands for a user and some users are tagged for
convenience.

Note that only propagation histories, rather than the under-
lying network topology, are used to explain information dif-
fusion in this study. An illustration of Example 1 is given in
Fig. 1. We can see that these recorded propagation traces ex-
actly capture users’ repost behaviors in the dynamic flow of
information regardless of the underlying network topology.
With these traces, we can intuitively explain this diffusion,
e.g., Alice tends to be an important person since there are two
propagation traces going through this user.

However, propagation histories can rapidly grow in size
and complexity, making it difficult to understand intuitively.
To reduce this information overload, in this paper, we present
the problem of propagation history ranking. The goal is to
rank propagation participants (edges/nodes) by their contri-
bution to the diffusion. As such, we put forward our solu-
tion from the viewpoint of causality [Hume, 1739]. Causality
based reasoning has long been a hot topic in cognitive sci-
ence research areas, and could draw a clear picture of each
participant’s contribution during the propagation.
More Applications. Another interesting application is net-
work reliability [Page and Perry, 1994]: Given a network,
identify the important edges/nodes to guarantee its connec-
tivity. However, in practice, the entire network structure is
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not always available, e.g., for security reasons. The distribu-
tion records of gateways, a kind of propagation history, might
be considered to prioritize the diagnosis work.
Contributions. Our contributions are as follows:

1. To the best of our knowledge, we are the first to study the
propagation history ranking problem in SNS. We further
discuss and adapt Difference of Causal Effects (DCE) as
the ranking criterion.

2. We propose a “resp-cap” ranking strategy (to avoid the
hardness of DCE calculation) by adopting indicators re-
sponsibility and capability to capture the necessary and
sufficient faces of causal effects, respectively.

3. We give an approximate algorithm for responsibility cal-
culation, since this problem is generally NP-hard.

4. Extensive experiments on real-world datasets demon-
strate the feasibility of our ranking mechanism.

2 Preliminary and Problem Statement
In this paper, we restrict our discussion to the information dif-
fusion from one source node to one target node. Without loss
of generality, we consider edges as propagation participants.
Following this, we give a formal definition of propagation
history and its ranking problem.
Definition 1 (Propagation history of a diffusion). The prop-
agation history of a diffusion in SNS records all the actual
propagation trails of an event E from the source S to the tar-
get T , and is usually formalized as:

�

(E,S,T )
= {t1, ..., tn} = {(t11, ..., t1l1), ..., (t

n

1 , ..., t
n

ln
)}

where each ti is called a trace, constructed by l
i

ordered
edges (ti1, ..., t

i

li
). We drop the subscript (E,S,T ) when there

is no ambiguity.
Propagation history ranking. Let � be the propagation
history of a diffusion, and let T be the edge set of �. The
goal is to rank those edges in T by their contribution to this
diffusion.

3 DCE as Ranking Criterion
In this section, we discuss how to estimate the edge im-
portance in propagation histories, and introduce the selected
ranking criterion.
Importance Estimation. The concern with regard to the im-
portance of a specific edge concentrates on two effects: What
is the overall effect on this diffusion if this edge fails? Or
what is the effect if the edge is non-failed? Considering the
likelihood of a successful transmission, these two effects can
be estimated as:

• P (�

x

0
=true) is the probability of a successful informa-

tion transmission if edge X is intervened to be failed.
• P (�

x

=true) is the probability of a successful infor-
mation transmission if edge X is intervened to be non-
failed.

Note that, x and x0 stand for interventions to set edge
X to be “non-failed” and “failed” in randomized experi-
ments [Fisher, 1925], respectively. Therefore, P (�

x

0
=true)

and P (�

x

=true) are two causal effect measures consider-
ing how necessary and sufficient the edge is for the diffusion,
respectively. It is natural to consider the above two effects
together, i.e., the Difference of Causal Effects, (DCE) [Pearl,
2000]:

DCE(X) = P (�

x

=true)� P (�

x

0
=true). (1)

Consequently, DCE considers both necessary and sufficient
faces of causal effects, and a rigorous proof can be found
in [Pearl, 2000]. The similar idea is widely adopted in other
research areas, such as network reliability [Page and Perry,
1994] and economics [Campbell et al., 1997].
DCE Calculation. To calculate this causal measure,
adopting randomized experiments is the preferred golden
method [Fisher, 1925]. We briefly describe this procedure
as follows. Given the input edge X , we first enforce X to
be “non-failed” (or “failed”). Then, in each simulation, we
randomly set the other participant edges to be failed or non-
failed, and further check if the diffusion would be successful.
After a great number of simulations, we get the probability of
P (�

x

=true) (or P (�

x

0
=true)). Finally, we would get the

DCE value according to Eq. 1.

4 Integrated “resp-cap” Ranking Strategy
Although conducting randomized experiments is preferred
for DCE calculation, this method needs to run simulations
many times over to obtain a convergent value [Wasserstein,
1997]. To avoid this complication, we propose a “resp-cap”
ranking strategy by adopting two indicators (i.e., responsibil-
ity and capability) to capture the intuition of causal effects
from two faces.

4.1 Responsibility
To capture the necessary face of causal effects in a diffu-
sion, we introduce the concept of responsibility [Chockler
and Halpern, 2004] based on the following definition inspired
by [Pearl, 2000].
Definition 2 (Causality in a diffusion). Suppose the edge set
of the propagation history is T . Let t 2 T be a participant
edge, and let � ⇢ T be an edge set. t is called a cause for this
diffusion w.r.t. �, if the following two conditions are satisfied:

1. The diffusion from s to t remains with T��, and
2. after removing �, the removal of t would make this dif-

fusion fail.
� is called the contingency set for t.

Although checking causality (i.e., evaluating each cause
and its related contingency set) is NP-complete in gen-
eral [Eiter and Lukasiewicz, 2002], [Meliou et al., 2010b]
gave a PTime solution for provenance data of relational
databases. This method would be directly applied to the prop-
agation history in SNS. In this paper, we only focus on the
causality based ranking problem.
Definition 3 (Responsibility). Suppose the edge set of the
propagation history is T , and let t 2 T be a participant edge.
The responsibility of t for this diffusion is:

�
t

=

1

1 +min� |�|
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where � ranges over all contingency sets for t.
Example 2 (Example 1 continued). The propagation his-
tory of this diffusion is �={t1, t2, t3}, where t1=(A,B),
t2=(A,C) and t3=(D). The responsibility of edge A is 1/2,
because the smallest contingency set for A is {D}. Similarly,
the responsibility of D is 1/2 with the smallest contingency
set {A}. The smallest contingency sets for B and C are {C,
D} and {B, D}, respectively. Therefore, their responsibility
values are both 1/3.

Responsibility of edge t is determined by the minimum
edge set whose removal will make t indispensable for a suc-
cessful information transmission, which leads to the follow-
ing proposition.
Proposition 1. Responsibility measures the necessary face of
causal effects.
Proof. The proof is based on a causal measure Probabil-
ity of Necessary (PN), which is defined as the probability of
event y would not have occurred in the absence of event x,
given that x and y did in fact occur [Pearl, 2000]. Therefore,
PN measures the necessary face of causal effects.

Let X be a participant edge, and let x and x0 stand for the
propositions “X non-failed” and “X failed” respectively. Let
set S contain all propagation traces which go through edge X ,
and the rest of the traces are put into another set (denoted as
¯S). Let s and s̄ stand for the cases that S and ¯S can success-
fully transmit the information respectively, and let s0 and s̄0

denote their complements. We could calculate the PN value
of edge X: PN = P (s̄0s)/[P (s̄x) + P (s̄0s)]. Suppose every
edge follows the same failure probability 50%. Then we get
the following equations:

PN = 1/[P (s̄x)/P (s̄0s) + 1]

= 1/[P (s̄)P (x)/P (s̄0s) + 1]

= 1/[0.5 ⇤ P (s̄)/P (s̄0s) + 1]

/ P (s̄0s)/P (s̄)

As the responsibility of X increases, ¯S becomes easier to get
broken (P (s̄0) increases and P (s̄) decreases). In this case, if
P (s) keeps the same, PN will increase. Therefore, responsi-
bility has a positive relationship with PN, i.e., responsibility
measures the necessary face of causal effects.

Complexity of Responsibility. In theory, to compute the re-
sponsibility one has to iterate over all contingency sets, i.e.,
computing responsibility in general is NP-hard [Chockler and
Halpern, 2004]. Therefore, we propose an approximate algo-
rithm, and more details can be found in Section 5.

4.2 Capability
To capture the sufficient face of causal effects in a diffusion,
we define the concept of capability.
Definition 4 (Capability). Suppose the edge set of the propa-
gation history is T , and let t 2 T be a participant edge. The
capability of t for this diffusion is:

⇢
t

=

1

minŁ |st(Ł)|
where Ł ranges over all propagation traces going through t,
and function st(Ł) returns the edge set of Ł.

Example 3 (Example 1 continued). The capability of edge A
is 1/2, since it needs edge {B} or {C} to ensure the diffusion.
The capability values of B and C are both 1/2, because both
of them need {A} to get information transmitted. Edge D’s
capability is 1 because D itself can guarantee the diffusion.

The capability of edge t is determined by the minimum
edge set whose addition could make t indispensable for a
successful information transmission, which leads to the fol-
lowing proposition.
Proposition 2. Capability measures the sufficient face of
causal effects.
Proof. The proof is based on a causal measure Probability
of Sufficiency (PS). As stated in [Pearl, 2000], PS is defined as
the probability of enabling x would produce y in a situation
where x and y are in fact absent. Therefore, PS measures the
sufficient face of causal effects.

Continuing with the same definitions of X , x, x0, S, ¯S, s,
s̄, s0 and s̄0 in the proof of Proposition 1, we can calculate the
PS value of edge X: PS = P

�
s̄0(s|x)x0�/P (s̄0x0

). First of
all, since ¯S consists of the traces which do not contain edge
X , P (s̄) and P (s̄0) are not affected by X . As ⇢

x

(the capabil-
ity of X) increases, P (s|x) increases, i.e., S becomes easier
to ensure the diffusion. Since P (s̄0) and P (x0

) are not af-
fected by ⇢

x

, PS will increase when ⇢
x

increases. Therefore,
capability has a positive relationship with PS, i.e., capability
measures the sufficient face of causal effects.

Complexity of Capability. Suppose the propagation history
contains N traces and M edges. Using an inverted index,
calculating the capability values of all edges can be done in
O(LN) (with O(M) space complexity), where L is the av-
erage length of all propagation traces. Generally, L is not a
large number according to the concept of six degrees of sep-
aration [Milgram, 1967]. Therefore, the capability problem
has a linear complexity with respect to the number of propa-
gation traces.

4.3 Integrated “resp-cap” Ranking
By combining the above two indicators, we get the integrated
“responsibility-capability” ranking strategy (short for “resp-
cap”) defined as follows:

score = ↵⇤fn(responsibility) + (1�↵)⇤fn(capability). (2)

where fn stands for a normalized function calculating the
standard score [Strang and Aarikka, 1986] and 0<↵<1 is a
balance factor. Note that these two indicators can be incor-
porated into other more complex ranking methods, which we
leave as our future work.

5 Approximate Algorithm for Responsibility
Since responsibility is hard to calculate, in this section, we
propose an approximate algorithm which guarantees a fea-
sible solution. We first compare the responsibility problem
with the classical set cover problem (SCP) [Chvatal, 1979].
Responsibility vs. SCP. Suppose the propagation history
is organized for SCP: �={c1, . . . , cn}, where c

i

is a sub-
set of the whole participant edge set T = {t1, . . . , tm}. We
assume function sc(t

j

,�) = {c
i

|t
j

2c
i

^ c
i

2�} (sc(t
j

) for
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short), and intuitively sc(t
j

) covers (contains) all the sets (in
�) containing t

j

. Given an edge t, the intuition of SCP is to
find the minimum k which satisfies sc(t1) [ . . . [ sc(t

k

) =

� � sc(t). Responsibility problem has the same intuition,
besides which it has another constraint that the removal of
{t1, . . . , tk} must ensure t is still a cause for this diffusion,
i.e., sc(t1) [ . . . [ sc(t

k

) 6= �.
Approximate Algorithm for Responsibility. If � is the se-
lected contingency set for edge t, � must satisfy two con-
straints: i) if all edges in � are removed, the diffusion remains
but the removal of t would make this diffusion fail; and ii) �
must be the minimum set satisfying

S
x2� sc(x)=��sc(t).

Based on these two constraints, we propose a greedy algo-
rithm named Appresp described in Alg. 1.

Algorithm 1 Appresp
Input: The SCP form of the propagation history �, the in-

volved edge set T , and an edge t 2 T
Output: The approximate responsibility of t

1: We first get the covered set SA=sc(t,�) and the uncov-
ered set ST=��SA.

2: We choose edge x2T��, which satisfies these two rules:
1. sc(x, ST ) covers the sets in ST as many as possi-

ble;
2. SA 6= sc(x, SA).

3: We add x to �, remove sc(x, SA) from SA, and remove
sc(x, ST ) from ST .

4: Repeat Step (2) and (3) until ST gets empty.
5: Output the responsibility of t by 1/(|�|+ 1).

The key aspects of Appresp are the two rules listed in Step
(2) in Alg. 1. The first rule is a heuristic rule for ranking the
edges to be added to the contingency set. The second rule is
a constraint rule to make sure t is still a cause of the diffu-
sion (Def. 2) after removing the calculated contingency set.
Finally, this selection could lead to the following proposition.

Proposition 3. Appresp would guarantee a feasible solution,
if the propagation history contains no redundancy 1.

Proof. We continue with the definitions of �, sc, ST and SA
in Alg. 1. Suppose the propagation history does not contain
any redundant traces. We calculate the responsibility of edge
t as an example.

Case A (If Appresp returns a contingency set �): In this
case, ST is covered by

S
x2� sc(x,�). For simplicity, here

“the removal of edge t” refers to removing all sets in sc(t,�)
from both SA and ST . According to our constraint rule, the
removal of � makes ST empty but cannot make SA empty.
In addition, if we remove all edges in � first, the removal of t
makes SA empty. Consequently, according to Def. 2, � is a
feasible contingency set for t.

1Redundancy is defined by [Meliou et al., 2010b], i.e., a prop-
agation trace t

i is redundant if there exists another trace t

j whose
edge set is a subset of ti’s edge set. After removing all redundan-
cies, the remaining edges are causes (Def. 2). This is also the PTIME
solution for the causality checking problem in propagation histories.

Case B (If Appresp cannot find a contingency set): In this
case, suppose we have gotten temporary results SA0 and ST 0

when no edge satisfies our constraint rule, i.e., for each left
edge x, we get SA0

= sc(x, SA0
). Suppose c

t

is a set in
ST 0 and c

a

is a set in SA0. For each edge x in c
t

, we will
find sc(x, SA0

) contains c
a

. Thus, we get c
t

✓ c
a

, i.e.,
c
a

is redundant. This is opposite to our hypothesis of non-
redundancy.

Therefore, Appresp can guarantee a feasible solution for
the propagation history without redundancy.

Complexity of Appresp. Suppose the propagation history
has N traces and M edges, the average length of traces is
L, and the corresponding contingency set size is k. On aver-
age, the time complexity of Appresp is O(k ⇤ (L ⇤N+M)).
Note that, both k and L are usually small numbers 2, i.e., our
method is a linear algorithm.

Proof. Given the input edge t, we need to loop the following
steps k times to calculate its responsibility.

1. Step (2) performs two tasks. Firstly, it calculates
sc(x, ST ) for each edge x. We can use an inverted index
to speed up (the time complexity is O(L ⇤N)). Then it
selects edge x which satisfies these two rules (the time
complexity is at most O(M), since SA is usually small).

2. Step (3) removes all sets in sc(x, ST ) from ST (the time
complexity is O(N/k)), and does the similar task in SA.

Therefore, the overall time complexity is: O(k ⇤ (L ⇤
N+M+2 ⇤N/k)) = O(k⇤(L⇤N+M)).

Compared to our method, [Qin et al., 2013] directly
adopted a greedy strategy to solve the corresponding SCP
problem, i.e., their method cannot guarantee a feasible so-
lution for the responsibility problem. We will compare these
two methods in the later experiments.

6 Experimental Evaluation
In this section, we show the effectiveness of the proposed
ranking strategy “resp-cap” by answering the following two
questions. Q1: Can its two indicators (i.e., responsibility
and capability) partly capture the intuition of causal effects?
Q2: Can this integrated ranking strategy capture two faces of
causal effects and thus improve performance?

6.1 Experimental Setup
Dataset. We use a real-world dataset ego-Facebook [Mc-
Auley and Leskovec, 2012], which contains 4,039 nodes
and 88,234 undirected links. From this network, we gener-
ate three propagation history datasets, and explain the corre-
sponding diffusion phenomena by ranking participant edges.
Table 1 shows the details of these datasets.

FB-Sample is a small propagation history set generated as
follows: 1) we sample ego-Facebook with the Re-Weighted
Random Walk strategy (an unbiased sampling method) [Sal-
ganik and Heckathorn, 2004], and get a small scale network;
and 2) we then enumerate all simple paths from source (node
0) to target (node 197) as propagation traces.

2We verify the k’s values in our experiments.
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Figure 2: Causality based ranking of FB-Sample. The source node is 0, and the target node is 197. A directed edge stands for
a directed message propagation between two nodes. (a) Network constructed by the traces in FB-Sample; (b) Cropped version
of the network; (c) Ranked DCE values of all participant edges; (d) NDCG.

Table 1: Propagation histories generated from ego-Facebook.
source!target #edges #traces Len(trace)

FB-Sample 0 ! 197 72 442 4 ⇠ 21
FB-Walk-0-197 0 ! 197 1052 349 1 ⇠ 18
FB-Walk-158-146 158 ! 146 1024 213 2 ⇠ 18

FB-Walk-0-197 (start node 0 and target node 197) and FB-
Walk-158-146 (start node 158 and target node 146) are two
large propagation history datasets with different start nodes
and target nodes. They are generated as follows: 1) we start
lots of random walks from the source node in the raw net-
work; and 2) we record a random walk path (as a propagation
trace) if it reaches the target in a limited number of steps.

To obtain the ranking ground truth, we run randomized ex-
periments to get DCE values on four servers (with 8 cores and
32GB memory) for 100⇠400 hours for each dataset.3
Evaluation Metric. We use NDCG as the evaluation metric
in our experiments. NDCG is a popular evaluation metric
following two rules: (i) highly related edges are more useful
than marginally relevant ones; and (ii) lower ranked edges
are less valuable for users, since they are less likely to be
examined. The NDCG value of a ranking list at a particular
rank position n is defined as:

NDCG

n

= Z
n

(rel1 +
nX

i=1

rel
i

log2 i
).

where rel
i

is the graded rating of the i-th edge in the ranking
list, and Z

n

is a normalization constant to make the perfect
list obtain NDCG score of 1. Note DCE values are used as
the graded ratings ({rel

i

}) in all experiments.
Ranking Strategies. With the proposed two indicators, we
compare the following six different ranking strategies.

1. Capability: Ranking by capability value (Section 4.2);

2. Appresp: Ranking by responsibility value calculated by
Appresp (Section 5);

3. Nresp: Ranking by responsibility value calculated by
Nresp [Qin et al., 2013];

3To get convergent values, we have to conduct randomized ex-
periments with lots of repetitions (around 109). Moreover, larger
propagation history datasets need even more repetitions.
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Figure 3: NDCG on two large datasets.

4. appresp-capability: The integrated “resp-cap” ranking
(Section 4.3) with responsibility calculated by Appresp;

5. nresp-capability: The integrated “resp-cap” ranking
(Section 4.3) with responsibility calculated by Nresp;

6. Random: Ranking randomly.
In the integrated “resp-cap” methods, we all set the param-

eter ↵=0.5. For each method, we first get the ranking list.
Then, we generate 1000 permutations of this list by shuffling
edges with the same ranking score. Finally, we use the mean
NDCG of these permutations as this method’s performance.

6.2 Ranking Quality
(1) Comparing Quality. We evaluate the six ranking strate-
gies. Figures 2(d) and 3 show the experimental results. Ta-
ble 2 shows the details. In addition, we show the top-5 ranked
edges obtained by DCE values and our appresp-capability
method in Fig. 2(b). Due to space limitations, we only show
the top ranked edges on FB-Sample, but the results are similar
on the other two datasets.

Our first observation is that our integrated ranking methods
(appresp-capability and nresp-capability) successfully cap-
ture the intuition of DCE. As shown in Fig. 2(b), our
appresp-capability method successfully identifies the top im-
portant edges in the propagation history. The nresp-capability
method could do the same thing (we do not show it, due to
space limitations). Therefore, our integrated methods achieve
a high ranking accuracy. Take NDCG@5 as an example, in-
tegrated methods get a ranking accuracy of 90⇠95%.

Our second observation is that our integrated ranking
methods significantly outperform unintegrated ones. Take
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Table 2: NDCG Results.
FB-Sample FB-Walk-0-197 FB-Walk-158-146

Method NDCG@5 NDCG@10 NDCG@15 NDCG@5 NDCG@10 NDCG@15 NDCG@5 NDCG@10 NDCG@15
Capability 0.7870 0.8703 0.9009 0.8354 0.8476 0.8726 0.7442 0.7083 0.7319
Nresp 0.9274 0.8143 0.7900 0.6706 0.7417 0.7933 0.7435 0.7758 0.7122
Appresp 0.9277 0.9004 0.8739 0.6872 0.7579 0.8061 0.7575 0.7903 0.7311
nresp-capability 0.9548 0.9762 0.9827 0.8769 0.9019 0.9100 0.8900 0.9369 0.9146
appresp-capability 0.9549 0.9892 0.9889 0.8871 0.9213 0.9291 0.9004 0.9534 0.9303
Random 0.1110 0.1405 0.1682 0.0277 0.0299 0.0310 0.0165 0.0194 0.0223
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Figure 4: Parameter ↵ in our appresp-capability method.

NDCG@5 as an example, integrated ones outperform unin-
tegrated ones by 10⇠25%. This improvement persists even
when the rank position increases Therefore, both the first and
second observations demonstrate that our integrated strategy
can capture two faces of causal effects and thus improve the
performance by combining these two indicators. This sum-
mary answers the aforementioned question Q2.

The last observation is that ranking either by capability
or by responsibility (Appresp or Nresp) alone can achieve a
passable accuracy. Take NDCG@5 as an example, the rank-
ing accuracies of unintegrated ones are around 75%. This
is consistent with our theoretical analysis that responsibility
and capability can evaluate causal contribution in two differ-
ent faces. This answers the aforementioned question Q1.
(2) The Effect of Parameter ↵. In our integrated “resp-cap”
ranking strategy, there is a parameter ↵ balancing considera-
tion of causation between necessity and sufficiency. We test
different values of ↵ in this kind of method on two large prop-
agation history datasets. Figure 4 shows the results. We can
see that 1) combining appresp and capability values does in-
crease ranking performance; and 2) although the results fluc-
tuate, the performances with ↵ around 0.5 are always sta-
ble and preferred. These observations suggest that we should
consider the necessity and sufficiency of causation fairly.
(3) Appresp vs. Nresp. We also compare two responsibil-
ity calculation methods: Appresp and Nresp. From Figs. 2(d)
and 3, we can see that Appresp outperforms Nresp in both the
unintegrated and integrated strategies. We can explain this
from Fig. 5, which shows the size distributions of the contin-
gency sets calculated by these two methods. (We report only
the result on FB-Walk-0-197, because the results of the rest
of networks show the same trend.) The results of Nresp are
highly centralized, which indicates the results are highly in-
fluenced by those edges involved in more traces. In contrast,
the results of Appresp are decentralized. This is because Ap-
presp could guarantee a feasible result, so as to avoid being
highly affected by the edges with large influence.
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Figure 5: The size distributions of the calculated contingency
sets on FB-Walk-0-197.

7 Related Work
Causality. The classical counterfactual causality (if X
had not occurred, Y would not have occurred) goes back
to [Hume, 1739]. [Lewis, 1973] analyzed it in a formal
way. Recently, [Pearl, 2000] has given a rigorous definition
of causality. Under this definition, [Chockler and Halpern,
2004] introduced responsibility to evaluate the contribution
of each cause. [Meliou et al., 2010a; Freire et al., 2015]
studied the causality and responsibility problems in rela-
tional databases. We refer to [Kleinberg and Hripcsak, 2011]
and [Li et al., 2015] for expositions of causality theory.
Diffusion in SNS. Understanding information diffusion is
one of the primary reasons for studying SNS [Guille et al.,
2013]. This topic has many interesting applications, such as
influential spreaders identification [Kitsak et al., 2010], influ-
ence maximization [Chen et al., 2015], and hot topic identi-
fication [Kleinberg, 2003]. Most of them analyzed diffusion
problems based on the network structure.

In this paper, we analyze diffusion based on propagation
histories rather than network structure. In addition, we pro-
pose to understand the diffusion from the viewpoint of causal-
ity, which has rarely been mentioned in the literature.

8 Conclusion
This paper presents the propagation history ranking problem
in SNS, and puts forward a solution from the viewpoint of
causality. We first introduce DCE as the ranking criterion and
show its rationality. Due to the hardness of calculating DCE,
we then propose the “resp-cap” ranking strategy by adopting
two indicators (responsibility and capability). Furthermore,
we design an approximate algorithm for responsibility calcu-
lation, which could guarantee a feasible solution for general
propagation histories. Extensive experiments demonstrate the
feasibility and advantages of our approach. As future work,
we would like to consider more complicated diffusion.
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